1
|
Zhang Z, Chen Y, Wang D, Lin Y, Li K, Fan G, Li F. Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61224-61238. [PMID: 39469766 DOI: 10.1021/acsami.4c09430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O2 from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.
Collapse
Affiliation(s)
- Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yuyang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Defu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
- Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| |
Collapse
|
2
|
Zhu B, Zhao S, Guo J, Song K, He J, Liu S, Zhou X. Enhancing the mechanical properties of polylactic acid (PLA) composite films using Pueraria lobata root microcrystalline cellulose. Int J Biol Macromol 2024; 279:135579. [PMID: 39270900 DOI: 10.1016/j.ijbiomac.2024.135579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
To enhance the mechanical properties of polylactic acid (PLA) material, the PLA-based composite films are prepared by using Pueraria lobata (Willd.) Ohwi root microcrystalline cellulose (PRMCC) treated with 3-aminopropyl triethoxysilane (KH550) silane coupling agent as the dispersed phase through solvent casting method. The effects of the concentrations of PRMCC and KH550 as well as the KH550 pretreating condition (ethanol concentration) on the tensile properties of PLA-based composite films are investigated. The PLA-based composite film treated with 5 wt% PRMCC and 18 wt% KH550 (pretreated by 90 % EtOH) exhibits the greatest performance. Its elongation at break value is detected to be 4.0 %, 1.6 times as large as that of pure PLA film. The water absorption of the as-prepared PLA-based composite film is reduced from 0.49 % of the unmodified PLA/PRMCC film to 0.12 %. Moreover, the modified PLA-based composite film has a hydrophobic surface and exhibits good thermal stability. Compared with pure PLA film, the modified PLA-based composite film exhibits improved UV shielding performance with acceptable transparency. Furthermore, after adding poly(butylene adipate-co-terephthalate) (PBAT) to the composite system, the elongation at break of the PLA-based composite film is up to 7.2 %. This research can provide theoretical guidance for enhancing the performance of PLA products.
Collapse
Affiliation(s)
- Borui Zhu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Shuang Zhao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; Zhangjiajie College, Zhangjiajie 427000, China
| | - Jie Guo
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Ke Song
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Jian He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Shima Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Xianwu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China; Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China.
| |
Collapse
|
3
|
Dowbysz A, Samsonowicz M, Kukfisz B, Koperniak P. Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:852. [PMID: 38399103 PMCID: PMC10890331 DOI: 10.3390/ma17040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
For many years, efforts have been made to reduce the flammability of unsaturated polyester resins (UPRs), which are often used in the rail, shipbuilding, and construction industries. Without modification, they often fail to meet fire safety standards. Despite a rich history of flame retardants (FRs) applied to UPRs, researchers seek new solutions that will provide lower flammability and smoke density, as well as attaining a lower environmental impact from the composites. The objective of the study is to highlight the most important recent research on promising nano FRs in order to promote their further development. Mechanisms of action of several groups of nano FRs, such as clay-based, carbon-based, transition metal compounds, layered double hydroxides, polyhedral oligomeric silsesquioxanes, and others, including bio-based, have been studied. Particular emphasis has been laid on nano FRs applied to UPRs, and their influences on thermal stability, flammability, and mechanical properties. Moreover, the environmental impact and toxicity of nano FRs have been discussed. Results have proved that nano FRs applied at low loadings may significantly improve thermal stability, with a simultaneous increase or only a slight decrease in mechanical properties. However, attention on related environmental issues has highlighted the necessity of carefully selecting novel nano FRs.
