1
|
Chen F, Zhang S, Guan P, Xu Y, Wan T, Lin CH, Li M, Wang C, Chu D. High-Performance Flexible Graphene Oxide-Based Moisture-Enabled Nanogenerator via Multilayer Heterojunction Engineering and Power Management System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304572. [PMID: 37528703 DOI: 10.1002/smll.202304572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Indexed: 08/03/2023]
Abstract
Recently, there has been a surge of interest in nanogenerators within the scientific community because their immense potential for extracting energy from the surrounding environment. A promising approach involves utilizing ambient moisture as an energy source for portable devices. In this study, moisture-enabled nanogenerators (MENGs) are devised by integrating heterojunctions of graphene oxide (GO) and reduced graphene oxide (rGO). Benefiting from the unique structure, a larger ion concentration gradient is achieved as well as a lower resistance, which leads to enhanced electricity generation. The resulting MENG generates a desirable open-circuit voltage of 0.76 V and a short-circuit current density of 73 µA cm-2 with a maximum power density of 15.8 µW cm-2. Notably, the designed device exhibits a high voltage retention of more than 90% after 3000 bending cycles, suggesting a high potential for flexible applications. Moreover, a large-scale integrated MENG array is developed by incorporating flexible printed circuit technology and connecting it to a power management system. This integrated system can provide ample energy to operate an electronic ink display and drive a heart rate sensor for health monitoring. The outcomes of this research present a novel framework for advancing next-generation self-powered flexible devices, thereby demonstrating significant promise for future wearable electronics.
Collapse
Affiliation(s)
- Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yeqing Xu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollogong, 2500, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollogong, 2500, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
2
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
3
|
Xu T, Ding X, Cheng H, Han G, Qu L. Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209661. [PMID: 36657097 DOI: 10.1002/adma.202209661] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/14/2023] [Indexed: 05/12/2023]
Abstract
Water utilization is accompanied with the development of human beings, whereas gaseous moisture is usually regarded as an underexploited resource. The advances of highly efficient hygroscopic materials endow atmospheric water harvesting as an intriguing solution to convert moisture into clean water. The discovery of hygroelectricity, which refers to the charge buildup at a material surface dependent on humidity, and the following moisture-enabled electric generation (MEG) realizes energy conversion and directly outputs electricity. Much progress has been made since then to optimize MEG performance, pushing forward the applications of MEG into a practical level. Herein, the evolvement and development of MEG are systematically summarized in a chronological order. The optimization strategies of MEG are discussed and comprehensively evaluated. Then, the latest applications of MEG are presented, including high-performance powering units and self-powered devices. In the end, a perspective on the future development of MEG is given for inspiring more researchers into this promising area.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoteng Ding
- College of Life Sciences, Qingdao University, Qingdao, 266071, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 237016, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Yang Y, Wang J, Wang Z, Shao C, Han Y, Wang Y, Liu X, Sun X, Wang L, Li Y, Guo Q, Wu W, Chen N, Qu L. Moisture-Electric-Moisture-Sensitive Heterostructure Triggered Proton Hopping for Quality-Enhancing Moist-Electric Generator. NANO-MICRO LETTERS 2023; 16:56. [PMID: 38108916 PMCID: PMC10728039 DOI: 10.1007/s40820-023-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 12/19/2023]
Abstract
Moisture-enabled electricity (ME) is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression. However, ME can be unreliable in numerous applications due to its sluggish response to moisture, thus sacrificing the value of fast energy harvesting and highly accurate information representation. Here, by constructing a moisture-electric-moisture-sensitive (ME-MS) heterostructure, we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO, which modulates the heterostructure built-in interfacial potential, enables quick response (0.435 s), an unprecedented ultra-fast response rate of 972.4 mV s-1, and a durable electrical signal output for 8 h without any attenuation. Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator, which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
Collapse
Affiliation(s)
- Ya'nan Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhe Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Changxiang Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuyang Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoting Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Xiaotong Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Liru Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Wenpeng Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China.
| | - Liangti Qu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
5
|
Santos LP, Lermen D, Yoshimura RG, da Silva BL, Galembeck A, Burgo TAL, Galembeck F. Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5840-5850. [PMID: 37053576 DOI: 10.1021/acs.langmuir.3c00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.
