1
|
Park SH, Kim S, Park JW, Kim S, Cha W, Lee J. In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO 2 film. Nat Commun 2024; 15:5416. [PMID: 38937506 PMCID: PMC11211407 DOI: 10.1038/s41467-024-49862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Photocatalysis is a promising technique due to its capacity to efficiently harvest solar energy and its potential to address the global energy crisis. However, the structure-activity relationships of photocatalyst during wavelength-dependent photocatalytic reactions remains largely unexplored because it is difficult to measure under operating conditions. Here we show the photocatalytic strain evolution of a single Au nanoparticle (AuNP) supported on a TiO2 film by combining three-dimensional (3D) Bragg coherent X-ray diffraction imaging with an external light source. The wavelength-dependent generation of reactive oxygen species (ROS) has significant effects on the structural deformation of the AuNP, leading to its strain evolution. Density functional theory (DFT) calculations are employed to rationalize the induced strain caused by the adsorption of ROS on the AuNP surface. These observations provide insights of how the photocatalytic activity impacts on the structural deformation of AuNP, contributing to the general understanding of the atomic-level catalytic adsorption process.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Whan Park
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science, Pohang, 37673, Republic of Korea
| | - Seunghee Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonsuk Cha
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Zhang T, Zhu J, Wang Q, Xie M, Meng K, Mao L, Yang L, Pan T, Gao M, Yao G, Lin Y. Flexible Antibacterial Respiratory Monitoring Sensor Based on Controllable Au-Modified Surface of Highly {001} Preferred Anatase Titanium Dioxide Thin Film. ACS Biomater Sci Eng 2024; 10:1722-1733. [PMID: 38373308 DOI: 10.1021/acsbiomaterials.3c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Respiratory signals are critical clinical diagnostic criteria for respiratory diseases and health conditions, and respiratory sensors play a crucial role in achieving the desired respiratory monitoring effect. High sensitivity to a single factor can improve the reliability of respiratory monitoring, and maintaining the hygiene of the sensors is also important for daily health monitoring. Herein, we propose a flexible Au-modified anatase titanium dioxide resistive respiratory sensor, which can be mechanically compliantly attached to curved surfaces for respiratory monitoring in different modalities (i.e., respiratory intensity, frequency, and rate). The uniform and preferentially oriented anatase titanium dioxide films gained by the polymer-assisted deposition technique can be fabricated on flexible substrates through a liquid-assisted transferring process. The Au modification can enhance surface plasmon resonance to facilitate the photocatalytic activity of titanium dioxide, and the optimized distribution of Au on the surface of titanium dioxide film made the sensor have an excellent antibacterial effect. The uniquely designed encapsulation can effectively control the contact between the surface of titanium dioxide films and electrodes, allowing the flexible sensor to exhibit fast response time (0.71 s) and recovery time (1.06 s) to respiratory as well as insensitivity or low sensitivity to other factors (i.e., gas composition, humidity, temperature, stress, and strain). This work provided an effective strategy for flexible wearable respiratory sensors and has great potential in daily respiratory monitoring for health management and pandemic control.
Collapse
Affiliation(s)
- Tianyao Zhang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China
| | - Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Wang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Maowen Xie
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longbiao Mao
- Department of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Li Yang
- Department of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guang Yao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Wang Y, Zhang M, Wu W, Wang Z, Liu M, Yang T, Renqianzhuoma. Wide Response Range Photoelectrochemical UV Detector Based on Anodized TiO 2-Nanotubes@Ti@quartz Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:439. [PMID: 38470770 DOI: 10.3390/nano14050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Conventional sandwich structure photoelectrochemical UV detectors cannot detect UV light below 300 nm due to UV filtering problems. In this work, we propose to place the electron collector inside the active material, thus avoiding the effect of electrodes on light absorption. We obtained a TiO2-nanotubes@Ti@quartz photoanode structure by precise treatment of a commercial Ti mesh by anodic oxidation. The structure can absorb any light in the near-UV band and has superior stability to other metal electrodes. The final encapsulated photoelectrochemical UV detectors exhibit good switching characteristics with a response time below 100 ms. The mechanism of the oxidation conditions on the photovoltaic performance of the device was investigated by the electrochemical impedance method, and we obtained the optimal synthesis conditions. Response tests under continuous spectroscopy confirm that the response range of the device is extended from 300-400 nm to 240-400 nm. This idea of a built-in collector is an effective way to extend the response range of a photoelectrochemical detector.