Collapse
Affiliation(s)
- Adriana Dowbysz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Bialystok, Poland;
| | - Bożena Kukfisz
- Institute of Safety Engineering, Fire University, Slowackiego Street 52/54, 01-629 Warsaw, Poland;
| | - Piotr Koperniak
- Lukasiewicz Research Network—Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland;
| |
Collapse
|
4
|
Dou Y, Ju A, Zhong Z, Huo Y, Yao W. Flame-Retardant and Transparent Unsaturated Polyester Based on P/N Liquid Flame Retardants and Modified Halloysite Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:761. [PMID: 38591628 PMCID: PMC10856195 DOI: 10.3390/ma17030761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 04/10/2024]
Abstract
Unsaturated polyester resin (UPR) with excellent flame retardant is mainly obtained by adding large amounts of flame retardants, usually at the expense of mechanical properties. In this work, a reactive flame retardant containing phosphorus and nitrogen (DOPO-N) was successfully synthesized and incorporated in UPR as a crosslinker. The mechanical and flame-retardant properties of UPR composites were enhanced. UPR/30DOPO-N passed a UL-94 V-1 rating with a limiting oxygen index (LOI) of 30.8%. The tensile strength of UPR/30DOPO-N increased by 24.4%. On this basis, a small amount of modified HNTs (VHNTs) was added to further improve the flame-retardant properties of the composite. With the introduction of 3 wt% VHNTs, the composite passed the UL-94 V-0 rating. The peak of heat release rate (PHRR) and total heat release (THR) of it decreased by 60.7% and 48.3%, respectively. Moreover, the detailed flame-retarding mechanism of DOPO-N and VHNTs was investigated by thermogravimetric infrared spectroscopy (TG-IR), Raman spectra, and X-ray photoelectron spectroscopy (XPS). It was found that DOPO-N played a role in quenching the flame in the gas phase and cooperated with VHNTs to enhance the barrier effect in the condensed phase.
Collapse
Affiliation(s)
| | | | | | | | - Weiguo Yao
- The Ministry of Education Key Laboratory of Automotive Material, College of Materials Science and Engineering, Jilin University, Changchun 130025, China; (Y.D.); (A.J.); (Z.Z.); (Y.H.)
| |
Collapse
|
5
|
Hu SL, Li YM, Hu WJ, Hobson J, Wang DY. Strategic design unsaturated polyester resins composites with excellent flame retardancy and high tensile strength. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Rashid MA, Liu W, Wei Y, Jiang Q. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2080559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Muhammad Abdur Rashid
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Yi Wei
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
7
|
Lyu P, Hou Y, Wang R, Ma M, Chen Y, Xing Q, Ma Y, Wang S, Wu Y, Huang W. Synthesis of
ZnFe
2
O
4
@
Mg‐Al‐SDBS LDH
composites for regulating heat and fire safety properties of polyurea. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Lyu
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Yongbo Hou
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Rongzhen Wang
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
- Xinjiang Production and Construction Corps, Second Division Twenty‐second Mission Economic Development Office Xinjiang People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Yan Chen
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Qiyang Xing
- Tengzhou Comprehensive Inspection and Testing Center Tengzhou People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering Shandong University of Science and Technology Qingdao People's Republic of China
| | - Shuang Wang
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Yuefeng Wu
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| | - Weibo Huang
- School of Civil Engineering Qingdao University of Technology Qingdao People's Republic of China
| |
Collapse
|
8
|
Chu F, Zhou X, Mu X, Zhu Y, Cai W, Zhou Y, Xu Z, Zou B, Mi Z, Hu W. An insight into pyrolysis and flame retardant mechanism of unsaturated polyester resin with different valance states of phosphorus structures. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Abdur Rashid M, Liu W, Wei Y, Jiang Q. Review of reversible dynamic bonds containing intrinsically flame retardant biomass thermosets. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Sun D, Li J, Shen T, An S, Qi B, Song YF. In Situ Construction of MIL-100@NiMn-LDH Hierarchical Architectures for Highly Selective Photoreduction of CO 2 to CH 4. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16369-16378. [PMID: 35354278 DOI: 10.1021/acsami.2c02888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered double hydroxides (LDHs) are considered a promising catalyst for photocatalytic CO2 reduction due to their broad photoresponse, facile channels for electron transfer, and the presence of abundant defects. Herein, we reported for the first time the fabrication of a novel photocatalyst MIL-100@NiMn-LDH with a hierarchical architecture by selecting MIL-100 (Mn) as a template to provide Mn3+ for the in situ growth of ultrathin NiMn-LDH nanosheets. Moreover, the in situ growth strategy exhibited excellent universality toward constructing MIL-100@LDH hierarchical architectures. When applied in the photocatalytic CO2 reduction reaction, the as-prepared MIL-100@NiMn-LDH exhibited excellent CH4 selectivity of 88.8% (2.84 μmol h-1), while the selectivity of H2 was reduced to 1.8% under visible light irradiation (λ > 500 nm). Such excellent catalytic performance can be attributed to the fact that (a) the MIL-100@NiMn-LDH hierarchical architectures with exposed catalytic active sites helped to enhance the CO2 adsorption and activation and (b) the presence of rich oxygen vacancies and coordinately unsaturated metal sites in MIL-100@NiMn-LDH that optimized the band gap and accelerated the separation/transport of photoinduced charges.