Collapse
Affiliation(s)
- Leandra P Santos
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Diana Lermen
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Rafael Galiza Yoshimura
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | | | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Fernando Galembeck
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| |
Collapse
|
6
|
Yang L, Zhang L, Sun D. Harvesting Electricity from Atmospheric Moisture by Engineering an Organic Acid Gradient in Paper. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53615-53626. [PMID: 36437545 DOI: 10.1021/acsami.2c12777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Moisture-activated electric generators (MEGs) that harvest clean energy from atmospheric humidity offer exciting opportunities for upgraded energy conversions. However, it is challenging to obtain MEGs that are both easy to fabricate and of high output power, due to the requirement for particular functional materials and the cumbersome manufacturing process. Herein, a simple and general method is adopted to prepare MEGs with chemically gradient structures. As a specific example, a gradient distribution of citric acid was successfully constructed inside an A4 printer paper by asymmetric drying, which can generate a continuous voltage of tens of millivolts by ambient humidity, and even to volts (275 mV and 7.6 μA cm-2) under asymmetric humidity stimulation, and the maximum power density output was 2.1 μW cm-2. The driving force behind this energy conversion is a self-maintained ionic gradient created within the paper by the asymmetric ionization of gradient organic acids when exposed to gradient or nongradient humid air. This work broadens the class of materials and possibilities for the rapid development of MEGs, shedding new light on the revolution of generators that harvest green and sustainable energy for power generation.
Collapse
Affiliation(s)
- Luyu Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, China
| |
Collapse
|
7
|
Moist-electric films based on asymmetric distribution of sodium alginate oxygen-containing functional groups. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Guan P, Zhu R, Hu G, Patterson R, Chen F, Liu C, Zhang S, Feng Z, Jiang Y, Wan T, Hu L, Li M, Xu Z, Xu H, Han Z, Chu D. Recent Development of Moisture-Enabled-Electric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204603. [PMID: 36135971 DOI: 10.1002/smll.202204603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.
Collapse
Affiliation(s)
- Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Renbo Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Guangyu Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Robert Patterson
- Australian Centre for Advanced Photovoltaics, School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhemi Xu
- Chemistry and Material Engineering College, Beijing Technology and Business University, Beijing, 100048, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Zhaojun Han
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
9
|
Eun J, Jeon S. Performance Enhancement of Moisture-driven Power Generators by Photofragmentation of Inorganic Salt Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45289-45295. [PMID: 36173290 DOI: 10.1021/acsami.2c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We developed a novel method based on the photofragmentation of inorganic salt particles for improving the moisture-electric energy transformation performance of a moisture-driven power generator (MPG). Infrared laser irradiation on cellulose nanofiber films (CNFs) prepared by a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation of bleached pulp induced a photothermal conversion of CNFs to porous graphitic carbon films (GCFs) with the catalyst-derived Na2O2 particles. Since the laser beam was focused on the top surface of CNF, the gradients of the photothermal conversion of CNFs and Na2O2 concentration were created along the thickness direction. Subsequent irradiation with ultraviolet (UV) light induced the photofragmentation of the micrometer-sized Na2O2 particles into smaller ones, which increased the surface area of the salt particles in contact with the GCFs and consequently increased the number of effective dissociable charge carriers. When the GCF was exposed to moisture, the dissociated sodium ions migrated along the preformed concentration gradient, producing continuous outputs of current and voltage. At 90% relative humidity, the maximum voltage and current density outputs of the MPG increased from 0.91 V and 18.7 μA/cm2 before UV irradiation to 1.10 V and 56.2 μA/cm2 after UV irradiation, respectively. Additionally, we demonstrated that a green light-emitting diode could be turned on without capacitors or rectifiers during normal breathing while wearing a face mask with three GCF arrays attached (each 3 mm × 3 mm × 0.1 mm in size).
