1
|
Raza A, Wu W. Metal-organic frameworks in oral drug delivery. Asian J Pharm Sci 2024; 19:100951. [PMID: 39493807 PMCID: PMC11530798 DOI: 10.1016/j.ajps.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 11/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.
Collapse
Affiliation(s)
- Aun Raza
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
2
|
Wang A, Walden M, Ettlinger R, Kiessling F, Gassensmith JJ, Lammers T, Wuttke S, Peña Q. Biomedical Metal-Organic Framework Materials: Perspectives and Challenges. ADVANCED FUNCTIONAL MATERIALS 2024; 34:adfm.202308589. [PMID: 39726715 PMCID: PMC7617264 DOI: 10.1002/adfm.202308589] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 12/28/2024]
Abstract
Metal-organic framework (MOF) materials are gaining significant interest in biomedical research, owing to their high porosity, crystallinity, and structural and compositional diversity. Their versatile hybrid organic/inorganic chemistry endows MOFs with the capacity to retain organic (drug) molecules, metals, and gases, to effectively channel electrons and photons, to survive harsh physiological conditions such as low pH, and even to protect sensitive biomolecules. Extensive preclinical research has been carried out with MOFs to treat several pathologies and, recently, their integration with other biomedical materials such as stents and implants has demonstrated promising performance in regenerative medicine. However, there remains a significant gap between MOF preclinical research and translation into clinically and societally relevant medicinal products. Here, we outline the intrinsic features of MOFs and discuss how these are suited to specific biomedical applications like detoxification, drug and gas delivery, or as (combination) therapy platforms. We furthermore describe relevant examples of how MOFs have been engineered and evaluated in different medical indications, including cancer, microbial, and inflammatory diseases. Finally, we critically examine the challenges facing their translation into the clinic, with the goal of establishing promising research directions and more realistic approaches that can bridge the translational gap of MOFs and MOF-containing (nano)materials.
Collapse
Affiliation(s)
- Alec Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Madeline Walden
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St AndrewsKY16 9ST, UK
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry & Biomedical Engineering, University of Texas at Dallas, Richardson, TX75080-3021
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| | - Stefan Wuttke
- BCMaterials (Basque Centre for Materials, Applications & Nanostructures), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, 48940Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Quim Peña
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074Aachen, Germany
| |
Collapse
|
3
|
Jodłowski PJ, Dymek K, Kurowski G, Hyjek K, Boguszewska-Czubara A, Budzyńska B, Mrozek W, Skoczylas N, Kuterasiński Ł, Piskorz W, Białoruski M, Jędrzejczyk RJ, Jeleń P, Sitarz M. Crystal Clear: Metal-Organic Frameworks Pioneering the Path to Future Drug Detox. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29657-29671. [PMID: 38815127 PMCID: PMC11181303 DOI: 10.1021/acsami.4c02450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The growing number of acute drug abuse overdoses demands the development of innovative detoxification strategies for emergency purposes. In this study, an innovative approach for the application of porous Zr-based metal-organic frameworks for the treatment of acute overdoses of popular drugs of abuse including amphetamine, methamphetamine, cocaine, and MDMA is presented. A comprehensive approach determining the efficacy and the kinetics of drug removal, considering dosage, adsorption time, and adsorption mechanisms, was tested and corroborated with density functional theory (DFT) modeling. The experimental results showed high removal efficiency reaching up to 90% in the case of the application of the NU-1000 metal-organic framework. The difference Raman spectroscopy method presented in this study corroborated with DFT-based vibrational analysis allows the detection of drug adsorbed in the MOF framework even with as low a concentration as 5 mg/g. Additionally, the drug adsorption mechanisms were modeled with DFT, showing the π-π stacking in a vast majority of considered cases. The performance and influence on the living organisms were evaluated throughout the in vitro and in vivo experiments, indicating that Zr-based MOFs could serve as efficient, organic, safe drug adsorbents.
