1
|
Vuong TT, Phan HT, Vu Thi Thu N, Nguyen PL, Nguyen HT, Le HV, Nguyen NT, Phung TVB, Le PA. Friendly Environmental Strategies to Recycle Zinc-Carbon Batteries for Excellent Gel Polymer Electrolyte (PVA-ZnSO 4-H 2SO 4) and Carbon Materials for Symmetrical Solid-State Supercapacitors. ACS OMEGA 2024; 9:27710-27721. [PMID: 38947784 PMCID: PMC11209925 DOI: 10.1021/acsomega.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
In this report, we introduce a novel idea to prepare a redox additive in a gel polymer electrolyte system of PVA-ZnSO4-H2SO4 based on zinc-carbon battery recycling. Here, zinc cans from spent zinc-carbon batteries are dissolved completely in 1 M H2SO4 to obtain a redox additive in an aqueous electrolyte of ZnSO4-H2SO4. Moreover, carbon nanoparticles and graphene nanosheets were synthesized from carbon rod and carbon powder from spent zinc-carbon batteries by only one step of washing and electrochemical exfoliation, respectively, which have good electrochemical capability. The three-electrode system using a ZnSO4-H2SO4 electrolyte with carbon nanoparticles and graphene nanosheets as working electrodes shows high electrochemical adaptability, which points out its promising application in supercapacitor devices. Thus, the symmetrical solid-state supercapacitor devices based on the sandwich structure of graphene nanosheets/PVA-ZnSO4-H2SO4/graphene nanosheets illustrated the highest energy density of 39.17 W h kg-1 at a power density of 1700 W kg-1. While symmetrical devices based on carbon nanoparticles/PVA-ZnSO4-H2SO4/carbon nanoparticles exhibited a maximum energy density of 35.65 W h kg-1 at a power density of 1700 W kg-1. Moreover, these devices illustrate strong durability after 5000 cycles, with approximately 90.2% and 73.1% remaining, respectively. These results provide a promising strategy for almost completely recycling zinc-carbon batteries, one of the most popular dry batteries.
Collapse
Affiliation(s)
- Thuy Trang
T. Vuong
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, VinUniversity, Hanoi 100000, Vietnam
| | - Huy-Trinh Phan
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, VinUniversity, Hanoi 100000, Vietnam
| | - Nga Vu Thi Thu
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Phi Long Nguyen
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, VinUniversity, Hanoi 100000, Vietnam
| | - Huy Tiep Nguyen
- Faculty
of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, No. 144 Xuan Thuy Road, Dich Vong Hau Ward, Cau
Giay District, Hanoi 100000, Vietnam
| | - Hoang V. Le
- Institute
of Science and Technology, TNU-University
of Sciences, Thai Nguyen 250000, Vietnam
- University
of Science and Technology of Hanoi, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, VinUniversity, Hanoi 100000, Vietnam
| | - Phuoc-Anh Le
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, VinUniversity, Hanoi 100000, Vietnam
- Institute
of Chemistry, Vietnam Academy of Science
and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Vuong TT, Nguyen PL, Nguyen NT, Phung TVB, Le PA. Zinc-Carbon Battery Recycling for Investigating Carbon Materials for Supercapacitor Applications. ACS OMEGA 2024; 9:22543-22556. [PMID: 38826542 PMCID: PMC11137693 DOI: 10.1021/acsomega.3c08537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
In this paper, carbon materials, including graphene nanosheets and carbon nanoparticles, were prepared from spent zinc-carbon batteries by the following two simple methods: electrochemical exfoliation and ultrasonication. Here, graphene nanosheets were synthesized by electrochemical exfoliation in 0.5 M H2SO4 by using a direct current power supply with two carbon rods from spent zinc-carbon batteries. Carbon nanoparticles were prepared by fast ultrasonication in a low-cost, green solution of DI water and ethanol. Graphene nanosheets in this study have high quality, large scale, and good electrochemical ability, while carbon nanoparticles have a unique nanosize and a good specific surface area. These carbon materials were applied for electrochemical measurements for supercapacitor studies and showed excellent stability at different temperatures. Moreover, electric double-layer capacitor devices based on graphene nanosheets and carbon nanoparticles were also used in electrochemical studies with strong stability and good electrochemical capability.