Collapse
Affiliation(s)
- Youqing Wang
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Miaomiao Zhang
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenxuan Wu
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ze Wang
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minghui Liu
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Tiantian Yang
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Renqianzhuoma
- Research Center for Semiconductor Materials and Devices, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Garvin M, Thompson WA, Tan JZY, Kampouri S, Ireland CP, Smit B, Brookfield A, Collison D, Negahdar L, Beale AM, Maroto-Valer MM, McIntosh RD, Garcia S. Highly selective CO 2 photoreduction to CO on MOF-derived TiO 2. RSC SUSTAINABILITY 2023; 1:494-503. [PMID: 37215582 PMCID: PMC10193832 DOI: 10.1039/d2su00082b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Metal-Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10-4 μmol cm-2 h-1 (2.6 μmol g-1 h-1) and 2.6 × 10-5 μmol cm-2 h-1 (0.10 μmol g-1 h-1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10-3 μmol cm-2 h-1 (5.9 μmol g-1 h-1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production.
Collapse
Affiliation(s)
- Matthew Garvin
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| | - Warren A Thompson
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| | - Jeannie Z Y Tan
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| | - Stavroula Kampouri
- Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Christopher P Ireland
- Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Berend Smit
- Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Adam Brookfield
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9Pl UK
| | - David Collison
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9Pl UK
| | - Leila Negahdar
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxfordshire OX11 0FA UK
| | - Andrew M Beale
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory Harwell Oxfordshire OX11 0FA UK
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| | - Ruaraidh D McIntosh
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| | - Susana Garcia
- Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University EH14 4AS UK
| |
Collapse
|
5
|
Wardhana AC, Yamaguchi A, Adachi K, Hashizume D, Miyauchi M. Direct Interfacial Excitation from TiO 2 to Cu(II) Nanoclusters Enables Cathodic Photoresponse for Hydrogen Evolution under Visible-Light Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206893. [PMID: 36808827 DOI: 10.1002/smll.202206893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 05/18/2023]
Abstract
The titanium dioxide (TiO2 ) photocatalyst is only active under UV irradiation due to its wide-gap nature. A novel excitation pathway denoted as interfacial charge transfer (IFCT) has been reported to activate copper(II) oxide nanoclusters-loaded TiO2 powder (Cu(II)/TiO2 ) under visible-light irradiation for only organic decomposition (downhill reaction) so far. Here, the photoelectrochemical study shows that the Cu(II)/TiO2 electrode exhibits a cathodic photoresponse under visible-light and UV irradiation. It originates from H2 evolution on the Cu(II)/TiO2 electrode, while O2 evolution takes place on the anodic side. Based on the concept of IFCT, a direct excitation of electrons from the valence band of TiO2 to Cu(II) clusters initiates the reaction. This is the first demonstration of a direct interfacial excitation-induced cathodic photoresponse for water splitting without any addition of a sacrificial agent. This study is expected to contribute to the development of abundant visible-light-active photocathode materials for fuel production (uphill reaction).
Collapse
Affiliation(s)
- Aufandra C Wardhana
- Department of Materials Science and Engineering, Tokyo Institute of Technology, S7-9, 2-12-1 Ookayama, Meguro City, Tokyo, 152-8552, Japan
| | - Akira Yamaguchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, S7-9, 2-12-1 Ookayama, Meguro City, Tokyo, 152-8552, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
| | - Masahiro Miyauchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, S7-9, 2-12-1 Ookayama, Meguro City, Tokyo, 152-8552, Japan
| |
Collapse
|
6
|
Yang Z, Zhang Q, Song H, Chen X, Cui J, Sun Y, Liu L, Ye J. Partial oxidation of methane by photocatalysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Li X, Sun N, Bai Y, Yan Y, Ouyang T, Wang X, Jiang X, Wang Z, Cai X, Cai J, Tan H. High Photocatalytic Hydrogen Production of Ag@TiO 2 with Different Sizes by Simple Chemical Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3350-3357. [PMID: 36802638 DOI: 10.1021/acs.langmuir.2c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The photocatalytic enhancement of sliver-based metals compounded with semiconductor materials has been demonstrated. However, there are relatively few studies on the effect of particle size in the system on photocatalytic performance. In this paper, silver nanoparticles of two different sizes, 25 and 50 nm, were prepared by a wet chemical method and subsequently sintered to obtain a photocatalyst with a core-shell structure. The photocatalyst Ag@TiO2-50/150 prepared in this study has a hydrogen evolution rate as high as 4538.90 μmol·g-1·h-1. It is interesting to find that when the ratio of silver core size to composite size is 1:3, the hydrogen yield is almost not affected by the silver core diameter, and the hydrogen production rate is basically the same. In addition, the rate of hydrogen precipitation in air for 9 months was still more than 9 times those of previous studies. This provides a new idea for the study of the oxidation resistance and stability of photocatalysts.
