1
|
Li N, Pang Y, Xu J, Elango J, Wu W. Immunomodulatory Effects of Symplectoteuthis oualaniensis Protamine and Its PEG Derivative on Macrophages: Involvement of PI3K/Akt Signaling, Redox Regulation, and Cell Cycle Modulation. Antioxidants (Basel) 2025; 14:437. [PMID: 40298789 PMCID: PMC12024133 DOI: 10.3390/antiox14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Protamine is a promising marine-derived bioactive compound that is highly arginine-rich and has demonstrated unique advantages in medical and biological research. This study, for the first time, investigates the molecular mechanisms underlying the immunomodulatory effects of Salmon Protamine Sulfate (SPS), Symplectoteuthis oualaniensis Protamine (SOP), and its polyethylene glycol (PEG) derivative (SOP-PEG) on RAW264.7 macrophages. The results demonstrate that both SOP and SOP-PEG significantly enhance the proliferation of RAW264.7 cells by promoting the secretion of pro-inflammatory cytokines and nitric oxide (NO), increasing ROS production, and improving antioxidant capacity, in comparison to SPS. Elevated ROS levels play a crucial role in enhancing macrophage immune activity, while the enhanced antioxidant defense mechanisms help maintain redox homeostasis and protect against oxidative stress-induced cellular damage. A Western blot analysis reveals that SOP and SOP-PEG notably regulate the expression of key proteins associated with the PI3K/Akt signaling pathway and anti-apoptotic mechanisms. Furthermore, a flow cytometry analysis indicates a significant increase in the G2/M-phase cell population in the treatment groups, which is corroborated by Western blot data showing alterations in critical regulatory proteins. Notably, SOP-PEG exhibits the strongest effects in regulating macrophage immune activity, which can be attributed to the enhanced stability and prolonged bioactivity resulting from the PEGylation of SOP. This comprehensive study reveals how SOP and SOP-PEG enhance macrophage immune function through multiple mechanisms, including PI3K/Akt activation, redox regulation, and cell cycle modulation. It provides valuable insights and a theoretical foundation for their potential applications in immunotherapy and immune regulation.
Collapse
Affiliation(s)
- Na Li
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (N.L.); (Y.P.); (J.X.)
| | - Yida Pang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (N.L.); (Y.P.); (J.X.)
| | - Jiren Xu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (N.L.); (Y.P.); (J.X.)
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (N.L.); (Y.P.); (J.X.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (N.L.); (Y.P.); (J.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
- Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China
| |
Collapse
|
2
|
Hong S, Cui Y, He D, Wu H, Jiang W, Cao J, Wang X. GelMA Hydrogels Integrated With aptamer CH6-Functionalized Tetrahedral DNA Nanostructures for Osteoporotic Mandibular Regeneration. Macromol Biosci 2025; 25:e2400471. [PMID: 39838729 DOI: 10.1002/mabi.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Indexed: 01/23/2025]
Abstract
Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult. In this study, a novel osteoblast-targeted CH6 aptamer-functionalized TDN (TDN-CH6) is aimed to develop for osteoporotic mandibular regeneration. This results demonstrated that TDN-CH6 exhibits superior osteoblast specificity and efficient recruitment to bone fracture sites. Furthermore, TDN-CH6 significantly enhances cellular activity and osteogenic differentiation compared to TDN alone. Notably, Gelatin Methacryloyl (GelMA) hydrogels incorporating TDN and TDN-CH6 shows improved biological performance and are favorable for osteoporotic mandibular regeneration, suggesting that this platform represents a promising strategy for addressing complex bone defects.