Collapse
Affiliation(s)
- Thuy Trang
T. Vuong
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, Vin University, Hanoi 100000, Vietnam
| | - Phi Long Nguyen
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, Vin University, Hanoi 100000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, Vin University, Hanoi 100000, Vietnam
| | - Phuoc-Anh Le
- Center
for Environmental Intelligence and College of Engineering and Computer
Science, Vin University, Hanoi 100000, Vietnam
- Institute
of Chemistry, Vietnam Academy of Science
and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
François M, Lin KS, Rachmadona N, Khoo KS. Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A state-of-the-art review. CHEMOSPHERE 2024; 350:141008. [PMID: 38154673 DOI: 10.1016/j.chemosphere.2023.141008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The management of environmental pollution and carbon dioxide (CO2) emissions is a challenge that has spurred increased research interest in determining sustainable alternatives to decrease biowaste. This state-of-the-art review aimed to describe the preparation and utilization of carbon-based nanomaterials (CNM) for biogas enhancement and wastewater contaminant (dyes, color, and dust particles) removal. The novelty of this review is that we elucidated that the performance of CNMs in the anaerobic digestion (AD) varies from one system to another. In addition, this review revealed that increasing the pyrolysis temperature can facilitate the transition from one CNM type to another and outlined the methods that can be used to develop CNMs, including arc discharge, chemical exfoliation, and laser ablation. In addition, this study showed that methane (CH4) yield can be slightly increased (e.g. from 33.6% to 60.89%) depending on certain CNM factors, including its type, concentration, and feedstock. Temperature is a fundamental factor involved in the method and carbon sources used for CNM synthesis. This review determined that graphene oxide is not a good additive for biogas and CH4 yield improvement compared with other types of CNM, such as graphene and carbon nanotubes. The efficacy of CNMs in wastewater treatment depends on the temperature and pH of the solution. Therefore, CNMs are good adsorbents for wastewater contaminant removal and are a promising alternative for CO2 emissions reduction. Further research is necessary to determine the relationship between CNM synthesis and preparation costs while accounting for other factors such as gas flow, feedstock, consumption time, and energy consumption.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
4
|
Yang X, Lv T, Qiu J. High Mass-Loading Biomass-Based Porous Carbon Electrodes for Supercapacitors: Review and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300336. [PMID: 36840663 DOI: 10.1002/smll.202300336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Indexed: 06/02/2023]
Abstract
Biomass-based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass-loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass-loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass-loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass-loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass-loading BPC electrodes in the future are discussed and outlined.
Collapse
Affiliation(s)
- Xiaomin Yang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ting Lv
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Pan Z, Yu S, Wang L, Li C, Meng F, Wang N, Zhou S, Xiong Y, Wang Z, Wu Y, Liu X, Fang B, Zhang Y. Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111744. [PMID: 37299646 DOI: 10.3390/nano13111744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Porous carbon materials have demonstrated exceptional performance in various energy and environment-related applications. Recently, research on supercapacitors has been steadily increasing, and porous carbon materials have emerged as the most significant electrode material for supercapacitors. Nonetheless, the high cost and potential for environmental pollution associated with the preparation process of porous carbon materials remain significant issues. This paper presents an overview of common methods for preparing porous carbon materials, including the carbon-activation method, hard-templating method, soft-templating method, sacrificial-templating method, and self-templating method. Additionally, we also review several emerging methods for the preparation of porous carbon materials, such as copolymer pyrolysis, carbohydrate self-activation, and laser scribing. We then categorise porous carbons based on their pore sizes and the presence or absence of heteroatom doping. Finally, we provide an overview of recent applications of porous carbon materials as electrodes for supercapacitors.