Collapse
Affiliation(s)
- Xinru Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Nan Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yaoning Bai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yuwei Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Taoyuan Ouyang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Xu Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Xiaodi Jiang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Zichen Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Xiaoming Cai
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Honglin Tan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
8
|
Trang TNQ, Bao NTG, Trinh NTP, Thu VTH. Synergistic combination of Au-loaded and the facet of 3D SrTiO3 nanocube-based charge carrier in plasmonic photocatalysis. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Ding W, Li X, Su S, Liu Z, Cao Y, Meng L, Yuan S, Wei W, Luo M. Cationic vacancy engineering of p-TiO 2 for enhanced photocatalytic nitrogen fixation. NANOSCALE 2023; 15:4014-4021. [PMID: 36727644 DOI: 10.1039/d2nr06821d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N2 adsorption while weakening the NN bond. In this study, titanium vacancy (VTi)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of VTi-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.
Collapse
Affiliation(s)
- Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Wenhui Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| |
Collapse
|
10
|
Xie H, Li Z, Zhu J, Li H, Yang Q, Yang Y, Li C. Charge Separation between Pt Co-catalysts and Plasmonic Au in Pt-Au/C 3N 4 Photocatalysts. J Phys Chem Lett 2022; 13:11982-11989. [PMID: 36535949 DOI: 10.1021/acs.jpclett.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical processes induced by surface plasmon resonance have received great attention due to the wide spectral absorption and tunable optical property. Co-catalysts have been introduced into plasmonic-metal/semiconductor photocatalysts to inhibit the recombination of plasmon-induced carriers. However, it is unclear how the locations of co-catalysts (on the surface of plasmonic metal or the semiconductor) affect the plasmonic photocatalystic reactions. Herein, we report that Pt co-catalysts can be selectively deposited on Au nanoparticles (NPs) of Au/C3N4 photocatalysts through an atomic layer deposition method. Compared with the Pt co-catalysts exclusively on C3N4, Pt solely on Au NPs has a 4.5-fold increase in activity for plasmonic hydrogen evolution. The reduced photoluminescence intensity and prolonged photoluminescence lifetime reveal that Pt solely on Au NPs provides higher charge separation efficiency. The enhanced photocatalytic activity of Pt co-catalysts solely on Au NPs is attributable to the more efficient and direct utilization of the plasmon resonance-induced electrons and separation of electrons and holes.
Collapse
Affiliation(s)
- Huichen Xie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Shao Z, Cheng J, Zhang Y, Peng Y, Shi L, Zhong M. Comprehension of the Synergistic Effect between m&t-BiVO 4/TiO 2-NTAs Nano-Heterostructures and Oxygen Vacancy for Elevated Charge Transfer and Enhanced Photoelectrochemical Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4042. [PMID: 36432328 PMCID: PMC9692637 DOI: 10.3390/nano12224042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Through the utilization of a facile procedure combined with anodization and hydrothermal synthesis, highly ordered alignment TiO2 nanotube arrays (TiO2-NTAs) were decorated with BiVO4 with distinctive crystallization phases of monoclinic scheelite (m-BiVO4) and tetragonal zircon (t-BiVO4), favorably constructing different molar ratios and concentrations of oxygen vacancies (Vo) for m&t-BiVO4/TiO2-NTAs heterostructured nanohybrids. Simultaneously, the m&t-BiVO4/TiO2-NTAs nanocomposites significantly promoted photoelectrochemical (PEC) activity, tested under UV-visible light irradiation, through photocurrent density testing and electrochemical impedance spectra, which were derived from the positive synergistic effect between nanohetero-interfaces and Vo defects induced energetic charge transfer (CT). In addition, a proposed self-consistent interfacial CT mechanism and a convincing quantitative dynamic process (i.e., rate constant of CT) for m&t-BiVO4/TiO2-NTAs nanoheterojunctions are supported by time-resolved photoluminescence and nanosecond time-resolved transient photoluminescence spectra, respectively. Based on the scheme, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids exhibited a photodegradation rate of 97% toward degradation of methyl orange irradiated by UV-visible light, 1.14- and 1.04-fold that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20, respectively. Furthermore, the m&t-BiVO4/TiO2-NTAs-10 nanohybrids showed excellent PEC biosensing performance with a detection limit of 2.6 μM and a sensitivity of 960 mA cm-2 M-1 for the detection of glutathione. Additionally, the gas-sensing performance of m&t-BiVO4/TiO2-NTAs-10 is distinctly superior to that of m&t-BiVO4/TiO2-NTAs-5 and m&t-BiVO4/TiO2-NTAs-20 in terms of sensitivity and response speed.