Collapse
Affiliation(s)
- Przemysław J. Jodłowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Klaudia Dymek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
- Lukasiewicz
Research Network − Krakow Institute of Technology, Zakopiańska 73, Kraków 30-418, Poland
| | - Grzegorz Kurowski
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Kornelia Hyjek
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków 31-155, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Barbara Budzyńska
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Weronika Mrozek
- Independent
Laboratory of Behavioral Studies, Medical
University of Lublin, Chodzki 4A, Lublin 20-093, Poland
| | - Norbert Skoczylas
- Faculty
of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, Kraków 30-059, Poland
| | - Łukasz Kuterasiński
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Kraków 30-239, Poland
| | - Witold Piskorz
- Faculty
of
Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Kraków 30-387, Poland
| | - Marek Białoruski
- Faculty
of
Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, Kraków 30-387, Poland
| | - Roman J. Jędrzejczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University
in Kraków, Gronostajowa
7A, Kraków 30-387, Poland
| | - Piotr Jeleń
- Faculty
of Materials Science and Ceramics, AGH University
of Krakow, Mickiewicza
30, Kraków 30-059, Poland
| | - Maciej Sitarz
- Faculty
of Materials Science and Ceramics, AGH University
of Krakow, Mickiewicza
30, Kraków 30-059, Poland
| |
Collapse
|
4
|
Rincón I, Contreras MC, Sierra-Serrano B, Salles F, Rodríguez-Diéguez A, Rojas S, Horcajada P. Long-lasting insecticidal activity in plants driven by chlorogenic acid-loaded metal-organic frameworks. J Mater Chem B 2024; 12:4717-4723. [PMID: 38655651 DOI: 10.1039/d3tb02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.
Collapse
Affiliation(s)
- Irene Rincón
- Advanced Porous Materials Unit, IMDEA Energy Institute. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| | - MCarmen Contreras
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Beatriz Sierra-Serrano
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Fabrice Salles
- ICGM, Université Montpellier, CNRS ENSCM, Montpellier, France
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada. Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute. Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| |
Collapse
|
5
|
Zeng Y, Yuan J, Ran Z, Zhan X, Li X, Ye H, Dong J, Cao G, Pan Z, Bao Y, Tang J, Liu X, He Y. Chitosan/NH 2-MIL-125 (Ti) scaffold loaded with doxorubicin for postoperative bone tumor clearance and osteogenesis: An in vitro study. Int J Biol Macromol 2024; 263:130368. [PMID: 38401584 DOI: 10.1016/j.ijbiomac.2024.130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Surgical resection remains the primary treatment modality for bone tumors. However, it is prone to local bone defects and tumor recurrence. Therefore, there is an urgent need for multifunctional biomaterials that combine tumor treatment and bone repair after bone tumor surgery. Herein, a chitosan composite scaffold (CS/DOX@Ti-MOF) was designed for both tumor therapy and bone repair. Among them, the amino-functionalized Ti-based metal-organic framework (NH2-MIL-125 (Ti), Ti-MOF) has a high specific surface area of 1116 m2/g and excellent biocompatibility, and promotes osteogenic differentiation. The doxorubicin (DOX) loading capacity of Ti-MOF was 322 ± 21 mg/g, and DOX@Ti-MOF has perfect antitumor activity. Furthermore, the incorporation of DOX@Ti-MOF improved the physical and mechanical properties of the composite scaffolds, making the scaffold surface rough and favorable for cells to attach. CS/DOX@Ti-MOF retains the unique properties of each component. It responds to the release of DOX in the tumor microenvironment to remove residual tumor cells, followed by providing a site for cell attachment, proliferation, and differentiation. This promotes bone repair and achieves the sequential treatment of postoperative bone tumors. Overall, CS/DOX@Ti-MOF may be a promising substitute for postoperative bone tumor clearance and bone defect repair. It also provides a possible strategy for postoperative bone tumor treatment.