Collapse
Affiliation(s)
- Jakyung Eun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| |
Collapse
|
10
|
Komazaki Y, Kanazawa K, Nobeshima T, Hirama H, Watanabe Y, Suemori K, Uemura S. Mathematical Modeling of Hygroelectric Cell Based on Deliquescent Electrolyte Solution Partitioned by Cation-Exchange Membrane. CHEM LETT 2022. [DOI: 10.1246/cl.210497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Komazaki
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenji Kanazawa
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Taiki Nobeshima
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hirotada Hirama
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuichi Watanabe
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kouji Suemori
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sei Uemura
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa II Campus, University of Tokyo, 6-2-3 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
11
|
Lin Y, Zhang Q, Deng Y, Wu Q, Ye XP, Wang S, Fang G. Fabricating Graphene and Nanodiamonds from Lignin by Femtosecond Laser Irradiation. ACS OMEGA 2021; 6:33995-34002. [PMID: 34926947 PMCID: PMC8675041 DOI: 10.1021/acsomega.1c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
This study demonstrates a new transformation path from lignin to graphene and nanodiamonds (NDs) by femtosecond laser writing in air at ambient temperature and pressure. Graphene nanoribbon rolls were generated at lower laser power. When the laser power was high, NDs could be obtained apart from graphene and onion-like carbon intermediates. These structures were confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The effects of laser power and laser writing speed on the structure of laser-induced patterns were investigated. The results show that the laser power was more important than the writing speed for the synthesis of carbon nanoparticles, and high laser power contributed to enhanced electrically conductive performance. Therefore, the direct laser irradiation technique leads a simple, low-cost, and sustainable way to synthesize graphene and NDs and is promising for the fabrication of sensors and electric devices.
Collapse
Affiliation(s)
- Yan Lin
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
| | - Qijun Zhang
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
- Institute
of Urban Environmental, Chinese Academy
of Sciences, 1799 Jimei
Road, Xiamen 361021, PR China
| | - Yongjun Deng
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
| | - Qiang Wu
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
- School
of Engineering, Zhejiang A&F University, 88 Huangcheng North Road, Hangzhou 311300, PR China
| | - Xiaofei P. Ye
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Siqun Wang
- Center
for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, Tennessee 37996, United States
| | - Guigan Fang
- Institute
of Chemical Industry of Forest Products, CAF; National Engineering
Lab for Biomass Chemical Utilization; Key Lab of Biomass Energy and
Material, Jiangsu Province; Co-Innovation Center of Efficient Processing
and Utilization of Forest Resources, Jiangsu Province, No. 16, 5th Suojin, Nanjing 210042, PR China
| |
Collapse
|
12
|
Wang H, Sun Y, He T, Huang Y, Cheng H, Li C, Xie D, Yang P, Zhang Y, Qu L. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. NATURE NANOTECHNOLOGY 2021; 16:811-819. [PMID: 33903750 DOI: 10.1038/s41565-021-00903-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Environmentally adaptive power generation is attractive for the development of next-generation energy sources. Here we develop a heterogeneous moisture-enabled electric generator (HMEG) based on a bilayer of polyelectrolyte films. Through the spontaneous adsorption of water molecules in air and induced diffusion of oppositely charged ions, one single HMEG unit can produce a high voltage of ~0.95 V at low (25%) relative humidity (RH), and even jump to 1.38 V at 85% RH. A sequentially aligned stacking strategy is created for large-scale integration of HMEG units, to offer a voltage of more than 1,000 V under ambient conditions (25% RH, 25 °C). Using origami assembly, a small section of folded HMEGs renders an output of up to 43 V cm-3. Such integration devices supply sufficient power to illuminate a lamp bulb of 10 W, to drive a dynamic electronic ink screen and to control the gate voltage for a self-powered field effect transistor.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yilin Sun
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yaxin Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| | - Chun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Dan Xie
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Pengfei Yang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
13
|