Collapse
Affiliation(s)
- Zhufeng Shao
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Jianyong Cheng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yonglong Zhang
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Yajing Peng
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Libin Shi
- College of Physical Science and Technology, Bohai University, Jinzhou 121000, China
| | - Min Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, China
| |
Collapse
|
12
|
Yang B, Luo D, Wu S, Zhang N, Ye J. Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:587-616. [PMID: 36212680 PMCID: PMC9543084 DOI: 10.1080/14686996.2022.2125827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
As green and sustainable methods to produce hydrogen energy, photocatalytic and electrochemical water splitting have been widely studied. In order to find efficient photocatalysts and electrocatalysts, materials with various composition, size, and surface/interface are investigated. In recent years, constructing suitable nanoscale hetero-interfaces can not only overcome the disadvantages of the single-phase material, but also possibly provide new functionalities. In this review, we systematically introduce the fundamental understanding and experimental progress in nanoscale hetero-interface engineering to design and fabricate photocatalytic and electrocatalytic materials for water splitting. The basic principles of photo-/electro-catalytic water splitting and the fundamentals of nanoscale hetero-interfaces are briefly introduced. The intrinsic behaviors of nanoscale hetero-interfaces on electrocatalysts and photocatalysts are summarized, which are the electronic structure modulation, space charge separation, charge/electron/mass transfer, support effect, defect effect, and synergistic effect. By highlighting the main characteristics of hetero-interfaces, the main roles of hetero-interfaces for electrocatalytic and photocatalytic water splitting are discussed, including excellent electronic structure, efficient charge separation, lower reaction energy barriers, faster charge/electron/mass transfer, more active sites, higher conductivity, and higher stability on hetero-interfaces. Following above analysis, the developments of electrocatalysts and photocatalysts with hetero-structures are systematically reviewed.
Collapse
Affiliation(s)
- Baopeng Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- School of Physics and Electronics, Central South University, Changsha, Hunan, P. R. China
| | - Dingzhong Luo
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Shimiao Wu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Yuan F, Yang R, Li C, Zhang X, Sun Z. Enhanced visible-light properties of TiO2/diatomite composite over varied bismuth semiconductors modification for formaldehyde photodegradation: A comparative study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Visible Light-Induced Photocatalyst with Au/TiO2 Nanocomposites Fabricated through Pulsed Laser-Induced Photolysis. Catalysts 2022. [DOI: 10.3390/catal12050564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Gold–titanium oxide nanocomposites (Au–TiO2 NCPs) were fabricated through pulsed laser-induced photolysis (PIPS) and verified to be usable for the visible light catalytic degradation of methylene blue (MB). The PIPS method can produce a sufficient amount of NCPs quickly and has potential to be commercialized. In contrast to other studies, we clarified the optical spectrum of the light sources, including peak power, bandwidth, and total intensity used for photodegradation reactions and discovered that the photodegradation efficiency of the produced Au–TiO2 NCPs in the wavelength range of 405 nm could reach 37% in 30 min due to the charge transfer between Au and TiO2. The control experiment shows that the addition of individual Au and TiO2 nanoparticles (NPs) to an MB solution has no enhancement of degradation ability under visible light illumination. The photodegradation of Au–TiO2 NCPs can be further improved by increasing the concentrations of auric acid and TiO2 NPs in a precursor under PIPS fabrication.