Collapse
Affiliation(s)
- Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiaoguang Zhan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiapeng Dong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, PR China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
6
|
Zheng L, Sun L, Qiu J, Song J, Zou L, Teng Y, Zong Y, Yu H. Using NH 2-MIL-125(Ti) for efficient removal of Cr(VI) and RhB from aqueous solutions: Competitive and cooperative behavior in the binary system. J Environ Sci (China) 2024; 136:437-450. [PMID: 37923453 DOI: 10.1016/j.jes.2023.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 11/07/2023]
Abstract
The coexistence of inorganic and organic contaminants is a challenge for real-life water treatment applications. Therefore, in this research, we used NH2-MIL-125(Ti) to evaluate the single adsorption of hexavalent chromium (Cr(VI)) or Rhodamine B (RhB) in an aqueous solution and further investigate simultaneous adsorption experiments to compare the adsorption behavior changes. The main influencing factors, for example, reaction time, initial concentration, reaction temperature, and pH were studied in detail. In all reaction systems, the pseudo-second-order kinetic and Langmuir isotherm models were well illuminated the adsorption progress of Cr(VI) and RhB. Thermodynamic studies showed that the adsorption process was spontaneous and endothermic. As compared to the single system, the adsorption capacity of Cr(VI) in the binary system gradually decreased as the additive amount of RhB increased, whereas the adsorption capacity of RhB in the binary system was expanded brilliantly. When the binary reaction system contained 100 mg/L Cr(VI), the removal rate of RhB increased to 97.58%. The formation of Cr(VI)-RhB and Cr(III)-RhB complexes was the cause that provided facilitation for the adsorption of RhB. These findings prove that the interactions during the water treatment process between contaminants may obtain additional benefits, contributing to a better adsorption capacity of co-existing contaminant.
Collapse
Affiliation(s)
- Lei Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixia Sun
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangbo Qiu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Junling Song
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yue Teng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
García-García A, Rojas S, Rodríguez-Diéguez A. Therapy and diagnosis of Alzheimer's disease: from discrete metal complexes to metal-organic frameworks. J Mater Chem B 2023; 11:7024-7040. [PMID: 37435638 DOI: 10.1039/d3tb00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 44 million people worldwide. Although many issues (pathogenesis, genetics, clinical features, and pathological aspects) are still unknown, this disease is characterized by noticeable hallmarks such as the formation of β-amyloid plaques, hyperphosphorylation of tau proteins, the overproduction of reactive oxygen species, and the reduction of acetylcholine levels. There is still no cure for AD and the current treatments are aimed at regulating the cholinesterase levels, attenuating symptoms temporarily rather than preventing the AD progression. In this context, coordination compounds are regarded as a promissing tool in AD treatment and/or diagnosis. Coordination compounds (discrete or polymeric) possess several features that make them an interesting option for developing new drugs for AD (good biocompatibility, porosity, synergetic effects of ligand-metal, fluorescence, particle size, homogeneity, monodispersity, etc.). This review discusses the recent progress in the development of novel discrete metal complexes and metal-organic frameworks (MOFs) for the treatment, diagnosis and theragnosis of AD. These advanced therapies for AD treatment are organized according to the target: Aβ peptides, hyperphosphorylated tau proteins, synaptic dysfunction, and mitochondrial failure with subsequent oxidative stress.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur & Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
8
|
Salek A, Selmi M, Njim L, Umek P, Mejanelle P, Moussa F, Douki W, Hosni K, Baati T. Titanate nanotubes as an efficient oral detoxifying agent against drug overdose: application in rat acetaminophen poisoning. NANOSCALE ADVANCES 2023; 5:2950-2962. [PMID: 37260481 PMCID: PMC10228339 DOI: 10.1039/d2na00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