Collapse
Affiliation(s)
- Zhengdao Pan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, Washington, DC 99164, USA
| | - Linfang Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Li
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Meng
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Nan Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shouxin Zhou
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ye Xiong
- Kucap Smart Technology (Nanjing) Co., Ltd., Nanjing 211106, China
| | - Zhoulu Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baizeng Fang
- Department of Energy Storage Science and Technology, University of Science and Technology Beijing, 30 College Road, Beijing 100083, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Fu F, Yang D, Zhao B, Fan Y, Liu W, Lou H, Qiu X. Boosting capacitive performance of N, S co-doped hierarchical porous lignin-derived carbon via self-assembly assisted template-coupled activation. J Colloid Interface Sci 2023; 640:698-709. [PMID: 36898176 DOI: 10.1016/j.jcis.2023.02.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Heteroatom-doped porous carbon materials show promise for use as supercapacitor electrodes, but the tradeoff between surface area and the heteroatom dopant levels limits the supercapacitive performance. Here, we modulated the pore structure and surface dopants of N, S co-doped hierarchical porous lignin-derived carbon (NS-HPLC-K) via self-assembly assisted template-coupled activation. The ingenious assembly of lignin micelles and sulfomethylated melamine into a magnesium carbonate basic template greatly promoted the KOH activation process, which endowed the NS-HPLC-K with uniform distributions of activated N/S dopants and highly accessible nanosized pores. The optimized NS-HPLC-K exhibited a three-dimensional hierarchically porous architecture composed of wrinkled nanosheets and a high specific surface area of 2538.3 ± 9.5 m2/g with a rational N content of 3.19 ± 0.01 at.%, which boosted the electrical double-layer capacitance and pseudocapacitance. Consequently, the NS-HPLC-K supercapacitor electrode delivered a superior gravimetric capacitance of 393 F/g at 0.5 A/g. Furthermore, the assembled coin-type supercapacitor showed good energy-power characteristics and cycling stability. This work provides a novel idea for designing eco-friendly porous carbons for use in advanced supercapacitors.
Collapse
Affiliation(s)
- Fangbao Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China.
| | - Bowei Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yukang Fan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
7
|
Liu H, Zhang F, Lin X, Wu J, Huang J. A hierarchical integrated 3D carbon electrode derived from gingko leaves via hydrothermal carbonization of H 3PO 4 for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:786-795. [PMID: 36756496 PMCID: PMC9890899 DOI: 10.1039/d2na00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/02/2023] [Accepted: 12/06/2022] [Indexed: 05/20/2023]
Abstract
Electrochemical ultracapacitors derived from green and sustainable materials could demonstrate superior energy output and an ultra-long cycle life owing to large accessible surface area and obviously shortened ion diffusion pathways. Herein, we have established an efficient strategy to fabricate porous carbon (GLAC) from sustainable gingko leaf precursors by a facile hydrothermal activation of H3PO4 and low-cost pyrolysis. In this way, GLAC with a hierarchically porous structure exhibits extraordinary adaptability toward a high energy/power supercapacitor (∼709 F g-1 at 1 A g-1) in an aqueous electrolyte (1 M KOH). Notably, the GLAC-2-based supercapacitor displays an ultra-high stability of ∼98.24% even after 10 000 cycles (10 A g-1) and an impressive energy density as large as ∼71 W h kg-1 at a power density of 1.2 kW kg-1. The results provide new insights that the facile synthetic procedure coupled with the excellent performance contributes to great potential for future application in the electrochemical energy storage field.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Fumin Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Xinyu Lin
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| | - Jinggao Wu
- Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University Huaihua 418000 PR China
| | - Jing Huang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Westa College, Southwest University Chongqing 400715 PR China
| |
Collapse
|
8
|
