1
|
Kim JP, Go CY, Kang J, Choi Y, Kim JY, Kim J, Kwon O, Kim KC, Kim DW. Nanoporous multilayer graphene oxide membrane for forward osmosis metal ion recovery from spent Li-ion batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Pilato S, Moffa S, Siani G, Diomede F, Trubiani O, Pizzicannella J, Capista D, Passacantando M, Samorì P, Fontana A. 3D Graphene Oxide-Polyethylenimine Scaffolds for Cardiac Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 36881875 PMCID: PMC10037243 DOI: 10.1021/acsami.3c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The development of novel three-dimensional (3D) nanomaterials combining high biocompatibility, precise mechanical characteristics, electrical conductivity, and controlled pore size to enable cell and nutrient permeation is highly sought after for cardiac tissue engineering applications including repair of damaged heart tissues following myocardial infarction and heart failure. Such unique characteristics can collectively be found in hybrid, highly porous tridimensional scaffolds based on chemically functionalized graphene oxide (GO). By exploiting the rich reactivity of the GO's basal epoxydic and edge carboxylate moieties when interacting, respectively, with NH2 and NH3+ groups of linear polyethylenimines (PEIs), 3D architectures with variable thickness and porosity can be manufactured, making use of the layer-by-layer technique through the subsequent dipping in GO and PEI aqueous solutions, thereby attaining enhanced compositional and structural control. The elasticity modulus of the hybrid material is found to depend on scaffold's thickness, with the lowest value of 13 GPa obtained in samples containing the highest number of alternating layers. Thanks to the amino-rich composition of the hybrid and the established biocompatibility of GO, the scaffolds do not exhibit cytotoxicity; they promote cardiac muscle HL-1 cell adhesion and growth without interfering with the cell morphology and increasing cardiac markers such as Connexin-43 and Nkx 2.5. Our novel strategy for scaffold preparation thus overcomes the drawbacks associated with the limited processability of pristine graphene and low GO conductivity, and it enables the production of biocompatible 3D GO scaffolds covalently functionalized with amino-based spacers, which is advantageous for cardiac tissue engineering applications. In particular, they displayed a significant increase in the number of gap junctions compared to HL-1 cultured on CTRL substrates, which render them key components for repairing damaged heart tissues as well as being used for 3D in vitro cardiac modeling investigations.
Collapse
Affiliation(s)
- Serena Pilato
- Dipartimento
di Farmacia, Università “G.
d’Annunzio” di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Samanta Moffa
- Dipartimento
di Farmacia, Università “G.
d’Annunzio” di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Gabriella Siani
- Dipartimento
di Farmacia, Università “G.
d’Annunzio” di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Francesca Diomede
- Dipartimento
di Tecnologie Innovative in Medicina & Odontoiatria, Università “G. d’Annunzio”
di Chieti-Pescara, Via
dei Vestini, 66100 Chieti, Italy
| | - Oriana Trubiani
- Dipartimento
di Tecnologie Innovative in Medicina & Odontoiatria, Università “G. d’Annunzio”
di Chieti-Pescara, Via
dei Vestini, 66100 Chieti, Italy
| | | | - Daniele Capista
- Dipartimento
di Scienze Fisiche e Chimiche, Università
degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Maurizio Passacantando
- Dipartimento
di Scienze Fisiche e Chimiche, Università
degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
| | - Paolo Samorì
- Université
de Strasbourg, CNRS, ISIS, 8 alleé Gaspard Monge, 67000 Strasbourg, France
| | - Antonella Fontana
- Dipartimento
di Farmacia, Università “G.
d’Annunzio” di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
- UdA—TechLab,
Research Center, Università “G.
d’Annunzio” di Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
3
|
Zhou K, Guo C, Gan F, Xin JH, Yu H. Large-area ultra-thin GO nanofiltration membranes prepared by a pre-crosslinking rod coating technique. J Colloid Interface Sci 2023; 640:261-269. [PMID: 36863182 DOI: 10.1016/j.jcis.2023.02.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In existing separation membranes, it is difficult to quickly produce large-area graphene oxide (GO) nanofiltration membranes with high permeability and high rejection, which is the bottleneck of industrialization. In this study, a pre-crosslinking rod-coating technique is reported. A GO-P-Phenylenediamine (PPD) suspension was obtained by chemically crosslinking GO and PPD for 180 min. After scraping and coating with a Mayer rod, the ultra-thin GO-PPD nanofiltration membrane with an area of 400 cm2 and a thickness of 40 nm was prepared in 30 s. The PPD formed an amide bond with GO to improve its stability. It also increased the layer spacing of GO membrane, which could improve the permeability. The prepared GO nanofiltration membrane had a 99 % rejection rate for dyes such as methylene blue, crystal violet, and Congo red. Meanwhile, the permeation flux reached to 42 LMH/bar, which was 10 times that of the GO membrane without PPD crosslinking, and it still maintained excellent stability under strongly acidic and basic conditions. This work successfully solved the problems of GO nanofiltration membranes, including the large-area fabrication, high permeability and high rejection.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Changsheng Guo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
4
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
5
|
Mohammadi Z, Seyed Dorraji MS, Ahmadi A, Tarighati Sareshkeh A, Rasoulifard MH. Integrating graphene oxide into layers of PVDF/PVDF@cross-linked sodium alginate/polyamide membrane for efficiently enhancing desalination performances. Sci Rep 2022; 12:16908. [PMID: 36207417 PMCID: PMC9546892 DOI: 10.1038/s41598-022-21316-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
