1
|
Shi X, Li H, Yao S, Zhao H, Wang X, Jing Y, Zhao C, Wang J. Progress in the application of functionalized covalent organic framework for bioanalysis. Biosens Bioelectron 2025; 278:117370. [PMID: 40086117 DOI: 10.1016/j.bios.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
As a new type of crystalline porous polymer materials, covalent organic frameworks (COFs) with their unique features such as large surface area, tunable pore sizes, strong π-π stacking effect and size exclusion effects, have attracted wide attention in the analytical field. Due to the lack of catalytically active metal centers in bare COFs, functionalized COFs that are hybridized or modified with nanomaterials improve reactive activation and show better analytical performance for a variety of detection scenarios with complex analytes. Herein, we focused on the functionalized COFs used in bioanalysis ranging from nucleic acids, peptides, and proteins, to microorganisms, and discussed the functionalization strategy and unique structures and properties applied in the different stages of biosensing and advantages compared to other hybrid materials. Finally, challenges and future research directions of functionalized COFs in bioanalysis are discussed.
Collapse
Affiliation(s)
- Xuening Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Hang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Shuo Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Huamin Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Xinrui Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Yixin Jing
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Liu C, Li L, Xu Y, Zhang J, He X, Li L, Li L. Nitrogen-Rich Angstrom Channels within Covalent Triazine Framework Membrane Enable Efficient Acid Recovery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27106-27115. [PMID: 40265690 DOI: 10.1021/acsami.5c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Membranes tailored for selective H+ transfer are highly demanded in various fields such as acid recovery and proton exchange membranes. Emerging framework materials featuring permanent micropores present more competitive selectivity than traditional polymeric membranes. However, it remains challenging to construct angstrom channels for more precise ion separations. Herein, we demonstrate the modulation of the nitrogen-rich angstrom channels within a covalent triazine framework (CTF) membrane by a mix-monomer copolymerization strategy, in which one monomer provides defect-free angstrom channels and another offers plentiful nitrogen sites. The abundant nitrogen sites with strong affinity for H+ facilitate fast H+ diffusion, and their high protonation level in acid solution imparts positive charge, enabling efficient Fe2+ retention via Donnan exclusion. The optimized CTF membrane achieves a H+ dialysis coefficient of 1.5 × 10-3 m/h and a separation factor of 11,242 for H+/Fe2+ mixtures. The ion selectivity outperforms most reported membranes benefiting from its highly confined channels. Additionally, the robust stability of the triazine groups guarantees consecutive operation in aggressive acidic solutions. This work presents an effective approach for modulating proton transport efficiency through membranes and its potential applications in acid recovery.
Collapse
Affiliation(s)
- Cuijing Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Lei Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yu Xu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Jinhui Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Xihong He
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Linbo Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Wang L, Du H, Wang X, Hao D, Li Q, Zhu H, Li C, Wang Q. A critical review of COFs-based photocatalysis for environmental remediation. ENVIRONMENTAL RESEARCH 2025; 272:121166. [PMID: 39978624 DOI: 10.1016/j.envres.2025.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous crystalline polymers formed through covalent bonding of molecular building blocks. Numerous fabrication strategies have been developed, including solvothermal, ionothermal, microwave, mechanochemical, and sonochemical methods, alongside ligand substitution and post-modification techniques, which allow for precise control over the structures and properties of COFs. The exceptional physicochemical stability, large specific surface area, broad visible light absorption, and extended π-conjugated systems have sparked significant interest in photocatalytic applications. Recently, COFs have shown remarkable efficacy in environmental remediation, demonstrating the ability to degrade a wide range of organic pollutants, including dyes, antibiotics, and drugs, as well as to reduce/oxidize heavy metals such as Cr(VI), U(VI), and As(III), in addition to targeting biological pollutants. This review comprehensively explores recent advancements in COFs-based photocatalysis, covering synthetic methods, COF types, modification method, theoretical calculations, environmental applications, and underlying mechanisms. Additionally, the challenges and opportunities for COFs as a robust, cost-effective technology in practical applications was discussed, and offering valuable insights for researchers in environmental remediation, materials science, and photocatalysis.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Du
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqing Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qiang Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Chunjuan Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qi Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Khan J, Ahmed A, Al-Kahtani AA. Enhanced supercapacitor performance using EG@COF: a layered porous composite. RSC Adv 2025; 15:11441-11450. [PMID: 40225765 PMCID: PMC11987848 DOI: 10.1039/d5ra01653c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
In this work, to address the issue of poor conductivity in COFs, a layered porous composite (EG@COF) was successfully synthesized. A redox-active COF (DAAQ-TFP COF) was grown on the surface of expanded graphite (EG) through a solvent-free in situ synthesis. SEM analysis displayed that the obtained composite (EG@COF) possessed a layered porous structure. Further investigations revealed that EG not only improved electrical conductivity but also regulated the pore size of the COFs. This structure was highly conducive to enhancing the specific capacitance of the electrode material. An electrochemical study demonstrated that the specific capacitance of EG@COF-3 reached 351 C g-1 at 1 A g-1, with 94.4% capacitance retention after 10 000 cycles. The excellent capacitance retention was attributed to the stable backbone of the COF. Meanwhile, an asymmetric supercapacitor (ACS) comprising activated carbon (AC) and EG@COF exhibited an energy density of 16.4 W h kg-1 at a power density of 806.0 W kg-1.