Voluntary drug intoxication is mainly due to drug overdose or the interaction of several drugs. Coma and its associated complications such as hypoventilation, aspiration pneumopathy, and heart rhythm disorders are the main hallmarks of drug intoxication. Conventional detoxification treatments, including gastric lavage or vomiting, administration of ipecac or activated charcoal (CH), and the use of antidotes, have proven to be inefficient and are generally associated with severe adverse effects. To overcome these limitations, titanate nanotubes (TiNTs) are proposed as an efficient emerging detoxifying agent because of their tubular shape and high adsorption capacity. In the present study, the detoxifying ability of TiNTs was evaluated on paracetamol (PR)-intoxicated rats. Results indicate that the loading ability of PR into TiNTs (70%) was significantly higher than that recorded for CH (38.6%). In simulated intestinal medium, TiNTs showed a controlled drug release of less than 10% after 72 h of incubation. In PR-intoxicated rats, TiNTs treatment resulted in a 64% decrease of PR after 4 h of poisoning versus 40% for CH. Concomitantly, TiNTs efficiently reduced PR absorption by 90% after 24 h of poisoning, attenuated the elevated levels of biochemical markers (i.e., alanine aminotransferase, aspartate aminotransferase, creatinine, and TNF-α) and mitigated oxidative stress by increasing the activity of superoxide dismutase and reducing the oxidized glutathione/total glutathione ratio, suggesting a histoprotective effect of TiNTs against paracetamol-induced toxicity in rats. In addition to their safety and high stability in the entire gastro-intestinal tract, biodistribution analysis revealed that TiNTs exhibited low intestinal absorption owing to their large cluster size of compact aggregate nanomaterials across the intestinal villi hindering the absorption of paracetamol. Collectively, these data provide a new and promising solution for in vivo detoxification. TiNTs are expected to have great potential for the treatment of voluntary and accidental intoxication in emergency care.
Collapse
Affiliation(s)
- Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 688 +216 71 537 666
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 688 +216 71 537 666
| | - Leila Njim
- Service d'Anatomie Pathologique, EPS Fattouma Bourguiba de Monastir, Faculté de Médecine de Monastir, Université de Monastir 5000 Monastir Tunisia
| | - Polona Umek
- Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Philippe Mejanelle
- Département de chimie, IUT d'Orsay, Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Fathi Moussa
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Wahiba Douki
- Laboratoire de Biochimie et de Toxicologie, EPS Fattouma Bourguiba de Monastir, Université de Monastir 5000 Monastir Tunisia
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 688 +216 71 537 666
| | - Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 688 +216 71 537 666
| |
Collapse
|
9
|
Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem Commun (Camb) 2023; 59:2869-2887. [PMID: 36757184 PMCID: PMC9990148 DOI: 10.1039/d2cc05851k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Metal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features. These systems can be remotely controlled and can catalyze abiotic reactions in living cells, which have the potential to stimulate further research on these nanocomposites as tools for advanced therapies.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
|
12
|
Chen J, Cheng F, Luo D, Huang J, Ouyang J, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Peng Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans 2022; 51:14817-14832. [PMID: 36124915 DOI: 10.1039/d2dt02470e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, metal-organic frameworks (MOFs), basically inorganic-organic hybrid materials, have gained tremendous attention due to their vast applications. MOFs have shown enormous applications in almost every research field. However, the area of designing MOF materials for their biological applications is still an emerging field that needs attention. Titanium-based metal-organic framework (Ti-MOF) materials are used in many research areas due to their structural advantages, such as small particle size and large effective surface area. On the other hand, they have also shown unique advantages such as good biocompatibility, excellent catalytic oxidation and photocatalytic properties and ease of functionalization. This study reviews the recent research progress on Ti-MOFs in therapeutic areas such as antibacterial, oncology, anti-inflammation, and bone injury, which will provide new directions for further research in this biomedical field. Therefore, this article will help scientists working in the particular field to enhance their understanding of Ti-based MOFs for functional biomedical applications.
