1
|
Huang L, Gan Y. A review on SEM imaging of graphene layers. Micron 2024; 187:103716. [PMID: 39276729 DOI: 10.1016/j.micron.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Atomic-thick graphene has stimulated great interests for exploring fundamental science and technological applications due to its promising electronic, mechanical and thermal properties. It is important to gain a deeper understanding of geometrical/structural characteristics of graphene and its properties/performance. Scanning electron microscopy (SEM) is indispensable for characterizing graphene layers. This review details SEM imaging of graphene layer, including the SEM image contrast mechanism of graphene layers, imaging parameter-dependent contrast of graphene layers and the influence of polycrystalline substrates on image contrast. Furthermore, a summary of SEM applications in imaging graphene layers is also provided, including layer-number determinations, study of chemical vapor deposition (CVD)-growth mechanism, and reveal of anti-corrosive failure mechanism of graphene layers. This review will provide a systematic and comprehensive understanding on SEM imaging of graphene layers for graphene community.
Collapse
Affiliation(s)
- Li Huang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300130, PR China.
| | - Yang Gan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
2
|
Feng P, Zhang D, Zhang G, Li C, Wang Y, Chen G, Gan Y. SEM Electron-Beam-Induced Ultrathin Carbon Deposition Layer on Cu Substrate: Improved Dry Oxidation Protection Performance than CVD Single Layer Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309285. [PMID: 38402441 DOI: 10.1002/smll.202309285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/14/2024] [Indexed: 02/26/2024]
Abstract
An amorphous carbon deposition layer (CDL) with nanoscale thickness induced by scanning electron microscope (SEM) electron beam is studied as a carbon-based protective layer on copper (Cu). CDL is prepared by inducing the deposition of pollutants or hydrocarbons in the cavity of SEM through electron beam irradiation (EBI). Wrinkles and cracks will not form and the interfacial spacing of CDL/Cu is smaller than Graphene/Cu (Gr/Cu). The thickness and coverage of the interfacial oxide layer of CDL/Cu are all smaller than that of the Gr/Cu after the same oxidation conditions. Characterization of Raman mapping also demonstrates that CDL shows better oxidation inhibition effects than graphene. The structure of CDL is determined to be C = C and C = O, CH3- and C-O can be loaded vertically on CDL. Density functional theory (DFT) is employed for demonstrating the smaller interfacial gap of CDL/Cu, less wrinkles and cracks and larger adsorbing energy of water/oxygen compared with Gr/Cu. Molecular dynamic (MD) simulation also indicates that the diffusion of water or oxygen into CDL/Cu is more difficult and the oxidation of Cu covered by CDL is well suppressed. This work provides a new approach for the study of carbon-based antioxidant materials on Cu.
Collapse
Affiliation(s)
- Panpan Feng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Dan Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guoxu Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - You Wang
- Materials Physics and Chemistry Department, Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yang Gan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
3
|
Assad H, Lone IA, Sihmar A, Kumar A, Kumar A. An overview of contemporary developments and the application of graphene-based materials in anticorrosive coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30658-7. [PMID: 37996595 DOI: 10.1007/s11356-023-30658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Although graphene and graphene-based materials (GBMs) offer a wide range of possible applications, interest in their use as barrier layers or as reinforcements in coatings for the mitigation of corrosion has grown during the past decade. Because of its unique two-dimensional nanostructure and exceptional physicochemical characteristics, graphene has gotten a lot of attention as an anti-corrosion material. This enthusiasm is largely driven by the requirement to integrate more features, improve anti-corrosion effectiveness, and eventually prolong the service duration of metallic components. As barriers against metal corrosion, graphene nanosheets can be applied singly or in combination to create thin films, layered frameworks, or composites. Concurrently, over the past few years, significant advancements have been made in the establishment of scalable production methods for graphene and materials based on graphene. Since there is currently a wide variety of graphene material with various morphologies and characteristics, it is even more important that the production approach and the intended application be properly matched. This review gathers the most recent data and aims to give the reader a comprehensive overview of the most recent developments in the use of graphene and GBMs in various anti-corrosion strategies. The structure-property correlation and anticorrosion techniques in these systems are given special consideration. The current article offers a critical examination of this topic as well, stressing the areas that require more research.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Imtiyaz Ahmed Lone
- Department of Chemistry, National Institute of Technology, Srinagar, 190006, Jammu and Kashmir, India
| | - Ashish Sihmar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Alok Kumar
- Department of Mechanical Engineering, Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, Nalanda, Bihar, 803108, India
| | - Ashish Kumar
- Department of Chemistry, Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, Nalanda, Bihar, 803108, India.