Collapse
Affiliation(s)
- Junaid Khan
- Department of Physics Government Postgraduate Collage No. 1 Abbottabad Khyber Pakhtunkhwa Pakistan
- Department of Higher Education Achieves and Libraries, Government of Khyber Pakhtunkhwa Pakistan
- Department of Chemical and Bilogical Engineering, Gachon University 1342 Seongnam-daero Seongnam 13120 Republic of Korea
| | - Anique Ahmed
- Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University P. O. Box 2455 Riyadh-22451 Saudi Arabia
| |
Collapse
|
5
|
Ahmad I, Singh O, Ahmed J, Priyanka, Alshehri SM, Bharti C, Vidivay. Triazine-Functionalized Nitrogen-Rich Covalent Organic Framework as an Electrode Material for Aqueous Symmetric Supercapacitor. Chem Asian J 2025; 20:e202401149. [PMID: 39715075 DOI: 10.1002/asia.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Covalent triazine frameworks, with their ordered pores and crystalline structure that exhibit heteroatom impacts, demonstrate outstanding chemical stability, making them designable for charge storage applications. In this study, the triazine-based covalent organic frameworks (TPT@BDA-COF) was synthesized using 4',4''',4'''''-(1,3,5-Triazine-2,4,6-triyl) tris (([1,1'-biphenyl]-4-amine)) (TPT) and 4,4'-Oxydibenzaldehyde (BDA) following polycondensation process. Interestingly, these resulted in the fabrication of a well-connected, orderly porous crystalline structure, redox-active moiety, and significantly high doping atomic percentages of N (~13.6 %). The three-electrode electrochemical study, showed a stable electrochemical potential window of 1.8 V (-0.45 to +1.35) in 1 M NaClO4 electrolyte, it exhibited a high specific capacitance of 92.6 mF/cm2 with a high energy density 41.7 Wh/kg respectively. The symmetric supercapacitor designed using TPT@BDA-COF as both anode and cathode exhibited high specific capacitance (F/g) and gravimetric energy density (Wh/kg): 17.8, 36.9, 43.7, 47.7 and 3.5, 16.6, 13.7, 21.6 in 1 M CH3COONa, 1 M Na2SO4, 1 M NaNO3, 1 M NaClO4 electrolyte respectively. It showed excellent cyclic stability (105.2 %), and Coulombic efficiency (97.5 %) even after 10 k GCD cycles in 1 M NaClO4 at 2 A/g. Interestingly, ClO4 - anions exhibited a better chaotropic nature (water structure breaker) as compared to CH3COO-, SO4 -2, and NO3 -. Their energy storage competence is supported by the illumination of 1 white and 1 red LED upon charging a single SSC for 50 sec each. A Quantum Mechanics (QM) calculation and Molecular Dynamics (MD) simulation are performed to investigate and validate the stability of Covalent Organic Frameworks (COFs). DFT calculations were carried out using the SCF approach B3LYP-631G(d) basis set to compute the HOMO and LUMO energies and their respective location in COF.
Collapse
Affiliation(s)
- Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Omkar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Priyanka
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Vidivay
- Department of Chemistry, Dharma Samaj College Aligarh, UP, 202001
| |
Collapse
|
6
|
Yao C, Zhao H, Liu Q, Xu Y, Ding X. Integrated Carbon Nanotube and Ketoenamine-Linked Covalent Organic Framework with Positive Charge Structure as High-Performance Capacitive Materials. Macromol Rapid Commun 2025; 46:e2400829. [PMID: 39632493 DOI: 10.1002/marc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Indexed: 12/07/2024]
Abstract
A series of composite materials, ETB@CNT (ETB@CNT10, ETB@CNT20, ETB@CNT30, ETB@CNT40, ETB@CNT50) with different carbon nanotubes (CNTs) contents are successfully prepared by using one-pot method. Compared with the pure ET-B-COF, which is a ketoenamine-linked covalent organic framework (COF) with a positive charge structure, CNTs can effectively improve the electrochemical performance of ET-B-COF, and the specific capacitance increased with the increase of the mass of carbon nanotubes added during the preparation process. Among them, ETB@CNT40 exhibits the best electrochemical performance (37.6 F g-1) at a current density of 1 A g-1. This study indicates that the simultaneous introduction of CNTs into COFs can significantly improve the electrochemical performance of ketoenamine-linked COFs materials.
Collapse
Affiliation(s)
- Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Haoyu Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Qiushi Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
7
|
Maity A, Siebels M, Jana A, Eswaran M, Dhanusuraman R, Janiak C, Bhunia A. Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework. CHEMSUSCHEM 2025; 18:e202401716. [PMID: 39228217 PMCID: PMC11789989 DOI: 10.1002/cssc.202401716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The search for new electrode materials for bipolar-supercapacitor performance is the intention of numerous research in the area of functional framework materials. Among various electrode materials, covalent triazine-based frameworks (CTFs) are in the spotlight drawing much attention as potential electrode material for energy storage owing to their tunable surface area, pore size distribution, and heteroatom content. Herein, we present the synthesis of nitrogen-functionalized CTFs marked as CTF-Py-600 and CTF-Py-700 with high nitrogen content (18 % and 14 %, respectively) for supercapacitor application by applying the 2,6-dicyanopyridine monomer via the polymerization reaction under ionothermal condition. The BET surface areas of these materials are in the range of 940-1999 m2 g-1. CTF-Py-700 demonstrates outstanding electrochemical performance in both potential windows. At the negative potential window, it exhibits a higher specific capacitance of 435 F g-1 (at 1 A g-1) compared to the positive potential window, where it shows a specific capacitance of 306 F g-1 (at 1 A g-1) owing to the synergistic existence of its large surface area (1999 m2 g-1) and high nitrogen content (14 %) with inherent microporosity. Remarkable cycling stability without noticeable degradation of specific capacitance after 15000 cycles was recorded for CTF-Py-700. This suggests that the nitrogen-functionalized CTFs are going to be a highly demanded electrode material for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Arijit Maity
- Department of Chemistry, Inorganic Chemistry SectionJadavpur UniversityKolkata700 032India
| | - Marvin Siebels
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Anupam Jana
- Department of Chemistry, Inorganic Chemistry SectionJadavpur UniversityKolkata700 032India
| | - Muthusankar Eswaran
- Department of ChemistryNational Institute of Technology PuducherryKaraikal609609India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Laboratory (NEL)Central Instrumentation Facility (CIF)School of Physical, Chemical and Applied SciencesPondicherry UniversityPuducherry605014India
| | - Christoph Janiak
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Asamanjoy Bhunia
- Department of Chemistry, Inorganic Chemistry SectionJadavpur UniversityKolkata700 032India
| |
Collapse
|
8
|
Hou J, Liu H, Gao M, Pan Q, Zhao Y. Triazine-Based Large-Sized Single-Crystalline Two-Dimensional Covalent Organic Framework for High-Performance Lithium-Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202414566. [PMID: 39212155 DOI: 10.1002/anie.202414566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
A large-sized single crystalline 2D COFs with excellent crystallinity and stability was prepared through the traditional thermal solvent method. The electrochemical performance can be significantly enhanced using a straightforward hybrid approach that involves in situ growth of the 2D COFs on multi-walled carbon nanotubes (MWCNTs). Both the advantages of COFs and CNTs are mutually enhanced. The single-crystalline feature of the obtained COFs improves the structural integrity and brings excellent chemical and electrochemical stabilities for lithium-ion battery applications. The resultant COF-CNT core-shell hybrids greatly improved the conductivity and demonstrated excellent lithium-ion storage performance with a high capacity of 228 mAh g-1 (0.2 A g-1).