Collapse
Affiliation(s)
- Danzhong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Jiao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China
| |
Collapse
|
11
|
Song D, He C, Zhang G, Wang Y, Liang Z, Jiang Z, Ma S. The Effect of a Polymeric Flame Retardant Containing Phosphorus–Sulfur–Silicon and a Caged Group on Unsaturated Polyester Resin. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Zhang S, Chu F, Xu Z, Zhou Y, Qiu Y, Qian L, Hu Y, Wang B, Hu W. The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant. J Colloid Interface Sci 2022; 606:768-783. [PMID: 34419816 DOI: 10.1016/j.jcis.2021.08.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Herein, three different phosphorus-containing compounds (methyl phosphoryl dichloride, phenyl phosphoryl dichloride and phenyl dichlorophosphate) were reacted with 2-aminobenzothiazole respectively, and a series of synergistic flame retardants with phosphorus, nitrogen and sulfur elements were synthesized, named MPBT, PPBT and POBT respectively. Then, they were added to prepare flame-retardant flexible polyurethane foam (FPUF). Through the analysis of thermal stability, pyrolysis, heat release and smoke release behavior, the influence of different phosphorus-containing structures on the flame-retardant performance of FPUF was studied, and their flame-retardant mechanism was explored in detail. Among them, MPBT had the highest flame retardant efficiency with the same addition amount (10 wt%). The limiting oxygen index (LOI) value of PU/10.0% MPBT reached 22.5 %, and it successfully passed the vertical burning test. Subsequently, the addition amount of MPBT was increased and the best comprehensive performance of flame-retardant FPUF was explored. The results showed that the LOI value of PU/15.0% MPBT was increased to 23.5%. As for PU/15.0% MPBT, the peak heat release rate (PHRR) was 453 KW/m2, which was reduced by 46.64 %; and the flame retardancy index (FRI) value was also increased to 6.88. At the same time, the mechanical properties of flame-retardant FPUF were studied. The tensile strength of PU/15.0% MPBT reached 170 KPa, and the permanent deformation of FPUF/10% MPBT was only 4 %, showing its excellent resilience. The above results show that this phosphorus-containing element hybrid synergistic flame retardant (MPBT) has a very good application prospect in the field of flame-retardant polymer materials.
Collapse
Affiliation(s)
- Shenghe Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhoumei Xu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yong Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Lijun Qian
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
13
|
Du Y, Zhao G, Shi G, Wang Y, Li W, Ren S. Effect of crosslink structure on mechanical properties, thermal stability and flame retardancy of natural flavonoid based epoxy resins. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Long Chopped Glass Fiber Reinforced Low-Density Unsaturated Polyester Resin under Different Initiation. MATERIALS 2021; 14:ma14237307. [PMID: 34885469 PMCID: PMC8658567 DOI: 10.3390/ma14237307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also to the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.