Collapse
|
15
|
Lee SA, Ostovar B, Landes CF, Link S. Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods. J Chem Phys 2022; 156:064702. [DOI: 10.1063/5.0078621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Stephen A. Lee
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
| | - Christy F. Landes
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Stephan Link
- Department of Chemistry, 6100 Main Street, Houston, Texas 77005, USA
- Department of Electrical and Computer Engineering, 6100 Main Street, Houston, Texas 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| |
Collapse
|
16
|
Zhang Q, Chen X, Yang Z, Yu T, Liu L, Ye J. Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3970-3979. [PMID: 35029973 DOI: 10.1021/acsami.1c19638] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Precisely tailoring the nitrogen defects has been verified to be a promising approach for promoting the photocatalytic efficiency of C3N4. Herein, two-coordinated-N vacancies are selectively introduced into the C3N4 framework by a facile Cl- modification method, whereas its concentration can be facilely tuned by varying Cl- usage in the process of thermal polymerization. Impressively, the optimal defective C3N4 (20 mg) exhibited superior hydrogen and oxygen evolution rates of 48.2 and 21.8 μmol h-1, respectively, in photocatalytic overall water splitting and an apparent quantum efficiency of 6.9% at 420 nm, the highest of reported single-component C3N4 photocatalysts for overall water splitting. Systematic studies including XPS, DFT simulations, and NEXAFS reveal that Cl- modification preferentially facilitates the introduction of two-coordinated-N vacancies through tuning the formation energy and promotes charge carrier separation efficiency, thereby greatly enhancing the photocatalytic efficiency. This work allows for a viable approach to rationally designing defective C3N4 for efficient photocatalysis.
Collapse
Affiliation(s)
- Qiqi Zhang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Chen
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhongshan Yang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Tao Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lequan Liu
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0047, Japan
| |
Collapse
|
17
|
Zhou XT, Liu XH, Huang XJ, Ji HB. TiO 2 nanotube arrays sensitized by copper (II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126869. [PMID: 34399216 DOI: 10.1016/j.jhazmat.2021.126869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In this paper, photocatalysts based on TiO2 nanotubes (TNTs) and TiO2 nanotube arrays (TNTAs) sensitized by Cu(II) meso-tetrakis(N-ethylpyridinium-4-yl) porphyrin (CuTEPyP) were synthesized and their structures were characterized by various analytical methods. The photocatalytic activities of both composites were then investigated through degradation of 4-nitrophenol (4-NP) in aqueous solutions under visible light irradiation. It was found that CuTEPyP/TNTAs could eliminate 95% 4-NP within 4 h, which was considerably higher than the yield obtained with CuTEPyP/TNTs (56%) under the same conditions. Compared to CuTEPyP/TNTs, the improved photocatalytic activity of CuTEPyP/TNTAs can be ascribed to increased light absorption, high separation rate of photo-generated charge pairs, and efficient charge transfer. A plausible photocatalytic degradation mechanism involving hydroxyl radicals, superoxide radical anions and singlet oxygen species was also proposed. This work presents an efficient paradigm for eliminating 4-NP under visible light irradiation.
Collapse
Affiliation(s)
- Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Xing-Jiao Huang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China; School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| |
Collapse
|
18
|
Zhou Y, Qin H, Fang S, Wang Y, Li J, Mele G, Wang C. Photocatalytic hydrogen evolution over Pt–Pd dual atom sites anchored on TiO 2 nanosheets. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01314b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The defective TiO2 nanosheets (Vo-TiO2) supported dual atomic catalyst (Pt–Pd SAs/Vo-TiO2) to product hydrogen.
Collapse
Affiliation(s)
- Yaxin Zhou
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Hao Qin
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Sihan Fang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Yangyang Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| | - Jun Li
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, School of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Chen Wang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an, 710069, China
| |
Collapse
|
19
|
Han T, Chen Y, Shi H. Construction of a Bi 2MoO 6/CoO x/Au system with a dual-channel charge transfer path for enhanced tetracycline degradation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of two cocatalysts CoOx and Au constructs dual carrier transfer channels, which improves the photogenerated electron–hole pairs separation efficiency and photocatalytic performance.