Zhao X, Feng J, Xiao M, Shen D, Tan C, Song X, Feng J, Duley WW, Zhou YN. A Simple High Power, Fast Response Streaming Potential/Current-Based Electric Nanogenerator Using a Layer of Al 2O 3 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27169-27178. [PMID: 34081434 DOI: 10.1021/acsami.1c04290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Harvesting energy from ambient moisture and natural water sources is currently of great interest due to the need for standalone self-powered nano/micro-systems. In this work, we report on the development of a cost-effective nanogenerator based on a carbon paper-Al2O3 nanoparticle layer-carbon paper (CAC) sandwich structure, where the 3D Al2O3 layer is deposited via vacuum filtration. This type of device can produce an open-circuit voltage (UOC) of up to 4 V and a short-circuit current (ISC) of ∼18 μA with only an 8 μL water droplet applied. To our knowledge, this is the highest voltage yet reported from a single moisture/water-induced electricity nanogenerator using solid oxides and carbon-based materials. A remarkable output power of 14.8 μW can be reached with an optimized resistive load. An LED with a working voltage of 3-3.2 V can operate for a short time with the power from a single CAC device exposed to one 8 μL water droplet. Furthermore, a CAC generator adsorbing as little as 2 μL water droplets every 3 min can also give a UOC of 3.63 V. We show that CAC devices provide a robust electrical output over more than 200 wet-dry cycles without any deterioration in performance. These units demonstrate much promise as cost-effective electricity generators for harvesting energy from natural sources like rainwater, tap water, snow runoff, and dew. The response time of CAC devices can be as fast as 10-100 ms, making them ideal for applications as self-powered water detectors. The generation of power in this device arises from the streaming current. To assist in the optimization of these devices, we have analyzed how their response is related to such factors as layer thickness, time interval between application of water droplets, and the volume of each water droplet.
Collapse
Affiliation(s)
- Xiaoye Zhao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jiayun Feng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ming Xiao
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Daozhi Shen
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Caiwang Tan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoguo Song
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jicai Feng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Walter W Duley
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Kulyk B, Silva BFR, Carvalho AF, Silvestre S, Fernandes AJS, Martins R, Fortunato E, Costa FM. Laser-Induced Graphene from Paper for Mechanical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10210-10221. [PMID: 33619955 DOI: 10.1021/acsami.0c20270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to synthesize laser-induced graphene (LIG) on cellulosic materials such as paper opens the door to a wide range of potential applications, from consumer electronics to biomonitoring. In this work, strain and bending sensors fabricated by irradiation of regular filter paper with a CO2 laser are presented. A systematic study of the influence of the different process parameters on the conversion of cellulose fibers into LIG is undertaken, by analyzing the resulting morphology, structure, conductivity, and surface chemistry. The obtained material is characterized by porous electrically conductive weblike structures with sheet resistances reaching as low as 32 Ω sq-1. The functionality of both strain (gauge factor of ≈42) and bending sensors is demonstrated for different sensing configurations, emphasizing the versatility and potential of this material for low-cost, sustainable, and environmentally friendly mechanical sensing.
Collapse
Affiliation(s)
- Bohdan Kulyk
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Beatriz F R Silva
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Alexandre F Carvalho
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sara Silvestre
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - António J S Fernandes
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Florinda M Costa
- i3N, Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Shen D, Duley WW, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou YN. Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003722. [PMID: 33185944 DOI: 10.1002/adma.202003722] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Indexed: 05/24/2023]
Abstract
The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.
Collapse
Affiliation(s)
- Daozhi Shen
- Institute for Quantum Computing, Department of Chemistry, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Ming Xiao
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiayun Feng
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Guisheng Zou
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|