The membrane modules of the water treatment system are faced costly damages; thereby executing pre-desalination units based on Nanofiltration (NF) could prevent these suffers, and improve the permeated water flux (PWF) and salt rejection (SR). Hence, we focused on the construction of a novel ternary-layer NF membrane through “electrospinning Polyvinylidene Fluoride (PVDF) (as bottom layer)”, “generating middle layer by electrospinning PVDF along with, the implementation cross-linking after electrospraying Sodium Alginate”, and “synthesizing Polyamide (as top layer) through interfacial polymerization”. More importantly, it anticipated that the Taguchi statistical method can expeditiously optimize the effects of Graphene Oxide nano-sheets (GOns) on water-dependent properties, such as PWF and SR. Astonishingly, the desalination capabilities significantly improved, when the top, middle, and bottom layers simultaneously had 1, 0.1, and 0.1 wt.% of GOns, respectively. Overall, comparing the performances between the optimized sample containing low-dosage and without GOns demonstrated the PWF ameliorated from 6.68 to 20.36 L/m2 h; also, the SR ability remained on an incremental basis as NaCl < MgCl2 < MgSO4 under 6 bar pressure. Manifestly, these authentic results denoted promising, innovative, and large-scaling insights when effectual PWF and SR be necessary.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Arsalan Ahmadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Research and Development Laboratory, Absamin Water Treatment Co., Karaj, Iran
| | - Abdolreza Tarighati Sareshkeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
6
|
Gu YH, Yan X, Chen Y, Guo XJ, Lang WZ. Exquisite manipulation of two-dimensional laminar graphene oxide (GO) membranes via layer-by-layer self-assembly method with cationic dyes as cross-linkers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Lan Q, Feng C, Wang Z, Li L, Wang Y, Liu T. Chemically Laminating Graphene Oxide Nanosheets with Phenolic Nanomeshes for Robust Membranes with Fast Desalination. NANO LETTERS 2021; 21:8236-8243. [PMID: 34597051 DOI: 10.1021/acs.nanolett.1c02683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) is receiving tremendous attention in membrane separation; however, its desalination performances remain suboptimal because of excessive swelling and tortuous transport pathways. Herein, we chemically joint GO nanosheets and phenolic nanomeshes together to form laminated membranes comprising through-plane nanopores and stabilized nanochannels. GO and phenolic/polyether nanosheets are mixed to form stacked structures and then treated in H2SO4 to remove polyether to produce nanomeshes and to chemically joint GO with phenolic nanomeshes. Thus-synthesized laminated membranes possess enhanced interlayer interactions and narrowed interlayer spacings down to 6.4 Å. They exhibit water permeance up to 165.6 L/(m2 h bar) and Na2SO4 rejection of 97%, outperforming most GO-based membranes reported so far. Moreover, the membranes are exceptionally stable in water because the chemically jointed laminates suppress the swelling of GO. This work reports hybrid laminated structures of GO and phenolic nanomeshes, which are highly desired in desalination and other applications.
Collapse
Affiliation(s)
- Qianqian Lan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chao Feng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zicheng Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Le Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
8
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
9
|
Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. MINERALS 2020. [DOI: 10.3390/min11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work focuses on the investigation of the capability of reduced graphene oxide (rGO) filters to remove metals from various wastewater. The process to produce rGO membranes is reported and discussed, as well as their ability to capture ions in complex solutions, such as tap or industrial wastewater. Multi-ion solutions, containing Cu2+, Fe3+, Ni2+, and Mn2+ to simulate mine wastewater, or Ca2+ and Mg2+ to mimic drinkable water, were used as models. In mono-ionic solutions, the best capture efficiency values were proved for Ca2+, Fe3+, and Ni2+ ions, while a matrix effect was found for multi-ion solutions. However, interesting capture efficiencies were measured in the range of 30–90%, depending on the specific ion, for both single and multi-ion solutions. An attempt is proposed to correlate ions capture efficiency with ions characteristics, such as ionic radius or charge. Combining a satisfactory capture efficiency with low costs and ease of treatment unit operations, the approach here proposed is considered promising to replace other more complex and expensive filtration techniques.
Collapse
|
10
|
Dong Y, Lin C, Gao S, Manoranjan N, Li W, Fang W, Jin J. Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Blagojević Filipović JP, Hall MB, Zarić SD. Stacking interactions of resonance-assisted hydrogen-bridged rings and C 6-aromatic rings. Phys Chem Chem Phys 2020; 22:13721-13728. [PMID: 32529195 DOI: 10.1039/d0cp01624a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stacking interactions between six-membered resonance-assisted hydrogen-bridged (RAHB) rings and C6-aromatic rings were systematically studied by analyzing crystal structures in the Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal mol-1), the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal mol-1) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal mol-1), but for a particular composition of RAHB rings, RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal mol-1) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal mol-1). SAPT energy decomposition analyses show that the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by a repulsive exchange term; hence the geometries of the most stable structures are determined by an electrostatic term.
Collapse
Affiliation(s)
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
12
|
Lin H, Li Y, Zhu J. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Mahalingam DK, Wang S, Nunes SP. Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent Nanofiltration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dinesh K. Mahalingam
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Shaofei Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|