Collapse
Affiliation(s)
- Tongyu Han
- School of Science, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214002, P. R. China
| | - Haifeng Shi
- School of Science, Jiangnan University, Wuxi, 214122, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
20
|
Moon KS, Park YB, Bae JM, Choi EJ, Oh SH. Visible Light-Mediated Sustainable Antibacterial Activity and Osteogenic Functionality of Au and Pt Multi-Coated TiO 2 Nanotubes. MATERIALS 2021; 14:ma14205976. [PMID: 34683564 PMCID: PMC8537070 DOI: 10.3390/ma14205976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
The visible light reactions of noble metal-based photocatalysts have been increasingly utilized to investigate their antibacterial activities. Furthermore, the photoreactions at various visible light wavelengths for specific combinations of titania nanotubes and noble metal nanoparticles have been found to promote osteogenic functionality. In this investigation, a novel multi-coating combination of noble metals (gold and platinum) on titania nanotubes was assessed using plasmonic photocatalysis and low-level laser therapy at 470 and 600 nm. The results showed that this coating on the nanotubes promoted antibacterial activity and osteogenic functionality. The order in which the gold and platinum coatings were layered onto the titania nanotubes strongly affected the osteogenic performance of the human mesenchymal stem cells. These results have identified a new approach for the development of efficient novel combinations of noble metal nanoparticles and titania nanotubes with visible light responses, sustainable antimicrobial activity, and osteogenic functionality.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Young-Bum Park
- Department of Prosthodontics, School of Dentistry, Yonsei University, Seoul 03722, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Wonkwang University, Iksan 54538, Korea
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| | - Seung-Han Oh
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| |
Collapse
|
21
|
Emara MM, Ahmed SK, El-Dissouky A. Domestic microwave assisted one-step co-precipitation of Ag–CuO nanocomposite of Cu/Ag ratio optimized for photocatalysis and comparison with blending CuO with Ag nanoparticles. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ag–CuO metal–semiconductor nanocomposite (NC) is an important component in various nanomaterial-based applications. Several approaches have been studied to facilitate its synthesis. However, most of them encounter some drawbacks. In the present work, we show the synthesis of Ag–CuO NCs through one-pot co-precipitation with the aid of simple starting chemicals and measures including metal nitrates, hexamine, agar, and domestic microwave heating. Photocatalyzed degradation of Congo Red in addition to the structural and optical characteristics show that this method is successful in production of the Schottky barrier in Ag–CuO NCs with improved photocatalytic activity (PCA). Changing the Cu content shows that the NC is not successfully formed at low Cu mol%. Consequently, the PCA of Ag–CuO of low Cu (2%–6%) lies within 4.5 × 10−4 – 5.1 × 10−4 min−1, which is even lower than those of plain Ag and CuO nanoparticles (6.0 × 10−4 – 8.1 × 10−4 min−1, respectively). 60 mol% was the optimum Cu content with the highest PCA (18.8 × 10−4 min−1). Blending plain Ag and CuO nanoparticles to mimic the co-precipitated 60 mol% Ag–CuO showed very low PCA, even lower than the plain Ag and CuO, which once again confirms the efficiency of the simple one-pot co-precipitation approach in producing Ag–CuO with the Schottky barrier and promoted PCA.
Collapse
Affiliation(s)
- Mahmoud Mohamed Emara
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| | - Shaimaa Khamis Ahmed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| |
Collapse
|
22
|
Su L, Luo L, Wang J, Song T, Tu W, Wang ZJ. Lamellar flower-like porous MoS 2 as an efficient cocatalyst to boost photocatalytic hydrogen evolution of CdS. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02100h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A lamellar flower-like porous MoS2 cocatalyst with the synergistic role of porous and lamellar structures was configured to boost photocatalytic performance of CdS in hydrogen evolution reaction.
Collapse
Affiliation(s)
- Lei Su
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lulu Luo
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Junwen Wang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Tao Song
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Weixia Tu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhou-jun Wang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
23
|
Yang Z, Zhang Q, Ren L, Chen X, Wang D, Liu L, Ye J. Efficient photocatalytic conversion of CH 4 into ethanol with O 2 over nitrogen vacancy-rich carbon nitride at room temperature. Chem Commun (Camb) 2021; 57:871-874. [PMID: 33367327 DOI: 10.1039/d0cc07397k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A record ethanol production rate of 281.6 μmol g-1 h-1 for the photocatalytic conversion of methane over nitrogen vacancy-rich carbon nitride at room temperature was achieved. Systematic studies demonstrate that the CH4 was activated by the highly reactive ˙OH radicals generated, via H2O2, from the photo-reduction of O2 with H2O.