| |
Collapse
|
4
|
Li L, Guo Z, Fan R, Zhou H. Anti-corrosion strategy to improve the stability of perovskite solar cells. NANOSCALE 2023; 15:8473-8490. [PMID: 37067337 DOI: 10.1039/d3nr00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In recent years, perovskite solar cells (PSCs) have been considered as one of the most promising photovoltaic technologies due to their solution processing, cost effectiveness, and excellent performance. The highest certified power conversion efficiency (PCE) achieved to date is 25.8%, which is approaching the best PCE of 26.81% achieved for silicon-based cells. However, perovskite materials are susceptible to various aging stressors, such as humidity, oxygen, temperature, and electrical bias, which hinder the industrialization of perovskite photovoltaic technologies. In this review, we discuss the lifetime of PSCs from the perspective of corrosion science. On one hand, benefiting from a series of anti-corrosion strategies (passivation, surface coating, machining etc.) used in corrosion science, the stability of perovskite devices is remarkably enhanced; on the other hand, given that perovskites are soft crystal lattices, which are different from traditional metals, the revealed degradation processes and specific methods to improve device operation stability can be applied to the field of corrosion, which can enrich and expand corrosion science.
Collapse
Affiliation(s)
- Liang Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Zhenyu Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Rundong Fan
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Huanping Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| |
Collapse
|
5
|
Günther S, Kratky T, Kraus J, Leidinger P, Zeller P, Sala A, Genuzio F, Jugovac M, Menteş TO, Locatelli A. Versatile procedure for the correction of non-isochromatism in XPEEM spectroscopic imaging. Ultramicroscopy 2023; 250:113756. [PMID: 37182363 DOI: 10.1016/j.ultramic.2023.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Non-isochromatism in X-ray PhotoEmission Electron Microscopy (XPEEM) may result in unwanted artifacts especially when working with large field of views. The lack of isochromatism of XPEEM images may result from multiple factors, for instance the energy dispersion of the X-rays on the sample or the effect of one or more dispersive elements in the electron optics of the microscope, or the combination of both. In practice, the photon energy or the electron kinetic energy may vary across the image, complicating image interpretation and analysis. The effect becomes severe when imaging at low magnification upon irradiation with high energy photons. Such imaging demands for a large X-ray illuminating spot size usually achieved by opening the exit slit of the X-ray monochromator while reducing the monochromaticity of the irradiating light. However, we show that the effect is linear and can be fully removed. A versatile correction procedure is presented which leads to true monochromatic photoelectron images at improved signal-to-noise ratio. XPEEM data recorded at the nanospectroscopy beamline of the Elettra synchrotron radiation facility illustrate the working principle of the procedure. Also, reciprocal space XPEEM data such as angle-resolved photoelectron spectroscopy (ARPES) momentum plots suffer from linear energy dispersion artifacts which can be corrected in a similar way. Representative data acquired from graphene synthesized on copper by chemical vapor deposition prove the benefits of the correction procedure.
Collapse
Affiliation(s)
- Sebastian Günther
- Chemistry Department, Physical Chemistry with Focus on Catalysis, Technical University of Munich (TUM), Lichtenbergstr 4, Garching D-85748, Germany.