Collapse
|
15
|
Yin Z, Lu J, Hong N, Cheng W, Jia P, Wang H, Hu W, Wang B, Song L, Hu Y. Functionalizing Ti 3C 2T x for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J Colloid Interface Sci 2021; 607:1300-1312. [PMID: 34583035 DOI: 10.1016/j.jcis.2021.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/24/2023]
Abstract
Flexible polyurethane foam (FPUF) is the most used polyurethane, but the highly flammable characteristic limits its widespread usage. In this work, ZIF-8@Ti3C2Txwas synthesized to reduce the heat and toxic gases of FPUF. Flame-retardant FPUF was characterized by cone calorimeter (Cone), thermogravimetric analysis/fourier-transform infrared spectroscopy (TG-FTIR), tensileand compression tests. Compared with pure FPUF, these results showed that the peak of heat release rate (PHRR), total heat release (THR), CO and HCN of FPUF6 decreased by 46%, 69%, 27% and 43.5%, respectively. Moreover, the tensile and compression strength of FPUF6 demonstrated a 52% and 130% increment, respectively. The superior dual metal catalytical charring-forming effect and physical barrier effect of ZIF-8@Ti3C2Tx were achieved. In summary, a simple and reliable strategy for preparing flame-retardant FPUF with reinforced mechanical and fire safety properties was provided.
Collapse
Affiliation(s)
- Zhenting Yin
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Jingyi Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Ningning Hong
- The State Key Laboratory of Special Cable Technology of Shanghai Electric Cable Research Institute Co., Ltd., 1000 Junhong Road, Shanghai 200093, People's Republic of China
| | - Wenhua Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Pengfei Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
16
|
Chu F, Qiu S, Zhang S, Xu Z, Zhou Y, Luo X, Jiang X, Song L, Hu W, Hu Y. Exploration on structural rules of highly efficient flame retardant unsaturated polyester resins. J Colloid Interface Sci 2021; 608:142-157. [PMID: 34624762 DOI: 10.1016/j.jcis.2021.09.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/17/2023]
Abstract
Owing to the lack of research on structure-activity relationship and interaction mechanism between unsaturated polyester resins (UPR) and flame retardants, it has been a big challenge to prepare high-efficiency flame retardants for UPR in industry. In this research, to explore structural rules of high-efficiency flame retardants, several polymeric flame retardants were synthesized with varied main-chain, side-chain, phosphorus valence states and contents of flame retardant elements. The thermal stabilities of flame retardants and UPR composites were firstly assessed. It has been found the interaction existed between flame retardants and UPR, through transesterification reaction and β scission pathway in polyester and polystyrene chains. With only 15 wt% of PCH3-S, UPR composites can reach V0 rating in UL-94. The PHRR and THR values can be maximumly decreased by 71.66 % and 77.67 %, with 20 wt% of PB-S. It has been found flame retardants with sulfone group and + 3 valence state of phosphorus in molecular backbone can release SO2 and phosphorus containing compounds in gaseous phase, which diluted fuel fragments and catalyzed H⋅ and HO⋅ radical removal. The mechanism for improved flame retardancy of UPR composites with various polymeric flame retardants were discussed in detail. Some general rules for highly efficient flame retardant UPR can be summarized: First, gaseous phase flame retardant mechanism plays the major role in improvement of flame retardant performance of UPR composites; Second, the combination of + 3 valence state of phosphorus structures, higher phosphorus contents and sulfone groups effectively improves the flame retardant efficiency of flame retardants.