Huang Q, Cong Y, Xu Z. In situ constructed multilayer graphene structure enabling improved supercapacitive charge storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Qin Y, Miao L, Mansuer M, Hu C, Lv Y, Gan L, Liu M. Spatial Confinement Strategy for Micelle-Size-Mediated Modulation of Mesopores in Hierarchical Porous Carbon Nanosheets with an Efficient Capacitive Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33328-33339. [PMID: 35830692 DOI: 10.1021/acsami.2c08342] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commercial supercapacitors using available carbon products have long been criticized for the under-utilization of their prominent specific surface area (SSA). In terms of carbonaceous electrode optimization, excessive improvement in SSA observed in the gaseous atmosphere might have little effect on the final performance because cracked/inaccessible pore alleys considerably block the direct electrolyte ion transport in a practical electrochemical environment. Herein, mesopore-adjustable hierarchically porous carbon nanosheets are fabricated based on a micelle-size-mediated spatial confinement strategy. In this strategy, hydrophobic trimethylbenzene in different volumes of the solvent can mediate the interfacial assembly with a carbon precursor and porogen segment through π-π bonding and van der Waals interaction to yield micelles with good dispersity and the diameter varying from 119 to 30 nm. With an increasing solvent volume, the corresponding diffusion coefficient (3.1-14.3 m2 s-1) of as-obtained smaller micelles increases, which makes adjacent micelles gather rapidly and then grow along the radial direction of oligomer aggregates to eventually form mesopores on hierarchically porous carbon nanosheets (MNC150-4.5). Thanks to the pore-expansion effect of trimethylbenzene, the mesoporous volume can be adjusted from 28.8 to 40.0%. Mesopores on hierarchically porous carbon nanosheets endow MNC150-4.5 with an enhanced electrochemically active surface area of 819.5 m2 g-1, which gives rise to quick electrolyte accessibility and a correspondingly immediate capacitive response of 338 F g-1 at 0.5 A g-1 in a three-electrode system. Electrolyte transport through pathways within MNC150-4.5 ultimately enables the symmetric cell to deliver a high energy output of 50.4 Wh kg-1 at 625 W kg-1 in a 14 m LiOTF electrolyte and 95% capacitance retention after 100,000 cycles, which show its superior electrochemical performance over representative carbon-based supercapacitors with aqueous electrolytes in recent literature.
Collapse
Affiliation(s)
- Yang Qin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mulati Mansuer
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengmin Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
Yan J, Miao L, Duan H, Zhu D, Lv Y, Li L, Gan L, Liu M. High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and “water-in-salt” electrolyte. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Le PA, Le VQ, Nguyen NT, Nguyen VT, Van Thanh D, Phung TVB. Multifunctional applications for waste zinc-carbon battery to synthesize carbon dots and symmetrical solid-state supercapacitors. RSC Adv 2022; 12:10608-10618. [PMID: 35425023 PMCID: PMC8984403 DOI: 10.1039/d2ra00978a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we provide a simple and green approach to recycle waste zinc carbon batteries for making carbon dots and porous carbon material. The carbon dots are easily synthesized by one green step, the hydrothermal treatment of a carbon rod in a mixture of DI water and pure ethanol to obtain a blue fluorescence under UV light, which can be used directly as a fluorescence ink. The as-prepared carbon dot process give typical dots with a uniform diameter from 3 to 8 nm with a strong slight blue fluorescent. The porous carbon material is also recycled from carbon powder in a waste battery via one green step annealing process without any chemical activation and with a hierarchically porous structure. This porous carbon material is demonstrated as an electrode for symmetrical solid state supercapacitors (SSCs) in a sandwich structure: porous carbon/PVA-KOH/porous carbon. The SSCs using recycled porous carbon electrodes exhibit a good energy density of 4.58 W h kg-1 at a power density of 375 W kg-1 and 97.6% retention after 2000 cycles. The facile one green step of hydrothermal and also that of calcination provide a promising strategy to recycle waste zinc carbon batteries, which transfers the excellent applications.