| | - Tim Kratky
- Chemistry Department, Physical Chemistry with Focus on Catalysis, Technical University of Munich (TUM), Lichtenbergstr 4, Garching D-85748, Germany
| | - Jürgen Kraus
- Chemistry Department, Physical Chemistry with Focus on Catalysis, Technical University of Munich (TUM), Lichtenbergstr 4, Garching D-85748, Germany
| | - Paul Leidinger
- Chemistry Department, Physical Chemistry with Focus on Catalysis, Technical University of Munich (TUM), Lichtenbergstr 4, Garching D-85748, Germany
| | - Patrick Zeller
- Chemistry Department, Physical Chemistry with Focus on Catalysis, Technical University of Munich (TUM), Lichtenbergstr 4, Garching D-85748, Germany
| | - Alessandro Sala
- Elettra-Sincrotrone Trieste S.C.P.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Francesca Genuzio
- Elettra-Sincrotrone Trieste S.C.P.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Matteo Jugovac
- Elettra-Sincrotrone Trieste S.C.P.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Tevfik Onur Menteş
- Elettra-Sincrotrone Trieste S.C.P.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Andrea Locatelli
- Elettra-Sincrotrone Trieste S.C.P.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste 34149, Italy
| |
Collapse
|
6
|
Olguín-Orellana GJ, Soldano GJ, Alzate-Morales J, Camarada MB, Mariscal MM. Can graphene improve the thermal conductivity of copper nanofluids? Phys Chem Chem Phys 2023; 25:5489-5500. [PMID: 36734485 DOI: 10.1039/d3cp00064h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper (Cu) nanofluids (NFs) have attracted attention due to their high thermal conductivity, which has conferred a wide variety of applications. However, their high reactivity favors oxidation, corrosion and aggregation, leading them to lose their properties of interest. Copper capped by graphene (Cu@G) core@shell nanoparticles (NPs) have also attracted interest from the medical and industrial sectors because graphene can shield the Cu NPs from undesired phenomena. Additionally, they share some properties that expand the range of applications of Cu NFs. In this work, new Morse potentials are reported to reproduce the behavior of Cu@G NPs through molecular dynamics. Coordination-dependent Morse parameters were fitted for C, H, and Cu based on density functional theory calculations. Then, these parameters were implemented to evaluate the thermal conductivity of Cu@G NFs employing the Green-Kubo formalism, with NPs from 1.5 to 6.1 nm at 100 to 800 K, varying the size, the number of layers and the orientation of the graphene flakes. It was found that Cu@G NFs are stable and have an improved thermal conductivity compared to the Cu NFs, being 3.7 to 18.2 times higher at 300 K with only one graphene layer and above 26.2 times higher for the graphene-trilayered NPs. These values can be higher for temperatures below 300 K. Oppositely, the size, homogeneity and orientations of the graphene flakes did not affect the thermal conductivity of the Cu@G NFs.
Collapse
Affiliation(s)
- Gabriel J Olguín-Orellana
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - Germán J Soldano
- INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| | - Jans Alzate-Morales
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, Talca, Chile
| | - María B Camarada
- Laboratorio de Materiales Funcionales, Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.,Centro Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Marcelo M Mariscal
- INFIQC, CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
7
|
Rezaei M, Villalobos LF, Hsu K, Agrawal KV. Demonstrating and Unraveling a Controlled Nanometer-Scale Expansion of the Vacancy Defects in Graphene by CO 2. Angew Chem Int Ed Engl 2022; 61:e202200321. [PMID: 35244325 PMCID: PMC9313848 DOI: 10.1002/anie.202200321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/18/2023]
Abstract
A controlled manipulation of graphene edges and vacancies is desired for molecular separation, sensing and electronics applications. Unfortunately, available etching methods always lead to vacancy nucleation making it challenging to control etching. Herein, we report CO2 -led controlled etching down to 2-3 Å per minute while completely avoiding vacancy nucleation. This makes CO2 a unique etchant for decoupling pore nucleation and expansion. We show that CO2 expands the steric-hindrance-free edges with an activation energy of 2.71 eV, corresponding to the energy barrier for the dissociative chemisorption of CO2 . We demonstrate the presence of an additional configurational energy barrier for nanometer-sized vacancies resulting in a significantly slower rate of expansion. Finally, CO2 etching is applied to map the location of the intrinsic vacancies in the polycrystalline graphene film where we show that the intrinsic vacancy defects manifest mainly as grain boundary defects where intragrain defects from oxidative etching constitute a minor population.