Collapse
Affiliation(s)
- Jinyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Fan Cheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Dongwen Luo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jiefeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
13
|
Lin YS, Lin KS, Mdlovu NV, Weng MT, Tsai WC, Jeng US. De novo synthesis of a MIL-125(Ti) carrier for thermal- and pH-responsive drug release. BIOMATERIALS ADVANCES 2022; 140:213070. [PMID: 35961189 DOI: 10.1016/j.bioadv.2022.213070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Microporous round cake-like (diameter: 900 ± 100 nm) MIL-125(Ti) carrier with a central metal (Ti) exhibiting bio-affinity and possessing a great potential to be used as drug release platform, has been synthesized in the present study. The thermal and pH responsiveness of drug delivery systems (DDS) are the most important parameters for drug release and can be provided through polymer coating techniques. The Pluronic F127 (F127) and chitosan (CH) monomers were inserted into the crystal lattice of MIL-125(Ti) carrier during the de novo synthesis process, which were subsequently loaded with doxorubicin (DOX). The results reveal particle size changes (ranged between 30 and 50 %) from the original size of the MIL-125(Ti) carrier in response to temperature and pH when the carrier reaches acid environment. The drug release profiles have been completed through self-design device, which provides for the real-time release in the DOX amounts via UV-Vis spectra. The kinetics analysis was used to evaluate the R2 values of first order, Higuchi, Korsmeyer-peppas, and Weibull fitting equations, where the Weibull fitting indicated the best R2. An increase by 59.3 % of DOX released under the acid status (pH = 5.4) was observed, indicating that the CH-MIL-125(Ti) carrier is temperature and pH responsive. Moreover, the lattice explosion resulting from the temperature increase in the range of 25-42 °C caused an increase in F127-MIL-125(Ti) by 30.8-38.3 %. The simulated SAXS/WAXS studies for the microstructures of MIL-125(Ti) based DDS at different temperatures after polymer coating (F127-MIL-125(Ti)) provide the possible mechanism of lattice explosion. As such, the responsive Ti-MOF has a highly potential for use in the applications of cancer treatment.
Collapse
Affiliation(s)
- You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
| | - Wei-Chin Tsai
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Science-Based Industrial Park, Hsinchu 30077, Taiwan
| |
Collapse
|
14
|
Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022; 10:955993. [PMID: 36017162 PMCID: PMC9395639 DOI: 10.3389/fchem.2022.955993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Owing to their excellent characteristics, such as large specific surface area, favorable biosafety, and versatile application, nanomaterials have attracted significant attention in biomedical applications. Among them, metal-based nanomaterials containing various metal elements exhibit significant bone tissue regeneration potential, unique antibacterial properties, and advanced drug delivery functions, thus becoming crucial development platforms for bone tissue engineering and drug therapy for orthopedic diseases. Herein, metal-based drug-loaded nanomaterial platforms are classified and introduced, and the achievable drug-loading methods are comprehensively generalized. Furthermore, their applications in bone tissue engineering, osteoarthritis, orthopedic implant infection, bone tumor, and joint lubrication are reviewed in detail. Finally, the merits and demerits of the current metal-based drug-loaded nanomaterial platforms are critically discussed, and the challenges faced to realize their future applications are summarized.
Collapse
Affiliation(s)
| | | | | | - He Cai
- *Correspondence: He Cai, ; Zhou Zhu,
| | - Zhou Zhu
- *Correspondence: He Cai, ; Zhou Zhu,
| |
Collapse
|
15
|
Rojas S, Hidalgo T, Luo Z, Ávila D, Laromaine A, Horcajada P. Pushing the Limits on the Intestinal Crossing of Metal-Organic Frameworks: An Ex Vivo and In Vivo Detailed Study. ACS NANO 2022; 16:5830-5838. [PMID: 35298121 PMCID: PMC9047668 DOI: 10.1021/acsnano.1c10942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Biocompatible nanoscaled metal-organic frameworks (nanoMOFs) have been widely studied as drug delivery systems (DDSs), through different administration routes, with rare examples in the convenient and commonly used oral administration. So far, the main objective of nanoMOFs as oral DDSs was to increase the bioavailability of the cargo, without considering the MOF intestinal crossing with potential advantages (e.g., increasing drug availability, direct transport to systemic circulation). Thus, we propose to address the direct quantification and visualization of MOFs' intestinal bypass. For that purpose, we select the microporous Fe-based nanoMOF, MIL-127, exhibiting interesting properties as a nanocarrier (great biocompatibility, large porosity accessible to different drugs, green and multigram scale synthesis, outstanding stability along the gastrointestinal tract). Additionally, the outer surface of MIL-127 was engineered with the biopolymer chitosan (CS@MIL-127) to improve the nanoMOF intestinal permeation. The biocompatibility and intestinal crossing of nanoMOFs is confirmed using a simple and relevant in vivo model, Caenorhabditis elegans; these worms are able to ingest enormous amounts of nanoMOFs (up to 35 g per kg of body weight). Finally, an ex vivo intestinal model (rat) is used to further support the nanoMOFs' bypass across the intestinal barrier, demonstrating a fast crossing (only 2 h). To the best of our knowledge, this report on the intestinal crossing of intact nanoMOFs sheds light on the safe and efficient application of MOFs as oral DDSs.