Collapse
Affiliation(s)
- Phuoc-Anh Le
- Institute of Sustainability Science, Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| | - Van Qui Le
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Nghia Trong Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology Hanoi 100000 Vietnam
| | - Van-Truong Nguyen
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology Thai Nguyen 24000 Vietnam
| | - Dang Van Thanh
- Faculty of Basic Sciences, Thai Nguyen University - University of Medicine and Pharmacy Thai Nguyen 24000 Vietnam
| | - Thi Viet Bac Phung
- Institute of Sustainability Science, Vietnam Japan University, Vietnam National University Hanoi 100000 Vietnam
| |
Collapse
|
12
|
Ye F, Zhang Z, Ao Y, Li B, Chen L, Shen L, Feng X, Yang Y, Yuan H, Mi Y. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks. CHEMOSPHERE 2022; 288:132656. [PMID: 34710449 DOI: 10.1016/j.chemosphere.2021.132656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Removing emulsified water from a water-in-crude oil (W/O) emulsion is critically required prior to downstream processing in the petroleum industry. In this work, environmentally friendly and amphipathic rice husk carbon (RHC) demulsifier was prepared by a simple carbonization process in a muffle furnace using rice husks as starting materials. RHC was characterized by field-emission scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrometer, powder X-ray diffraction, zeta potential and synchronal thermal analyzer. The factors such as dosage, temperature, settling time, pH value and salinity were systematically investigated. The results indicated that the dehydration efficiency (DE) reached as high as 96.99% with 600 mg/L of RHC for 80 min at 70 °C. RHC exhibited an optimal DE under neutral condition, but it was also effective under acidic and alkaline conditions. Also, it had an excellent salt tolerance. The possible demulsification mechanism was explored by interfacial properties, different treatment methods for RHC and microexamination. The demulsification of RHC is attributed to its high interfacial activity, oxygen-containing groups and content of silica. It indicates that RHC is an effective demulsifier for the treatment of the W/O emulsion.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Bin Li
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Lihan Chen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
13
|
Chen Z, Wang X, Li W, Yang X, Qiu J, Wang Z. A Low-Temperature Dehydration Carbon-Fixation Strategy for Lignocellulose-Based Hierarchical Porous Carbon for Supercapacitors. CHEMSUSCHEM 2022; 15:e202101918. [PMID: 34761534 DOI: 10.1002/cssc.202101918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulose-based hierarchical porous carbon is a very promising electrode material for supercapacitors, but lower volumetric energy density and yield have hindered its practical applications. Herein, a low-temperature dehydration carbon-fixation method using NH4 Cl as modification reagent was developed to prepare rice husk-based hierarchical porous carbon (RHPC) with high volumetric performance and yield. The RHPC-N electrode exhibited a higher volumetric specific capacitance of 134.4 F cm-3 than that of the RHPC electrode (98.4 F cm-3 ) in 1 m Et4 NBF4 /propylene carbonate electrolyte. The volumetric energy density (28.8 Wh L-1 ) of the RHPC-N electrode was 37.1 % higher than that of the RHPC electrode (21.0 Wh L-1 ), which greatly enhanced the practical application potential of RHPC in supercapacitors. Moreover, the yield of RHPC increased 1.2 times by this method, which greatly improved the production capacity and reduced the cost. This research establishes a simple and highly efficient method to improve the volumetric energy density and the yield of lignocellulose-based hierarchical porous carbon.
Collapse
Affiliation(s)
- Zhimin Chen
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xiaofeng Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wei Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaomin Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zichen Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Yan B, Feng L, Zheng J, Zhang Q, Jiang S, Zhang C, Ding Y, Han J, Chen W, He S. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01914k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A green, versatile, and universal H2O2 activation method is proposed to improve the capacitive properties of high-mass loading wood-based supercapacitors.
Collapse
Affiliation(s)
- Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yichun Ding
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350010, China
| | - Jingquan Han
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
15
|
Yang Z, Kang X, Zou B, Yuan X, Li Y, Wu Q, Guo Y. Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1360-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ping G, Miao L, Awati A, Qian X, Shi T, Lv Y, Liu Y, Gan L, Liu M, Zhu D. Porous carbon globules with moss-like surfaces from semi-biomass interpenetrating polymer network for efficient charge storage. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
High efficiency enrichment of organochlorine pesticides from water by nitrogenous porous carbon materials towards their extremely low concentration detection. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Pan X, Dong W, Zhang J, Xie Z, Li W, Zhang H, Zhang X, Chen P, Zhou W, Lei B. TiO 2/Chlorophyll S-Scheme Composite Photocatalyst with Improved Photocatalytic Bactericidal Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39446-39457. [PMID: 34387085 DOI: 10.1021/acsami.1c10892] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Step-scheme (S-scheme) photocatalysts have been proposed for highly efficient charge separation and strong redox activity in the photocatalysis field. Here, we reported a facile strategy to obtain the S-scheme heterojunction composite TiO2/chlorophyll (Chl). The S-scheme heterojunction enables the significant improvement of electron transfer efficiency at the interfacial heterojunction of TiO2/Chl. Also, the lifted conduction band and valence band of TiO2/Chl resulted in more than 1.61 times generation of reactive oxidizing species, compared to that of bare TiO2. In addition, TiO2/Chl was applied as a photocatalytic bactericidal material to fabricate commercial masks for prolonged life span of the mask. The TiO2/Chl-coated mask filter exhibited excellent bactericidal effect on Escherichia coli under light illumination (2.94 × 107 cfu E. coli were killed by 1 cm-2 coated mask filters within illumination of 3 h), while commercial mask filters showed no bactericidal effect. After three circulation-sterilization tests, the TiO2/Chl-made mask filter maintained the initial bactericidal effect, which greatly extended the life span of the mask that presents a promising strategy to alleviate the supply stress of masks.