Collapse
Affiliation(s)
- Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Shenghe Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Zhoumei Xu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Xin Jiang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China.
| |
Collapse
|
17
|
Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and Self-healing performance. J Colloid Interface Sci 2021; 602:810-821. [PMID: 34157516 DOI: 10.1016/j.jcis.2021.05.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022]
Abstract
Although more and more attention has been paid to electromagnetic interference (EMI) shielding fabric materials due to increasing electromagnetic waves pollution, little attention to their fire safety behavior and durability in practical use. Herein, durable EMI shielding ramie fabric with flame retardant and self-healing performance were fabricated by depositing ammonium polyphosphate (APP)/polyethyleneimine (PEI) layer, MXene sheets and polycaprolactone (PCL) layer. The resultant multifunctional fabric could self-extinguish and the peak heat release rate (pHRR) value reduced about 74.3% for the modified ramie fabric that contains about 12 wt% of PEI/APP bilayer compared with pure ramie fabric. Furthermore, the ramie fabric coated by a increasing amount of MXene sheets changed from insulating to conductive, thus gradually improving their EMI shielding performance, which exhibit a high electrical conductivity of 900.56 S/m with an outstanding SE value of 35 dB at a 1.2 mg/cm2 content in the X-band. Besides, When the multifunctional fabric was cut off under external force, it could achieve self-healing and the EMI shielding performance can recover to 34 dB due to the low melting point and good fluidity of PCL. Thus, this multifunctional fabric holds great promise for wearable intelligent cloth, EMI shielding and other fields.
Collapse
|
18
|
Xiao Y, Ma C, Jin Z, Wang C, Wang J, Wang H, Mu X, Song L, Hu Y. Functional covalent organic framework illuminate rapid and efficient capture of Cu (II) and reutilization to reduce fire hazards of epoxy resin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Wang J, Wu N, Han L, Liao C, Mu X, Kan Y, Hu Y. Polyacrylonitrile@metal organic frameworks composite-derived heteroatoms doped carbon@encapsulated cobalt sulfide as superb sodium ion batteries anode. J Colloid Interface Sci 2021; 581:552-565. [DOI: 10.1016/j.jcis.2020.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
|
20
|
Zhang G, Song D, Ma S, Wang Y, Xie X, Dong Y. A novel
P‐S‐Si
‐based cage‐structural monomer for flame‐retardant modification of unsaturated polyester resin. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Zhang
- College of Chemistry and Life Science Suzhou University of Science and Technology Suzhou People's Republic of China
| | - Dongdong Song
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou People's Republic of China
| | - Su Ma
- College of Chemistry and Life Science Suzhou University of Science and Technology Suzhou People's Republic of China
| | - Yanlin Wang
- College of Chemistry and Life Science Suzhou University of Science and Technology Suzhou People's Republic of China
| | - Xiaotian Xie
- College of Chemistry and Life Science Suzhou University of Science and Technology Suzhou People's Republic of China
| | - Yanmao Dong
- College of Chemistry and Life Science Suzhou University of Science and Technology Suzhou People's Republic of China
| |
Collapse
|
21
|
Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Cheng W, Zhang Y, Tian W, Liu J, Lu J, Wang B, Xing W, Hu Y. Highly Efficient MXene-Coated Flame Retardant Cotton Fabric for Electromagnetic Interference Shielding. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02618] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenhua Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yan Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Wenxiang Tian
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Jiajia Liu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Jingyi Lu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
23
|
Cai W, Cai T, He L, Chu F, Mu X, Han L, Hu Y, Wang B, Hu W. Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121971. [PMID: 31918053 DOI: 10.1016/j.jhazmat.2019.121971] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Herein, as a natural antioxidant, tannin (TA) is firstly used to functionalize black phosphorous (BP) nanosheets to improve the ambient stability and toxic suppression, thus decreasing the fire hazards of polymer materials. Compared to pure BP nanosheets, higher temperature for thermal oxidation decomposition is achieved for TA-BP nanosheets, directly confirming the ambient stability of TA-BP nanosheets. Meanwhile, from high resolution TEM and XPS results, TA-BP nanosheets after being exposed at air for 10 days present well-organized crystal structure and low POx bonds content. Cone calorimeter results illustrate that the incorporation of 2.0 wt% TA-BP nanosheets significantly decreases the peak value of heat release rate (-56.5 %), total heat release (-43.0 %), CO2 concentration (-57.3 %) of TPU composite. Meanwhile, with addition of low to 1.5 wt%, the release of highly-toxic CO gas is significantly suppressed, confirmed by lower peak value (0.52 mg/m3) and decreased total release amount (-55.1 %). The obviously enlarged tensile strength (36.7 MPa) and desirable elongation at break (622 %) are also observed. This strategy not only firstly adopts bio-based antioxidant to impart excellent environmental stability for BP nanosheets, but also promotes the promising potentials of BP nanosheets in the fire safety application of polymer composites.