Collapse
Affiliation(s)
- Sara Rojas
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Tania Hidalgo
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Zhongrui Luo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - David Ávila
- Department
of Inorganic Chemistry, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy
Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
16
|
Pangestu A, Lestari WW, Wibowo FR, Larasati L. Green Electro-Synthesized MIL-101(Fe) and Its Aspirin Detoxification Performance Compared to MOF-808. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Hong YH, Narwane M, Liu LYM, Huang YD, Chung CW, Chen YH, Liao BW, Chang YH, Wu CR, Huang HC, Hsu IJ, Cheng LY, Wu LY, Chueh YL, Chen Y, Lin CH, Lu TT. Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@MOF Microrod. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3849-3863. [PMID: 35019259 DOI: 10.1021/acsami.1c21409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-2) onto MIL-88B, a metal-organic framework (MOF) consisting of biocompatible Fe3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.
Collapse
Affiliation(s)
- Yong-Huei Hong
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Manmath Narwane
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Lawrence Yu-Min Liu
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu 300044, Taiwan
| | - Yi-Da Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Wen Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Hsiang Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Cheng-Ru Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Ling-Yun Cheng
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Liang-Yi Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yu-Lun Chueh
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116059, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
18
|
Zhang Z, Zhang Y, Yao K, Huang W, Wang T. Facile synthesis of a neodymium doped metal organic frame modified antibacterial material and corrosion resistant coating. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zhang L, Tian J, Cao F, Zhu ZY, Hong F, Wu J, Wang F. Titanium-based metal–organic frameworks as potential chloroquine drug carriers. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Jiao W, Chi C. Applications of metal–organic frameworks for oral delivery systems. NANO SELECT 2021. [DOI: 10.1002/nano.202100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wenjuan Jiao
- Sericultural & Agri‐Food Research Institute Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs Guangdong Key Laboratory of Agricultural Products Processing Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Chengdeng Chi
- College of Life Sciences Fujian Normal University Fuzhou China
| |
Collapse
|
21
|
Romero-Angel M, Castells-Gil J, Rubio-Giménez V, Ameloot R, Tatay S, Martí-Gastaldo C. Surfactant-assisted synthesis of titanium nanoMOFs for thin film fabrication. Chem Commun (Camb) 2021; 57:9040-9043. [PMID: 34498614 DOI: 10.1039/d1cc02828f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We use dodecanoic acid as a modulator to yield titanium MOF nanoparticles with good control of size and colloid stability and minimum impact to the properties of the framework to enable direct fabrication of crystalline, porous thin films.
Collapse
Affiliation(s)
- María Romero-Angel
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán, 2 46980 Paterna, Spain.
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán, 2 46980 Paterna, Spain.
| | - Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sergio Tatay
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán, 2 46980 Paterna, Spain.