Collapse
Affiliation(s)
- Zhongshan Yang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Qiqi Zhang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Liteng Ren
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xin Chen
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Defa Wang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lequan Liu
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Japan
| |
Collapse
|
24
|
Moon KS, Choi EJ, Bae JM, Park YB, Oh S. Visible Light-Enhanced Antibacterial and Osteogenic Functionality of Au and Pt Nanoparticles Deposited on TiO 2 Nanotubes. MATERIALS 2020; 13:ma13173721. [PMID: 32842504 PMCID: PMC7503458 DOI: 10.3390/ma13173721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
This study aimed at evaluating the visible light mediated antimicrobial and osteogenic applications of noble metal, such as gold (Au) and platinum (Pt) coated titania (TiO2) nanotubes (NTs). In this study, the Au and Pt nanoparticles (NPs) were deposited on anodized 100 nm TiO2 NTs by ion plasma sputtering. The Au and Pt NPs were mainly deposited on the top surface layer of TiO2 NTs and showed light absorbance peaks around the 470 and 600 nm visible light region used in this study, as seen from the surface characterization. From the results of antibacterial activity test, Au and Pt NPs that were deposited on TiO2 NTs showed excellent antibacterial activity under 470 nm visible light irradiation due to the plasmonic photocatalysis based on the localized surface plasmon resonance effect of the Au and Pt NPs. In addition, alkaline phosphate activity test and quantitative real-time PCR assay of osteogenic related genes resulted that these NPs promoted the osteogenic functionality of human mesenchymal stem cells (hMSCs) under 600 nm visible light irradiation, because of the synergic effect of the photothermal scattering of noble metal nanoparticles and visible light low-level laser therapy (LLLT). Therefore, the combination of noble metal coated TiO2 NTs and visible light irradiation would be expected to perform permanent antibacterial activity without the need of an antibacterial agent besides promoting osteogenic functionality.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University School of Dentistry, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, Wonkwang University School of Dentistry, Iksan 54538, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University School of Dentistry, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Young-Bum Park
- Department of Prosthodontics, Yonsei University School of Dentistry, Seoul 03722, Korea
- Correspondence: (Y.-B.P.); (S.O.); Tel.: +82-2-2228-3164 (Y.-B.P.); +82-63-850-6982 (S.O.)
| | - Seunghan Oh
- Department of Dental Biomaterials and the Institute of Biomaterial and Implant, Wonkwang University School of Dentistry, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
- Correspondence: (Y.-B.P.); (S.O.); Tel.: +82-2-2228-3164 (Y.-B.P.); +82-63-850-6982 (S.O.)
| |
Collapse
|
25
|
Jun H, Choi S, Lee JB, Nam YS. Plasmonic Heterostructure Functionalized with a Carbene-Linked Molecular Catalyst for Sustainable and Selective Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33817-33826. [PMID: 32638585 DOI: 10.1021/acsami.0c09517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybridization of homogeneous catalytic sites with a photoelectrode is an attractive approach to highly selective and tunable photocatalysis using heterogeneous platforms. However, weak and unclear surface chemistry often leads to the dissociation and irregular orientation of catalytic centers, restricting long-term usability with high selectivity. Well-defined and robust ligands that can persist under harsh photocatalytic conditions are essential for the success of hybrid-type photocatalysis. Here, we introduce N-heterocyclic carbene as a durable linker for the immobilization of a Rubpy complex-based CO2 reduction site (cis-dichloro-(4,4'-diphosphonato-Rubpy)(p-cymene) (RuCY)) on a p-type gallium nitride/gold nanoparticle (p-GaN/AuNP) heterostructure. The p-GaN/AuNPs/RuCY photocathode was coupled with a hematite photoanode to drive photoelectrochemical CO2 reduction along with water oxidation. Highly selective CO2 reduction into formates, up to 98.2%, was achieved utilizing plasmonic hot electrons accumulated on AuNPs. The turnover frequency was 1.46 min-1 with a faradic efficiency of 96.8% under visible light illumination (243 mW·cm-2). This work demonstrates that the N-heterocyclic carbene-mediated surface functionalization with homogeneous catalytic sites is a promising approach to increase the sustainability and usability of hybrid catalysts.