Collapse
Affiliation(s)
- Wei Cai
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Tongmin Cai
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China; KingFa Science and Technology Co. Ltd, Guangzhou. 510663, China
| | - Lingxin He
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Xiaowei Mu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Longfei Han
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China.
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui, 230026, PR China.
| |
Collapse
|
24
|
Zhao Z, Cai W, Song L, Mu X, Hu Y. Comprehensive Property Investigation of Mold Inhibitor Treated Raw Cotton and Ramie Fabric. MATERIALS 2020; 13:ma13051105. [PMID: 32121662 PMCID: PMC7085025 DOI: 10.3390/ma13051105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
At present, research rarely focuses on side effects of the use of mold inhibitors on raw cotton and ramie fabric. Four different mold inhibitors (dimethyl fumarate (DMF), ethyl p-hydroxybenzoate (EHB), propyl p-hydroxybenzoate (PHB), and calcium sorbate (CS)) were used to treat raw cotton and ramie fabric through a dipping method. The optical properties, wettability, thermal conductivity, thermal stability, and combustion properties of treated cotton and ramie samples have been investigated. The reflectance of UV light was improved by the addition of mold inhibitors. In addition, the presence of EHB, PHB, and CS improved the wettability of raw cotton and ramie fabric. It was found that thermal conductivity was slightly increased, influencing the heat insulation effect of the fabrics. Since the additives are flammable, the presence of DMF, EHB, and PHB caused an increase in pHRR and THR for combustion of cotton samples. This addition of CS caused a decrease in pHRR and THR of cotton due to the flame retardancy of CS. This comprehensive investigation of the properties of raw cotton and ramie fabrics treated with these materials should provide a basis for the choice of mold inhibitors.
Collapse
Affiliation(s)
- Zhixin Zhao
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (W.C.); (L.S.)
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China;
| | - Wei Cai
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (W.C.); (L.S.)
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (W.C.); (L.S.)
| | - Xiaowei Mu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (W.C.); (L.S.)
- Correspondence: (X.M.); (Y.H.)
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (W.C.); (L.S.)
- Correspondence: (X.M.); (Y.H.)