Collapse
Affiliation(s)
- Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wenya Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jingsong Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhenxi Xie
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Pinhong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P. R. China
| |
Collapse
|
19
|
|
20
|
Yuan G, Guan K, Hu H, Lei B, Xiao Y, Dong H, Liang Y, Liu Y, Zheng M. Calcium-chloride-assisted approach towards green and sustainable synthesis of hierarchical porous carbon microspheres for high-performance supercapacitive energy storage. J Colloid Interface Sci 2021; 582:159-166. [DOI: 10.1016/j.jcis.2020.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/17/2023]
|
21
|
Cong Y, Jin Q, Huang Q, Xu Z. Multilayer graphene in situ formed in carbonized waste paper with the synergism of nickel and sodium. NEW J CHEM 2021. [DOI: 10.1039/d1nj00646k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MLG is in situ formed with the synergism of nickel and sodium. The porous structure of amorphous carbon is effectively optimized with the formation of MLG and its capacitive performance is clearly improved.
Collapse
Affiliation(s)
- Yao Cong
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Qiaoran Jin
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Qi Huang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Zijie Xu
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. J Colloid Interface Sci 2020; 580:638-644. [PMID: 32712470 DOI: 10.1016/j.jcis.2020.07.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022]
Abstract
The ever-increasing electric vehicles and portable electronics make lithium-ion barreries (LIBs) toward high energy density, resulting in long driving range and standby times. Generally, excellent electrochemical performance can be obtained in thin electrode materials with low mass loadings (<1 mg cm-2), but it is difficult to be achieved in commercial electrodes with high mass loadings (>10 mg cm-2). In this work, we report a facile method for fabricating nitrogen doped carbon microtubes (N-CMTs) consisted of crumped carbon nanosheets for high-performance LIBs with ultrahigh mass loading, where non-tubular biomass waste (i.e., peanut dregs) is employed as the precursor. Benefiting from the hollow tubular conductive network, high graphitization, and hierarchical structure, the as-synthesized N-CMTs exhibit ultrahigh area capacity of 6.27 mAh cm-2 at a current density of 1.5 mA cm-2 with a high mass loading of 15 mg cm-2 and superior cycling stability for LIBs. Our approach provides an effective strategy for the preparation of nitrogen-doped carbon microtubes to develope high energy LIBs with high mass loading electrodes.
Collapse
|
23
|
Yao Y, Feng Q, Huo B, Zhou H, Huang Z, Li H, Yan Z, Yang X, Kuang Y. Facile self-templating synthesis of heteroatom-doped 3D porous carbon materials from waste biomass for supercapacitors. Chem Commun (Camb) 2020; 56:11689-11692. [DOI: 10.1039/d0cc04320f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heteroatom-doped 3D porous carbon has been synthesized by utilizing hydroxyapatite in pig bones as a self-template and used in symmetric supercapacitors exhibiting ultra-high energy density both in an aqueous electrolyte and organic electrolyte.
Collapse
Affiliation(s)
- Yong Yao
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Qiaoxia Feng
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Baoyu Huo
- Mud Technical Service Branch of Bohai Drilling Engineering Limited Company
- China National Petroleum Corporation
- Tianjin
- China
| | - Haihui Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Zhongyuan Huang
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Huanxin Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Zhanheng Yan
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Xinxin Yang
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Yafei Kuang
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|