Collapse
|
26
|
Xu X, Yang N, Wang P, Wang S, Xiang Y, Zhang X, Ding X, Chen H. Highly Intensified Molecular Oxygen Activation on Bi@Bi 2MoO 6 via a Metallic Bi-Coordinated Facet-Dependent Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1867-1876. [PMID: 31840502 DOI: 10.1021/acsami.9b17623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of the semimetal/semiconductor composite interface is widely used to promote the O2 molecule adsorption and charge transfer for boosting solar-driven molecular oxygen activation (MOA). Herein, a Bi@Bi2MoO6 heterostructure is fabricated via a two-step wet chemical method as a typical photocatalyst to investigate the underlying mechanism of Bi-coordinated facet-dependent MOA under visible-light illumination. Density functional theory and systematical characterization methods reveal the distinct charge transfer and O2 activation processes on the surface of Bi nanoparticle-deposited Bi2MoO6 nanosheets with different facets exposed. By virtue of a particular and efficient [Bi2O2]2+ → Bi → MoO42- interfacial charge-transfer channel, Bi deposited on the (001) facet of Bi2MoO6 can observably intensify MOA, thereby giving birth to more generation of reactive oxygen species and endowing the Bi@Bi2MoO6 with excellent photocatalytic performance in sodium pentachlorophenate (NaPCP) removal. The decomposition pathway of NaPCP is also proposed based on the intermediate determination and mineralization analysis. This work provides deep insights into the mechanism of facet-dependent MOA over a semimetal-semiconductor system and also sheds light on designing effective molecular oxygen-activated interface for environmental remediation.
Collapse
|
27
|
Li C, Fu M, Wang Y, Liu E, Fan J, Hu X. In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00107d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Co2P as co-catalyst was firstly loaded on the 2D microporous structure RP surface by in situ hydrothermal method.
Collapse
Affiliation(s)
- Chenyang Li
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Mian Fu
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yan Wang
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Enzhou Liu
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Jun Fan
- School of Chemical Engineering
- Northwest University
- Xi'an 710069
- P. R. China
| | - Xiaoyun Hu
- School of Physics
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
28
|
Zhou X, Qian K, Zhang Y, Li D, Wei Z, Wang H, Ye R, Liu J, Ye B, Huang W. Tuning the size of photo-deposited metal nanoparticles via manipulating surface defect structures of TiO 2 nanocrystals. Chem Commun (Camb) 2020; 56:1964-1967. [PMID: 31957770 DOI: 10.1039/c9cc09642f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report a new method for controlling photo-deposited metal nanoparticle size by manipulating surface defect structures of TiO2 nanocrystals. Our results demonstrate that the isolated oxygen vacancy could serve as an electron trapper while the oxygen vacancy cluster could act as an electron-hole recombination site in the photo-deposition process.
Collapse
Affiliation(s)
- Xian Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion, and Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hao X, Guo Q, Li M, Jin Z, Wang Y. TiO2 as an interfacial-charge-transfer-bridge to construct eosin Y-mediated direct Z-scheme electron transfer over a Co9S8 quantum dot/TiO2 photocatalyst. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00893a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel eosin Y-mediated Z-scheme Co9S8 QDs/TiO2 photocatalytic system was constructed and a high AQE of 37.4% is obtained at 470 nm for 20%Co9S8/TiO2 heterojunction.
Collapse
Affiliation(s)
- Xuqiang Hao
- School of Chemistry and Chemical Engineering
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
- Key Laboratory for Chemical Engineering and Technology
- State Ethnic Affairs Commission
- North Minzu University
| | - Qingjie Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan
- PR China
| | - Mei Li
- School of Chemistry and Chemical Engineering
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
- Key Laboratory for Chemical Engineering and Technology
- State Ethnic Affairs Commission
- North Minzu University
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering
- Ningxia Key Laboratory of Solar Chemical Conversion Technology
- Key Laboratory for Chemical Engineering and Technology
- State Ethnic Affairs Commission
- North Minzu University
| | - Ying Wang
- School of Chemistry and Chemical Engineering
- Eco-materials and Renewable Energy Research Center (ERERC)
- National Laboratory of Solid State Microstructures
- Kunshan Innovation Institute of Nanjing University
- Nanjing University
| |
Collapse
|