Collapse
Affiliation(s)
- Mojtaba Rezaei
- Laboratory of Advanced Separations (LAS)École Polytechnique Fédérale de Lausanne (EPFL)1950SionSwitzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS)École Polytechnique Fédérale de Lausanne (EPFL)1950SionSwitzerland
| | - Kuang‐Jung Hsu
- Laboratory of Advanced Separations (LAS)École Polytechnique Fédérale de Lausanne (EPFL)1950SionSwitzerland
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS)École Polytechnique Fédérale de Lausanne (EPFL)1950SionSwitzerland
| |
Collapse
|
8
|
Zhang K, Ban C, Yuan Y, Huang L, Gan Y. Nanoscale imaging of oxidized copper foil covered with CVD‐grown graphene layers. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Zhang
- School of Electronics and Information Engineering Hebei University of Technology Tianjin P. R. China
| | - Chun‐guang Ban
- School of Materials Science and Technology Hebei University of Technology Tianjin P. R. China
| | - Ye Yuan
- School of Materials Science and Technology Hebei University of Technology Tianjin P. R. China
| | - Li Huang
- School of Electronics and Information Engineering Hebei University of Technology Tianjin P. R. China
| | - Yang Gan
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin P. R. China
| |
Collapse
|
9
|
Rezaei M, Villalobos LF, Hsu KJ, Agrawal KV. Demonstrating and Unraveling a Controlled Nanometer‐Scale Expansion of the Vacancy Defects in Graphene by CO2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mojtaba Rezaei
- École Polytechnique Fédérale de Lausanne: Ecole Polytechnique Federale de Lausanne Chemistry and chemical engineering SWITZERLAND
| | - Luis Francisco Villalobos
- École Polytechnique Fédérale de Lausanne: Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering SWITZERLAND
| | - Kuang-Jung Hsu
- École Polytechnique Fédérale de Lausanne: Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering SWITZERLAND
| | - Kumar Varoon Agrawal
- École polytechnique fédérale de Lausanne (EPFL) Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440Switzerland CH-1950 Sion SWITZERLAND
| |
Collapse
|
10
|
Flavell W. Spiers Memorial Lecture: Prospects for photoelectron spectroscopy. Faraday Discuss 2022; 236:9-57. [DOI: 10.1039/d2fd00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview is presented of recent advances in photoelectron spectroscopy, focussing on advances in in situ and time-resolved measurements, and in extending the sampling depth of the technique. The future...
Collapse
|
11
|
Luo D, Wang X, Li BW, Zhu C, Huang M, Qiu L, Wang M, Jin S, Kim M, Ding F, Ruoff RS. The Wet-Oxidation of a Cu(111) Foil Coated by Single Crystal Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102697. [PMID: 34309933 DOI: 10.1002/adma.202102697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The wet-oxidation of a single crystal Cu(111) foil is studied by growing single crystal graphene islands on it followed by soaking it in water. 18 O-labeled water is also used; the oxygen atoms in the formed copper oxides in both the bare and graphene-coated Cu regions come from water. The oxidation of the graphene-coated Cu regions is enabled by water diffusing from the edges of graphene along the bunched Cu steps, and along some graphene ripples where such are present. This interfacial diffusion of water can occur because of the separation between the graphene and the "step corner" of bunched Cu steps. Density functional theory simulations suggest that adsorption of water in this gap is thermodynamically stable; the "step-induced-diffusion model" also applies to graphene-coated Cu surfaces of various other crystal orientations. Since bunched Cu steps and graphene ripples are diffusion pathways for water, ripple-free graphene is prepared on ultrasmooth Cu(111) surfaces and it is found that the graphene completely shields the underlying Cu from wet-oxidation. This study greatly deepens the understanding of how a graphene-coated copper surface is oxidized, and shows that graphene completely prevents the oxidation when that surface is ultrasmooth and when the graphene has no ripples or wrinkles.
Collapse
Affiliation(s)
- Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Xiao Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Bao-Wen Li
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chongyang Zhu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Lu Qiu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sunghwan Jin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minhyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Feng Ding
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
12
|
Azpeitia J, Palacio I, Martínez J, Muñoz-Ochando I, Lauwaet K, Mompean F, Ellis G, García-Hernández M, Martín-Gago J, Munuera C, López M. Oxygen intercalation in PVD graphene grown on copper substrates: A decoupling approach. APPLIED SURFACE SCIENCE 2020; 529:147100. [PMID: 33154607 PMCID: PMC7116314 DOI: 10.1016/j.apsusc.2020.147100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the intercalation process of oxygen in-between a PVD-grown graphene layer and different copper substrates as a methodology for reducing the substrate-layer interaction. This growth method leads to an extended defect-free graphene layer that strongly couples with the substrate. We have found, by means of X-ray photoelectron spectroscopy, that after oxygen exposure at different temperatures, ranging from 280 °C to 550 °C, oxygen intercalates at the interface of graphene grown on Cu foil at an optimal temperature of 500 °C. The low energy electron diffraction technique confirms the adsorption of an atomic oxygen adlayer on top of the Cu surface and below graphene after oxygen exposure at elevated temperature, but no oxidation of the substrate is induced. The emergence of the 2D Raman peak, quenched by the large interaction with the substrate, reveals that the intercalation process induces a structural undoing. As suggested by atomic force microscopy, the oxygen intercalation does not change significantly the surface morphology. Moreover, theoretical simulations provide further insights into the electronic and structural undoing process. This protocol opens the door to an efficient methodology to weaken the graphene-substrate interaction for a more efficient transfer to arbitrary surfaces.