Collapse
Affiliation(s)
- Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Meng Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| |
Collapse
|
9
|
Huang Q, Hu C, Qin Y, Jin Y, Huang L, Sun Y, Song Z, Xie F. Designing Heterodiatomic Carbon Hydrangea Superstructures via Machine Learning-Regulated Solvent-Precursor Interactions for Superior Zinc Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405940. [PMID: 39180267 DOI: 10.1002/smll.202405940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Carbon superstructures with exquisite morphologies and functionalities show appealing prospects in energy realms, but the systematic tailoring of their microstructures remains a perplexing topic. Here, hydrangea-shaped heterodiatomic carbon superstructures (CHS) are designed using a solution phase manufacturing route, wherein machine learning workflow is applied to screen precursor-matched solvent for optimizing solvent-precursor interaction. Based on the established solubility parameter model and molecular growth kinetics simulation, ethanol as the optimal solvent stimulates thermodynamic solubilization and growth of polymeric intermediates to evoke CHS. Featured with surface-active motifs and consecutive charge transfer paths, CHS allows high accessibility of zincophilic sites and fast ion migration with low energy barriers. A anion-cation hybrid charge storage mechanism of CHS cathode is disclosed, which entails physical alternate uptake of Zn2+/CF3SO3 - ions at electroactive sites and chemical bipedal redox of Zn2+ ions with carbonyl/pyridine motifs. Such a beneficial electrochemistry contributes to all-round improvement in Zn-ion storage, involving excellent capacities (231 mAh g-1 at 0.5 A g-1; 132 mAh g-1 at 50 A g-1), high energy density (152 Wh kg-1), and long-lasting cyclability (100 000 cycles). This work expands the design versatilities of superstructure materials and will accelerate experimental procedures during carbon manufacturing through machine learning in the future.
Collapse
Affiliation(s)
- Qi Huang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chengmin Hu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Qin
- Department of Mechanical Engineering, College of Engineering and Applied Science, University of Wisconsin Milwaukee, Milwaukee, WI, 53211, USA
| | - Yaowei Jin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Huang
- Department of Stomatology, Hangzhou Ninth People's Hospital, Hangzhou, 311225, P. R. China
| | - Yaojie Sun
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200438, P. R. China
- Shanghai Engineering Research Center for Artificial Intelligence and Integrated Energy System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Vijayakumar S, Mohanachandran AP, Rakhi RB, Shankar S, Pillai RS, Ajayaghosh A. Self-Exfoliating Benzotristriazine Macrocyclic Network: A New 2D Material for High-Performance Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405701. [PMID: 39155431 DOI: 10.1002/smll.202405701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Aza-fused aromatic π-conjugated networks are an important class of 2D graphitic analogs, which are generally constructed using aromatic precursors. Herein, the study describes a new synthetic approach and electrochemical properties of a self-exfoliating benzotristriazine 2D network (BTTN) constructed using aliphatic precursors, under relatively mild conditions. The obtained BTTN exhibits a nanodisc-like morphology, the self-exfoliation tendency of which is ascribed to the presence of structurally different macrocycles with high electronic repulsion between the layers. The benzotristriazine repeat units of BTTN is electroactive and holds higher carbon/nitrogen ratio when compared with the conventional graphitic aza-fused π-conjugated networks. The self-exfoliated BTTN nanodiscs show excellent electrochemical energy storage of 485 and 333 F g-1 at 1 A g-1 in three-electrode and two-electrode measurements, respectively. BTTN in a symmetric coin-cell architecture exhibits a high specific energy value of 46 Wh kg-1 at a power density of 1 kW kg-1 and shows excellent cyclic stability of 96% for 10 000 and 90% for 30 000 charge-discharge cycles at a higher current density of 5 A g-1, surpassing the device performance of most of the reported all-organic pseudocapacitive 2D networks.
Collapse
Affiliation(s)
- Samyyappan Vijayakumar
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjana P Mohanachandran
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Raghavan B Rakhi
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sreejith Shankar
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 695022, India
| | - Ayyappanpillai Ajayaghosh
- CSIR - National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
11
|
Xiao H, Luo D, Zhang Y, Liu F, Xu S, Ding B, Dou H, Zhang X. Fully Conjugated Covalent Triazine Framework Integrating Hexaazatrinaphthylene Unit as Anode Material for High-Performance Hybrid Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54049-54057. [PMID: 39348602 DOI: 10.1021/acsami.4c13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
As a high-performance energy storage device consisting of a battery-type anode and a capacitor-type cathode, hybrid lithium-ion capacitors (HLICs) combine the advantages of high energy density of batteries and high power density of capacitors. However, the imbalance in electrochemical kinetics between the battery-type anode and the capacitor-type cathode hinders the further development of HLICs. Fully conjugated covalent organic frameworks have great potential as electrode materials for HLICs due to the designability of their structure. Herein, a fully conjugated covalent triazine framework (PT-CTF) integrating the hexaazatrinaphthylene unit was constructed, which provides abundant active sites (C═N and C═C groups) as the pseudocapacitive anode material for HLICs. And the connection of the triazine unit of PT-CTF improves the molecular conjugate degree, facilitating the transport of electrons. The fabricated PT-CTF||AC HLICs exhibit a high energy density (164.9 Wh kg-1 at 100 mA g-1), large power density (13.1 kW kg-1 at 4 A g-1), and excellent cycling capability (72% after 10 000 cycles at 2 A g-1).