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán, 2 46980 Paterna, Spain.
| |
Collapse
|
22
|
Pu Q, Fan XT, Sun AQ, Pan T, Li H, Bo Lassen S, An XL, Su JQ. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 152:106453. [PMID: 33798824 DOI: 10.1016/j.envint.2021.106453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Conjunctive transfer of antibiotic resistance genes (ARGs) among bacteria driven by plasmids facilitated the evolution and spread of antibiotic resistance. Heavy metal exposure accelerated the plasmid-mediated conjunctive transfer of ARGs. Nanomaterials are well-known adsorbents for heavy metals removal, with the capability of combatting resistant bacteria/facilitating conjunctive transfer of ARGs. However, co-effect of heavy metals and nanomaterials on plasmid-mediated conjunctive transfer of ARGs was still unknown. In this study, we investigated the effect of the simultaneous exposure of Cd2+ and nano Fe2O3 on conjugative transfer of plasmid RP4 from Pseudomonas putida KT2442 to water microbial community. The permeability of bacterial cell membranes, antioxidant enzyme activities and conjugation gene expression were also investigated. The results suggested that the combination of Cd2+ and high concentration nano Fe2O3 (10 mg/L and 100 mg/L) significantly increased conjugative transfer frequencies of RP4 plasmid (p < 0.05). The most transconjugants were detected in the treatment of co-exposure to Cd2+ and nano Fe2O3, the majority of which were identified to be human pathogens. The mechanisms of the exacerbated conjugative transfer of ARGs were involved in the enhancement of cell membrane permeability, antioxidant enzyme activities, and mRNA expression levels of the conjugation genes by the co-effect of Cd2+ and nano Fe2O3. This study confirmed that the simultaneous exposure to Cd2+and nano Fe2O3 exerted a synergetic co-effect on plasmid-mediated conjunctive transfer of ARGs, emphasizing that the co-effect of nanomaterials and heavy metals should be prudently evaluated when combating antibiotic resistance.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - An-Qi Sun
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Ting Pan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Simon Bo Lassen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center of Education and Research, Beijing, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
23
|
Rojas S, Horcajada P. Understanding the Incorporation and Release of Salicylic Acid in Metal‐Organic Frameworks for Topical Administration. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit (APMU) IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU) IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
| |
Collapse
|
24
|
Arun Kumar S, Balasubramaniam B, Bhunia S, Jaiswal MK, Verma K, Prateek, Khademhosseini A, Gupta RK, Gaharwar AK. Two-dimensional metal organic frameworks for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1674. [PMID: 33137846 DOI: 10.1002/wnan.1674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Two-dimensional (2D) metal organic frameworks (MOFs), are an emerging class of layered nanomaterials with well-defined structure and modular composition. The unique pore structure, high flexibility, tunability, and ability to introduce desired functionality within the structural framework, have led to potential use of MOFs in biomedical applications. This article critically reviews the application of 2D MOFs for therapeutic delivery, tissue engineering, bioimaging, and biosensing. Further, discussion on the challenges and strategies in next generation of 2D MOFs are also included. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shreedevi Arun Kumar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Sukanya Bhunia
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kartikey Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Prateek
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
26
|
Souza BE, Donà L, Titov K, Bruzzese P, Zeng Z, Zhang Y, Babal AS, Möslein AF, Frogley MD, Wolna M, Cinque G, Civalleri B, Tan JC. Elucidating the Drug Release from Metal-Organic Framework Nanocomposites via In Situ Synchrotron Microspectroscopy and Theoretical Modeling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5147-5156. [PMID: 31904920 DOI: 10.1021/acsami.9b21321] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanocomposites comprising metal-organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the release of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein, we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
Collapse
Affiliation(s)
- Barbara E Souza
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Lorenzo Donà
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Kirill Titov
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Paolo Bruzzese
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Yang Zhang
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Arun S Babal
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Annika F Möslein
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| | - Mark D Frogley
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Magda Wolna
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Gianfelice Cinque
- Diamond Light Source , Harwell Campus , Chilton , Oxford OX11 0DE , United Kingdom
| | - Bartolomeo Civalleri
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , Torino 10125 , Italy
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , U.K
| |
Collapse
|