| |
Collapse
|
25
|
Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. J Colloid Interface Sci 2020; 561:32-45. [DOI: 10.1016/j.jcis.2019.11.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
|
26
|
Zhang Y, Cheng W, Tian W, Lu J, Song L, Liew KM, Wang B, Hu Y. Nacre-Inspired Tunable Electromagnetic Interference Shielding Sandwich Films with Superior Mechanical and Fire-Resistant Protective Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6371-6382. [PMID: 31927938 DOI: 10.1021/acsami.9b18750] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With the rapidly increasing development of portable device hardware and flexible electronics, ultrathin electromagnetic interference (EMI) shielding films with a combination of high flexibility and excellent mechanical properties are noticeably required. In addition to minimizing the electromagnetic wave pollution problem, the fire hazards caused by accidental electrical leakage or aging are also a cause of extensive concern. Inspired by nacre and sandwich structure, herein, we fabricated for the first time an electrical insulating sandwich-structured film based on Ca ion cross-linked sodium alginate (SA)-montmorillonite (MMT) and Ti3C2Tx MXene through a step-by-step vacuum-assisted filtration process. This novel design strategy not only maintains the inner EMI shielding network but also can act as an excellent fire-resistant barrier to protect the electronic device in case of accidental fire. Compared with the pure Ti3C2Tx layer, such kind of sandwich film can effectively maintain the EMI shielding performance (50.01 dB), dramatically enhance the mechanical properties (84.4 MPa), and exhibit excellent fire-resistant performance. Especially, compared with the film composed of mixture, the EMI shielding effectiveness value is only 55% that of sandwich films. Besides, it functions well under long-term heat aging test at 80 °C. Therefore, this unique design provides a novel EMI material strategy to facilitate its future applications in flexible electronics.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
- Department of Architecture and Civil Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong
| | - Wenhua Cheng
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | - Wenxiang Tian
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | - Jingyi Lu
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | - Lei Song
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | - Kim Meow Liew
- Department of Architecture and Civil Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong
| | - Bibo Wang
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|
27
|
Zhou F, Zhang T, Zou B, Hu W, Wang B, Zhan J, Ma C, Hu Y. Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: Combustion behaviors and thermal properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Lan Y, Wang Y, Zhang H, Shan P, Shi X, Long M. A facile approach to achieve multifunctional polyethylene terephthalate fabrics with durable superhydrophobicity, photocatalysis and self-quenched flame retardance. NEW J CHEM 2020. [DOI: 10.1039/d0nj03259j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional PET fabrics were fabricated through combing layer-by-layer and spray coating methods.
Collapse
Affiliation(s)
- Yanrong Lan
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Yingchun Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Han Zhang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Peng Shan
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
- Institute of Life Science and Green Development
| | - Xiaomeng Shi
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Mengying Long
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
- Binhai New City
- China
| |
Collapse
|
29
|
Zhang Z, Li X, Yuan Y, Pan YT, Wang DY, Yang R. Confined Dispersion of Zinc Hydroxystannate Nanoparticles into Layered Bimetallic Hydroxide Nanocapsules and Its Application in Flame-Retardant Epoxy Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40951-40960. [PMID: 31588722 DOI: 10.1021/acsami.9b15393] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In many fields, nanoparticles are frequently dispersed onto kinds of nanocarriers integrated into hybrid nanocomposites to acquire advanced performance. However, the nanoparticles usually tend to agglomerate on the surface, according to traditional synthetic methods. Besides, the exposed state of loaded nanoparticles and the weak adhesion with the supporters make them fall off during practical application, leading to "second agglomeration" of the nanoparticles and attenuated synergistic effects. In this work, we engineered layered bimetallic (Ni-Co) hydroxides (NCHs) into enclosed nanocages derived from metal organic frameworks (MOFs). Zinc hydroxystannate (ZHS) nanoparticles were selected to be confined dispersed within the hollow cavity of the three-dimensional nanocages. ZHS nanoparticles were tightly immobilized, monodispersing to form a novel multiyolk@shell nanostructure with NCH nanocages. To prove the effectiveness of this structural design, the as-synthesized hybrids ZHS@NCH were introduced into the epoxy matrix to inquiry its performance. Compared to neat ZHS, neat NCH, and physical mixture of ZHS and NCH, ZHS@NCH conferred better flame retardancy, thermal stability, and mechanical properties upon the epoxy nanocomposites. With the adding amount of 6 wt % ZHS@NCH, the UL-94 rating of the nanocomposite was V-0, and the peak of heat release rate value was reduced by 69.1%, while the mechanical properties were slightly influenced. The ingenious synthetic strategy gives insights into uniform distribution of nanoparticles within nanocapsules and enlightens the facile fabrication of multiyolk@shell nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | - De-Yi Wang
- IMDEA Materials Institute , C/Eric Kandel, 2 , 28906 Getafe , Madrid , Spain
| | | |
Collapse
|