Collapse
Affiliation(s)
- Hong Xiao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yiduo Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Feng Liu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Shu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
12
|
Bariki R, Joseph RG, El-Kadri OM, Al-Sayah MH. The Development of Metal-Free Porous Organic Polymers for Sustainable Carbon Dioxide Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1432. [PMID: 39269094 PMCID: PMC11397385 DOI: 10.3390/nano14171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
A viable tactic to effectively address the climate crisis is the production of renewable fuels via photocatalytic reactions using solar energy and available resources like carbon dioxide (CO2) and water. Organic polymer material-based photocatalytic materials are thought to be one way to convert solar energy into valuable chemicals and other solar fuels. The use of porous organic polymers (POPs) for CO2 fixation and capture and sequestration to produce beneficial compounds to reduce global warming is still receiving a lot of interest. Visible light-responsive organic photopolymers that are functionally designed and include a large number of heteroatoms and an extended π-conjugation allow for the generation of photogenerated charge carriers, improved absorption of visible light, increased charge separation, and decreased charge recombination during photocatalysis. Due to their rigid structure, high surface area, flexible pore size, permanent porosity, and adaptability of the backbone for the intended purpose, POPs have drawn more and more attention. These qualities have been shown to be highly advantageous for numerous sustainable applications. POPs may be broadly categorized as crystalline or amorphous according to how much long-range order they possess. In terms of performance, conducting POPs outperform inorganic semiconductors and typical organic dyes. They are light-harvesting materials with remarkable optical characteristics, photostability, cheap cost, and low cytotoxicity. Through cocatalyst loading and morphological tweaking, this review presents optimization options for POPs preparation techniques. We provide an analysis of the ways in which the preparative techniques will affect the materials' physicochemical characteristics and, consequently, their catalytic activity. An inventory of experimental methods is provided for characterizing POPs' optical, morphological, electrochemical, and catalytic characteristics. The focus of this review is to thoroughly investigate the photochemistry of these polymeric organic photocatalysts with an emphasis on understanding the processes of internal charge generation and transport within POPs. The review covers several types of amorphous POP materials, including those based on conjugated microporous polymers (CMPs), inherent microporosity polymers, hyper-crosslinked polymers, and porous aromatic frameworks. Additionally, common synthetic approaches for these materials are briefly discussed.
Collapse
Affiliation(s)
- Ranjit Bariki
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Reshma G Joseph
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Oussama M El-Kadri
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad H Al-Sayah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Research Centre, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
13
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
14
|
Dhama N, Prabha R, Chaudhary K, Masram DT, Venkatesu P. Characterization of a conjugate between poly( N-vinyl caprolactam) and a triazine-based covalent organic framework as a potential biomaterial. Phys Chem Chem Phys 2024; 26:19282-19289. [PMID: 38963033 DOI: 10.1039/d4cp01963f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Thermoresponsive polymers (TRPs) have been explored over decades for biomedical applications, and poly(N-vinylcaprolactam) (PVCL) TRP is extensively investigated due to its low toxicity and lower critical solution temperature (LCST), close to physiological temperatures. Besides this, the utilization of covalent organic frameworks (COFs), which belong to a class of porous polymers, in bio-based applications is of great interest due to their remarkable properties. Thus, the integration of PVCL and covalent organic frameworks (COFs) as conjugate materials can lead to advanced bio-based applications; however, the need is to understand the influence of the COF on the PVCL conformation. Herein, a triazine-based COF, CC-TAPT-COF, has been synthesized and completely characterized. Later, the effect of CC-TAPT-COF on the PVCL polymer conformation was studied using various techniques. In fluorescence spectroscopy, a fluorescence quenching for PVCL in the presence of CC-TAPT-COF was observed, which indicated conformational changes. Later, results from thermal fluorescence studies and dynamic light scattering as a function of temperature showed a slight decrease in LCST value for PVCL after the addition of CC-TAPT-COF concentrations. These results showed a slight effect of CC-TAPT-COF on the PVCL conformation. Likewise, a slight decrease in the transmittance value for specific bands in infrared spectra showed a slight effect of CC-TAPT-COF on the PVCL conformation. Further, results from electron microscopy and atomic force microscopy revealed a conjugate formation between PVCL and CC-TAPT-COF due to the presence of binding interactions between them. Overall, the results from several studies showed a slight effect of CC-TAPT-COF on the PVCL during conjugate formation between PVCL and CC-TAPT-COF. This study will be beneficial for the development of COF-thermoresponsive polymer conjugates with a mixture of their unique features as advanced biomaterials.
Collapse
Affiliation(s)
- Nitanshu Dhama
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Rashmi Prabha
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Karan Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India.
- Department of Forensic Sciences, National Forensic Sciences University, Delhi-110085, India
| | - Dhanraj T Masram
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | |
Collapse
|
15
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
16
|
Jiang QQ, Wang X, Wu Q, Li YJ, Luo QX, Mao XL, Cai YJ, Liu X, Liang RP, Qiu JD. Rapid Charge Transfer Enabled by Noncovalent Interaction through Guest Insertion in Supercapacitors based on Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202313970. [PMID: 37953692 DOI: 10.1002/anie.202313970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI-COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI-COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
17
|
Zhang J, Zhang Z, Xing X, Xu X, Zhang X, Liu H, He P, Ren P, Zhang B. The high-efficiency coupling of a Ni 2+ coordinated/uncoordinated pyridine N-COF self-supporting nanofilm as an asymmetric supercapacitor. Dalton Trans 2023; 53:223-232. [PMID: 38037684 DOI: 10.1039/d3dt03183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A large-area COFTAPB-BPY film with a pore size of 3.9 nm was prepared on a gas-liquid interface by the virtue of the limiting and guiding functions of sodium dodecylbenzene sulfonate, followed by modification by Ni2+ ions with the reversible redox reaction of Ni(II/III), where Ni2+ was evidently anchored on the N in BPY. The obtained COFTAPB-BPY and Ni-COFTAPB-BPY nanofilms could avoid the inevitable aggregation and stacking of bulk COFTAPB-BPY, which facilitated a high specific capacitance of 0.26 mF cm-2 for the COFTAPB-BPY nanofilm and 0.38 mF cm-2 for the Ni-COFTAPB-BPY nanofilm at 0.001 mA cm-2. Considering the pseudocapacitance and double-layer capacitance traits of Ni-COFTAPB-BPY and COFTAPB-BPY nanofilms, the asymmetric Ni-COFTAPB-BPY//COFTAPB-BPY film supercapacitor was assembled with a symmetric COFTAPB-BPY//COFTAPB-BPY film device as a control. The asymmetric Ni-COFTAPB-BPY//COFTAPB-BPY film supercapacitor could enhance the energy density of 273.9 mW h cm-3 at 14.09 W cm-3 from 85.2 mW h cm-3 at 4.38 W cm-3 for the symmetric COFTAPB-BPY//COFTAPB-BPY film device. This work provides a new perspective on the application of self-supporting COF nanofilms as film asymmetric supercapacitors.