Collapse
Affiliation(s)
- J. Azpeitia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - I. Palacio
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - J.I. Martínez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - I. Muñoz-Ochando
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ES-28006 Madrid, Spain
| | - K. Lauwaet
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - F.J. Mompean
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - G.J. Ellis
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ES-28006 Madrid, Spain
| | - M. García-Hernández
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - J.A. Martín-Gago
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - C. Munuera
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| | - M.F. López
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain
| |
Collapse
|
13
|
Braeuninger-Weimer P, Burton OJ, Zeller P, Amati M, Gregoratti L, Weatherup RS, Hofmann S. Crystal Orientation Dependent Oxidation Modes at the Buried Graphene-Cu Interface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:7766-7776. [PMID: 32982043 PMCID: PMC7513576 DOI: 10.1021/acs.chemmater.0c02296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We combine spatially resolved scanning photoelectron spectroscopy with confocal Raman and optical microscopy to reveal how the oxidation of the buried graphene-Cu interface relates to the Cu crystallographic orientation. We analyze over 100 different graphene covered Cu (high and low index) orientations exposed to air for 2 years. Four general oxidation modes are observed that can be mapped as regions onto the polar plot of Cu surface orientations. These modes are (1) complete, (2) irregular, (3) inhibited, and (4) enhanced wrinkle interface oxidation. We present a comprehensive characterization of these modes, consider the underlying mechanisms, compare air and water mediated oxidation, and discuss this in the context of the diverse prior literature in this area. This understanding incorporates effects from across the wide parameter space of 2D material interface engineering, relevant to key challenges in their emerging applications, ranging from scalable transfer to electronic contacts, encapsulation, and corrosion protection.
Collapse
Affiliation(s)
| | - Oliver J. Burton
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Patrick Zeller
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone
Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
14
|
Lee U, Han Y, Lee S, Kim JS, Lee YH, Kim UJ, Son H. Time Evolution Studies on Strain and Doping of Graphene Grown on a Copper Substrate Using Raman Spectroscopy. ACS NANO 2020; 14:919-926. [PMID: 31841304 DOI: 10.1021/acsnano.9b08205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The enhanced growth of Cu oxides underneath graphene grown on a Cu substrate has been of great interest to many groups. In this work, the strain and doping status of graphene, based on the gradual growth of Cu oxides from underneath, were systematically studied using time evolution Raman spectroscopy. The compressive strain to graphene, due to the thermal expansion coefficient difference between graphene and the Cu substrate, was almost released by the nonuniform Cu2O growth; however, slight tensile strain was exerted. This induced p-doping in the graphene with a carrier density up to 1.7 × 1013 cm-2 when it was exposed to air for up to 30 days. With longer exposure to ambient conditions (>1 year), we observed that graphene/Cu2O hybrid structures significantly slow down the oxidation compared to that using a bare Cu substrate. The thickness of the CuO layer on the bare Cu substrate was increased to approximately 270 nm. These findings were confirmed through white light interference measurements and scanning electron microscopy.
Collapse
Affiliation(s)
- Ukjae Lee
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Yoojoong Han
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
- Nano Technology Division , NANOBASE Inc. , Seoul 08502 , Republic of Korea
| | - Sanghyub Lee
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jun Suk Kim
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Un Jeong Kim
- Imaging Device Laboratory , Samsung Advanced Institute of Technology , Suwon , Gyeonggi-do 16419 , Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| |
Collapse
|