Collapse
Affiliation(s)
- Jia Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Zihao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Xuteng Xing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Xiangjing Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haining Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Peng He
- China International Engineering Consulting Corporation, Beijing 100048, China
| | - Peng Ren
- Tuolan Technology Hebei Co., Ltd, Shijiazhuang, 051430, China
| | - Bingzhu Zhang
- Hebei Technological Innovation Center of Chiral Medicine, Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026, China.
| |
Collapse
|
18
|
Xu S, Wu J, Wang X, Zhang Q. Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chem Sci 2023; 14:13601-13628. [PMID: 38075665 PMCID: PMC10699565 DOI: 10.1039/d3sc04571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 04/26/2024] Open
Abstract
Due to their excellent stability, ease of modification, high specific surface area, and tunable redox potentials, covalent organic frameworks (COFs) as potential electrodes in supercapacitors (SCs) have raised much research interest because these materials can enable the achievement of high electric double-layer supercapacitance and high pseudocapacitance. Here, the design strategies and SC applications of COF-based electrode materials are summarized. The detailed principles are introduced first, followed by discussions on strategies with diverse examples. The updated advances in design and applications are also discussed. Finally, in the outlook section, we provide some guidelines on the rational design of COF-based electrode materials for high-performance SCs, which we hope will inspire novel concepts for COF-based supercapacitors.
Collapse
Affiliation(s)
- Shen Xu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
19
|
Zhang S, Lombardo L, Tsujimoto M, Fan Z, Berdichevsky EK, Wei YS, Kageyama K, Nishiyama Y, Horike S. Synthesizing Interpenetrated Triazine-based Covalent Organic Frameworks from CO 2. Angew Chem Int Ed Engl 2023; 62:e202312095. [PMID: 37743667 DOI: 10.1002/anie.202312095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2 -derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer-Emmett-Teller surface area of 945 m2 g-1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10-2 S cm-1 at 85 °C, 95 % of relative humidity.
Collapse
Affiliation(s)
- Siquan Zhang
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Loris Lombardo
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ellan K Berdichevsky
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yong-Sheng Wei
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
20
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Chandran A, Abhirami N, Sudhina S, Chandran M, Janeesh PA. 2D Nano Covalent Organic Frameworks – A Porous Polymeric Promising Material Exploring New Prospects of Drug Delivery in Cancer Therapeutics. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 01/06/2025]
Abstract
AbstractCancer is one of the leading causes of death worldwide. Despite there are numerous treatments available for cancer therapy, early detection and efficient treatment with least side effects is still challenging. Covalent organic frameworks (COFs) are emerging crystalline porous polymeric material comprised of light weight atoms like H, B, C, N and O. The Unique characteristics of COFs is its porosity, large surface area and bio‐compatibility which makes them a suitable candidate for potential biomedical applications especially in cancer therapeutics, through targeted drug delivery. This review focused on general introduction of porous materials, history of COFs, an overview on cancer, brief discussion on the various synthetic strategies, dynamic linkages in COFs and potential biomedical application of COFs such as targeted drug delivery, photo thermal therapy (PTT) and photodynamic therapy (PDT). This review aims to provide in‐depth knowledge about COFs and its application in cancer therapeutics.
Collapse
Affiliation(s)
- Akash Chandran
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
| | - N. Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - S. Sudhina
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - P. A. Janeesh
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| |
Collapse
|
22
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Tao R, Yang T, Wang Y, Zhang J, Wu Z, Qiu L. Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chem Commun (Camb) 2023; 59:3175-3192. [PMID: 36810434 DOI: 10.1039/d2cc06573h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supercapacitors (SCs) have been recognized as a promising electrochemical energy storage (EES) device, thanks to their high-power density, long lifespan, fast charge-discharge capability, and eco-friendliness. The breakthrough of electrode materials that determine the electrochemical performance of SCs is urgently desired. Covalent organic frameworks (COFs), an emerging and burgeoning class of crystalline porous polymeric materials, have been found to have huge potential for application in EES devices by virtue of their unique properties including atomically adjustable structures, robust and tunable skeletons, well-defined and open channels, high surface areas, etc. In this feature article, we aim at summarizing the design strategies of COF-based electrode materials for SCs based on the representative advances. The current challenges and future perspectives of COFs for SC application are highlighted as well.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
24
|
Ultrastable Two-Dimensional Fluorescent Conjugated Microporous Polymers Containing Pyrene and Fluorene Units for Metal Ion Sensing and Energy Storage. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
25
|
Bhagat S, Dani S, Verma A, Dharavath R, Pratap UR. Cu@CTF as an efficient heterogeneous catalyst in Click Reaction between Azide and Alkyne towards disubstituted Triazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
26
|
Yang HC, Chen YY, Suen SY, Lee RH. Triazine-based covalent organic framework/carbon nanotube fiber nanocomposites for high-performance supercapacitor electrodes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
27
|
Shi Y, Yang J, Gao F, Zhang Q. Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS NANO 2023; 17:1879-1905. [PMID: 36715276 DOI: 10.1021/acsnano.2c11346] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline organic porous material with specific features and interesting structures, including porosity, large surface area, and biocompatibility. These features enable COFs to be considered as excellent candidates for applications in various fields. Recently, COFs have been widely demonstrated as promising materials for biomedical applications because of their excellent physicochemical properties and ultrathin structures. In this review, we cover the recent progress of COF materials for applications in photodynamic therapy, gene delivery, photothermal therapy, drug delivery, bioimaging, biosensing, and combined therapies. Moreover, the critical challenges and further perspectives with regards to COFs for future biology-facing applications are also discussed.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Feng Gao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
28
|
Design Hybrid Porous Organic/Inorganic Polymers Containing Polyhedral Oligomeric Silsesquioxane/Pyrene/Anthracene Moieties as a High-Performance Electrode for Supercapacitor. Int J Mol Sci 2023; 24:ijms24032501. [PMID: 36768824 PMCID: PMC9916954 DOI: 10.3390/ijms24032501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
We synthesized two hybrid organic-inorganic porous polymers (HPP) through the Heck reaction of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively. The chemical structures of these two hybrid porous polymers were validated through FTIR and solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP has higher thermal stability (Td10: 579 °C) and surface area (433 m2 g-1) than OVS-P-A HPP (Td10: 377 °C and 98 m2 g-1) due to its higher cross-linking density. Furthermore, the electrochemical analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g -1 at 0.5 A F g-1) when compared to OVS-A HPP (120 F g -1 at 0.5 A F g-1). The electron-rich phenyl rings and Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to their excellent electrochemical performance of OVS-P-A HPP.
Collapse
|
29
|
Mohamed MG, Elsayed MH, Ye Y, Samy MM, Hassan AE, Mansoure TH, Wen Z, Chou HH, Chen KH, Kuo SW. Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water. Polymers (Basel) 2022; 15:polym15010182. [PMID: 36616530 PMCID: PMC9824186 DOI: 10.3390/polym15010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g-1 and a large pore volume of 0.69 cm3 g-1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g-1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g-1 h-1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g-1 h-1), based on photocatalytic experimental results.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.G.M.); (S.-W.K.)
| | - Mohamed Hammad Elsayed
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Yunsheng Ye
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed E. Hassan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.G.M.); (S.-W.K.)
| |
Collapse
|
30
|
Kaur G, Kumar D, Sundarrajan S, Ramakrishna S, Kumar P. Recent Trends in the Design, Synthesis and Biomedical Applications of Covalent Organic Frameworks. Polymers (Basel) 2022; 15:polym15010139. [PMID: 36616488 PMCID: PMC9824193 DOI: 10.3390/polym15010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The most recent and advanced class of crystalline and permeable compounds are covalent organic frameworks (COFs). Due to their exceptional qualities, such as their porous structure, high surface area, strong chemical and thermal stabilities, low density, good water stability, luminescent nature, and so on, COFs have seen remarkable growth over the past ten years. COFs have been successfully researched for a number of applications based on these characteristics. The current state of COFs has been reported in this study, with particular attention paid to their design, topology, synthesis, and a variety of biological applications, including drug delivery systems, photodynamic and photothermal therapy, biosensing, bioimaging, etc. Moreover, several miscellaneous applications, such as catalysis, gas storage and separation, photocatalysis, sensors, solar cells, supercapacitors, and 3D printers, have also been explored. It is significant that we have examined current research on COFs with a focus on the biological applications, which are infrequently covered in the literature. Descriptions of the difficulties and prospective outcomes have also been given.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Materials Application Research Laboratory (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Rahya Suchani, Jammu 181143, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, Lower Kent Ridge, National University of Singapore, Singapore 117581, Singapore
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: (S.S.); or (P.K.)
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, Lower Kent Ridge, National University of Singapore, Singapore 117581, Singapore
| | - Pawan Kumar
- Materials Application Research Laboratory (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Rahya Suchani, Jammu 181143, India
- Correspondence: (S.S.); or (P.K.)
| |
Collapse
|
31
|
Martín‐Illán JÁ, Sierra L, Ocón P, Zamora F. Electrochemical Double-Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angew Chem Int Ed Engl 2022; 61:e202213106. [PMID: 36184949 PMCID: PMC9828764 DOI: 10.1002/anie.202213106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/05/2022]
Abstract
High energy demand results in comprehensive research of novel materials for energy sources and storage applications. Covalent organic frameworks (COFs) possess appropriate features such as long-range order, permanent porosity, tunable pore size, and ion diffusion pathways to be competitive electrode materials. Herein, we present a deep electrochemical study of two COF-aerogels shaped into flexible COF-electrodes (ECOFs) by a simple compression method to fabricate an electrochemical double-layer capacitor (EDLC). This energy storage system has considerable interest owing to its high-power density and long cycle life compared with batteries. Our result confirmed the outstanding behavior of ECOFs as EDLC devices with a capacity retention of almost 100 % after 10 000 charge/discharge cycles and, to our knowledge, the highest areal capacitance (9.55 mF cm-2 ) in aqueous electrolytes at higher scan rates (1000 mV s-1 ) for COFs. More importantly, the hierarchical porosity observed in the ECOFs increases ion transport, which permits a fast interface polarization (low τ0 values). The complete sheds light on using ECOFs as novel electrode material to fabricate EDLC devices.
Collapse
Affiliation(s)
| | - Laura Sierra
- Departamento de Química-Fisica AplicadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Pilar Ocón
- Departamento de Química-Fisica AplicadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Félix Zamora
- Departamento de Química InorgánicaUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
32
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Hierarchical covalent organic frameworks-modified diatomite for efficient separation of bisphenol A from water in a convenient column mode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
An Ultrastable Porous Polyhedral Oligomeric Silsesquioxane/Tetraphenylthiophene Hybrid as a High-Performance Electrode for Supercapacitors. Molecules 2022; 27:molecules27196238. [PMID: 36234775 PMCID: PMC9572779 DOI: 10.3390/molecules27196238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we synthesized three hybrid microporous polymers through Heck couplings of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining the porous organic–inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively. Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the POSS-Th POIP possessed the highest thermal stability (T5: 586 °C; T10: 785 °C; char yield: 90 wt%), presumably because of a strongly crosslinked network formed between its OVS and Th moieties. Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g−1) at 0.5 A g−1 was higher than those of the POSS-Th (213 F g−1) and POSS-OXD (119 F g−1) POIPs. We attribute the superior electrochemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich phenyl groups within its structure.
Collapse
|
35
|
Wang J, Zhao L, Yan B. Functionalized luminescent covalent organic frameworks hybrid material as smart nose for the diagnosis of Huanglongbing. J Mater Chem B 2022; 10:5835-5841. [PMID: 35876301 DOI: 10.1039/d2tb01185a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative identification of several volatile organic compounds (VOCs) associated with the same disease provides a strong guarantee of the accurate analysis of the disease. Designing a single luminescent material to interact differently with multiple analytes can generate response patterns with remarkable diversity. Here, a highly green luminescent imine-based 2D COF (TtDFP) is designed and synthesized. TtDFP has ultrasensitive detection performance for trace water in organic solvent. Constructing a ratiometric fluorescence sensor can improve sensitivity for detecting analytes. To contrast the fluorescence signals of Eu3+ and COFs in sensing assays, a simple postsynthetic modification (PSM) method is used to introduce Eu3+ into TtDFP. The obtained red luminescent hybrid material Eu3+@TtDFP EVA film can be a fluorescent nose capable of "sniffing out" and quantifying VOCs (GA and PhA) associated with Huanglongbing (HLB, a devastating disease of citrus) at ppb levels. This work provides a technique of developing functionalized COF hybrid material to facilitate the distinction of various VOCs, which can also be extended to monitor the levels of other VOCs relevant to human health.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Cu@MTPOF as an Efficient Catalyst for the C–S Coupling of 2-Mercaptobenzimidazole with Aryl Halides and 2-Halobenzoic Acids. Catal Letters 2022. [DOI: 10.1007/s10562-022-04092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Dai Y, Wang Y, Li X, Cui M, Gao Y, Xu H, Xu X. In situ form core-shell carbon nanotube-imide COF composite for high performance negative electrode of pseudocapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
|
39
|
Gao T, Yan Z, Ordomsky V, Paul S. Design of two‐dimensional heteropolyacid‐covalent organic frameworks composite materials for acid catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202101450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianyu Gao
- University of Lille: Universite de Lille UCCS FRANCE
| | - Zhen Yan
- Rhodia China Co Ltd: Solvay China Co Ltd E2P2l CHINA
| | - Vitaly Ordomsky
- Lille University of Science and Technology Unite de Catalyse et Chimie du Solide Cité Scientifique, Bâtiment C3 59650 Villeneuve-d'Ascq FRANCE
| | | |
Collapse
|
40
|
Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Porous organic polymers for high-performance supercapacitors. Chem Soc Rev 2022; 51:3181-3225. [PMID: 35348147 DOI: 10.1039/d2cs00065b] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Cheng-Fang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shihao Xu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shi Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. .,Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
41
|
Kang K, Wu Z, Zhao M, Li Z, Ma Y, Zhang J, Wang Y, Sajjad M, Tao R, Qiu L. A nanostructured covalent organic framework with readily accessible triphenylstibine moieties for high-performance supercapacitors. Chem Commun (Camb) 2022; 58:3649-3652. [PMID: 35212701 DOI: 10.1039/d2cc00254j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pristine, redox-active triphenylstibine based COF (Sb-COF) exhibits well-uniform nanostructures which could provide sufficient electron conduction pathways and minimize the ion transport lengths, making triphenylstibine moieties readily accessible by the electrolyte. The assembled Sb-COF//rGO thus provides an excellent energy density of 69 W h Kg-1.
Collapse
Affiliation(s)
- Kun Kang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Miaomiao Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zijie Li
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yunlong Ma
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Muhammad Sajjad
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
42
|
Ma H, Wang S, Ren Y, Liang X, Wang Y, Zhu Z, He G, Jiang Z. Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1474-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Diwakara SD, Ong WSY, Wijesundara YH, Gearhart RL, Herbert FC, Fisher SG, McCandless GT, Alahakoon SB, Gassensmith JJ, Dodani SC, Smaldone RA. Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. J Am Chem Soc 2022; 144:2468-2473. [PMID: 35099968 PMCID: PMC9173749 DOI: 10.1021/jacs.1c12020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers that consist of covalently linked, two-dimensional sheets that can stack together through noncovalent interactions. Here we report the synthesis of a novel COF, called PyCOFamide, which has an experimentally observed pore size that is greater than 6 nm in diameter. This is among the largest pore size reported to date for a 2D-COF. PyCOFamide exhibits permanent porosity and high crystallinity as evidenced by the nitrogen adsorption, powder X-ray diffraction, and high-resolution transmission electron microscopy. We show that the pore size of PyCOFamide is large enough to accommodate fluorescent proteins such as Superfolder green fluorescent protein and mNeonGreen. This work demonstrates the utility of noncovalent structural reinforcement in 2D-COFs to produce larger and persistent pore sizes than previously possible.
Collapse
Affiliation(s)
- Shashini D. Diwakara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Whitney S. Y. Ong
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Yalini H. Wijesundara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Robert L. Gearhart
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Fabian C. Herbert
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Sarah G. Fisher
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Gregory T. McCandless
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Sampath B. Alahakoon
- Institute of Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Kandawala Rd, Ratmalana, 10390, Sri Lanka
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Sheel C. Dodani
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Ronald A. Smaldone
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, 75080, United States,Corresponding Author: Ronald A. Smaldone -
| |
Collapse
|
44
|
Wu N, Wang L, Xie Y, Du Y, Song Y, Wang L. Double signal ratiometric electrochemical riboflavin sensor based on macroporous carbon/electroactive thionine-contained covalent organic framework. J Colloid Interface Sci 2022; 608:219-226. [PMID: 34626968 DOI: 10.1016/j.jcis.2021.09.162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 01/09/2023]
Abstract
Riboflavin (RF) is one of the necessary vitamins. If human body lacks RF, it will lead to inflammation and dysfunction of mouth, lips and skin. Thus sensitive and accurate determination of RF is necessary. Here, an electroactive covalent-organic framework nanobelt (COFTFPB-Thi) with thickness of 1.4 nm was prepared by amine-aldehyde condensation reaction between thionine and 1, 3, 5-tris (p-formylphenyl) benzene, which was then grown vertically on three-dimensional porous carbon derived from kenaf stem (3D-KSC) for double signal ratiometric electrochemical detection of RF. The resulted 3D-KSC/COFTFPB-Thi showed two reduction peaks at -0.08 V and -0.23 V, which came from the reduction of COFTFPB-Thi and the conjugated structure of COFTFPB-Thi, respectively. In the presence of RF, those RF molecules near the electrode surface were oxidized at 0.6 V. Then some oxidized RF (RFox) adsorbed on COFTFPB-Thi would oxidize COFTFPB-Thi into COFTFPB-Thi(ox) while other RFox adsorbed on 3D-KSC kept unchanged. When the potential was scanned from 0.6 V to -0.6 V, both COFTFPB-Thi(ox) and RFox adsorbed on 3D-KSC were reduced at -0.08 V and -0.45 V accordingly, while the reduction peak of -0.23 V of the conjugated structure of COFTFPB-Thi kept constant. When j-0.45/j-0.23 was used as the response signal, the detection limit was 44 nM and the linear range was 0.13 μM -0.23 mM. By using j-0.08/j-0.23 as the response signal, a detection limit of 90 nM and a linear range of 0.30 μM-0.23 mM (S/N = 3) were obtained. By using double signals, the measurement results can be corrected to make the results more accurate and reliable. The sensor also showed good selectivity, reproducibility and stability, which provided a good application prospects.
Collapse
Affiliation(s)
- Na Wu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Linyu Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yi Xie
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yan Du
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
45
|
Yao M, Guo C, Geng Q, Zhang Y, Zhao X, Zhao X, Wang Y. Construction of Anthraquinone-Containing Covalent Organic Frameworks/Graphene Hybrid Films for a Flexible High-Performance Microsupercapacitor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mengyao Yao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Shaoxing Institute of Technology, Shanghai University, 78 Sanjiang Road, Zhejiang 312000, People’s Republic of China
| | - Chaofei Guo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Qianhao Geng
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Xin Zhao
- Shaoxing Institute of Technology, Shanghai University, 78 Sanjiang Road, Zhejiang 312000, People’s Republic of China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai 201620, People’s Republic of China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), 99 Shangda Road, Shanghai 200444, People’s Republic of China
| |
Collapse
|
46
|
Sun L, Guo H, Pan Z, Liu B, Zhang T, Yang M, Wu N, Zhang J, Yang F, Yang W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Wang Q, Sun J, Wei D. Two‐Dimensional
Metal Organic Frameworks and Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| |
Collapse
|
48
|
Zhang Y, Zhang B, Chen L, Wang T, Di M, Jiang F, Xu X, Qiao S. Rational design of covalent triazine frameworks based on pore size and heteroatomic toward high performance supercapacitors. J Colloid Interface Sci 2022; 606:1534-1542. [PMID: 34500156 DOI: 10.1016/j.jcis.2021.08.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 02/03/2023]
Abstract
A series of covalent triazine frameworks (CTFs) are prepared via ionothermal synthesis for supercapacitors. Due to the feature of adjustable pore structure and rich nitrogen, CTFs with regular structure can be used as a group of model compounds to further investigate the influence of pore size and heteroatom on supercapacitors. By comparing the performance of CTFs with different pore structures and nitrogen contents, the experimental results show that BPY-CTF with high specific surface area of 2278 m2 g-1, mesopores structure, and suitable nitrogen content displays a specific capacitance of 393.6 F g-1 at 0.5 A g-1. According to the results and analysis, the existence of mesopores largely enhance the contact area between the electrode material and electrolyte, and then boost the charge transfer. On the other hand, N-doping has a prominent effect on improving the Faradaic pseudo-capacitance and conductivity for CTF electrode materials. This work will inspire further research on the development of highly efficient electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Boying Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China; Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lifang Chen
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ting Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Mengyu Di
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fei Jiang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China.
| | - Xiaoyang Xu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
49
|
Roh DH, Shin H, Kim HT, Kwon TH. Sono-Cavitation and Nebulization-Based Synthesis of Conjugated Microporous Polymers for Energy Storage Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61598-61609. [PMID: 34928128 DOI: 10.1021/acsami.1c13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and cross-linked microporous structures. However, the fabrication of nano- and microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution. Using the SNS, the scalable fabrication of microporous and redox-active CMP films can be achieved via the oxidative C-C coupling polymerization of the monomer precursor. Intriguingly, the ultrasonic frequency used during SNS strongly affects the synthesis of the CMP films, resulting in an approximately 30% improvement in reaction yields and ca. 1.3-1.7-times enhanced surface areas (336-542 m2/g) at a high ultrasonic frequency of 180 kHz compared to those at 120 kHz. Furthermore, we prepare highly conductive, three-dimensional porous electrodes [CMP/carbon nanotube (CNT)] by a layer-by-layer sequential deposition of CMP films and CNTs via SNS. Finally, an asymmetric supercapacitor comprising the CMP/CNT cathode and carbon anode shows a high specific capacitance of 477 F/g at 1 A/g with a wide working potential window (0-1.4 V) and robust cycling stability, exhibiting 94.4% retention after 10,000 cycles.
Collapse
Affiliation(s)
- Deok-Ho Roh
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - HyeonOh Shin
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Tak Kim
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Environment & Sustainable Resources, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
50
|
Guan Q, Guo H, Wu N, Cao Y, Wang M, Zhang L, Yang W. Highly sensitive determination of acetaminophen and 4-aminophenol based on COF/3D NCNF-T/Au NPs composite electrochemical sensing platform. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|