Collapse
Affiliation(s)
- Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Hao Wu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jian Cao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|
3
|
Gu J, Liang J, Tian T, Lin Y. Current Understanding and Translational Prospects of Tetrahedral Framework Nucleic Acids. JACS AU 2025; 5:486-520. [PMID: 40017737 PMCID: PMC11862954 DOI: 10.1021/jacsau.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Tetrahedral framework nucleic acids (tFNAs) represent a promising advancement in nucleic acid nanotechnology due to their unique structural properties, high biocompatibility, and multifaceted biomedical applications. Constructed through a one-pot annealing method, four single-stranded DNAs self-assemble into stable, three-dimensional tetrahedral nanostructures with enhanced mechanical robustness and physiological stability, resisting enzymatic degradation. Their ability to permeate mammalian cells without transfection agents, coupled with modifiable surfaces, positions tFNAs as versatile carriers for drug and gene delivery systems. The tFNA-based platforms exhibit superior therapeutic efficacy, including antioxidative and anti-inflammatory effects, alongside efficient cellular uptake and tissue penetration. These features underpin their role in precision medicine, enabling targeted delivery of diverse therapeutic agents such as synthetic compounds, peptides, and nucleic acids. Additionally, tFNAs demonstrate significant potential in regenerative medicine, immune modulation, antibacterial strategies, and oncology. By addressing challenges in translational integration, tFNAs stand poised to accelerate the development of biomedical research and clinical applications, fostering novel therapies and enhancing therapeutic outcomes across a wide spectrum of diseases. This Perspective thoroughly details the unique attributes and diverse applications of tFNAs and critically evaluates tFNAs' clinical translational potential, outlining inherent implementation challenges and exploring potential solutions to these obstacles.
Collapse
Affiliation(s)
- Junjie Gu
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Jiale Liang
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Taoran Tian
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunfeng Lin
- State
Key Laboratory of Oral Diseases, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, West China Hospital
of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Department
of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Sichuan
Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
4
|
Han L, Dai Q, He C, Xu J, Cui L, Xie X, Zhang Z, Zhuang M, Li X, Lu M. A tetrahedral DNA nanoplatform with ultrasound-triggered biomimetic nanocarriers for targeted siMCM2 delivery and reversal of imatinib resistance in gastrointestinal stromal tumors. CHEMICAL ENGINEERING JOURNAL 2025; 504:158843. [DOI: 10.1016/j.cej.2024.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Ge Y, Wang Q, Yao Y, Xin Q, Sun J, Chen W, Lin Y, Cai X. Framework Nucleic Acids-Based VEGF Signaling Activating System for Angiogenesis: A Dual Stimulation Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308701. [PMID: 38460168 DOI: 10.1002/advs.202308701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Indexed: 03/11/2024]
Abstract
Angiogenesis is crucial for tissue engineering, wound healing, and regenerative medicine. Nanomaterials constructed based on specific goals can be employed to activate endogenous growth factor-related signaling. In this study, based on the conventional single-stranded DNA self-assembly into tetrahedral framework nucleic acids (tFNAs), the Apt02 nucleic acid aptamer and dimethyloxallyl glycine (DMOG) small molecule are integrated into a complex via a template-based click chemistry reaction and toehold-mediated strand displacement reaction. Thus, being able to simulate the VEGF (vascular endothelial growth factor) function and stabilize HIF (hypoxia-inducible factor), a functional whole is constructed and applied to angiogenesis. Cellular studies demonstrate that the tFNAs-Apt02 complex (TAC) has a conspicuous affinity to human umbilical vein endothelial cells (HUVECs). Further incubation with DMOG yields the tFNAs-Apt02-DMOG complex (TACD), which promotes VEGF secretion, in vitro blood vessel formation, sprouting, and migration of HUVECs. Additionally, TACD enhances angiogenesis by upregulating the VEGF/VEGFR and HIF signaling pathways. Moreover, in a diabetic mouse skin defect repair process, TACD increases blood vessel formation and collagen deposition, therefore accelerating wound healing. The novel strategy simulating VEGF and stabilizing HIF promotes blood-vessel formation in vivo and in vitro and has the potential for broad applications in the vascularization field.
Collapse
Affiliation(s)
- Yichen Ge
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qin Xin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
6
|
Li J, Yan R, Shi S, Lin Y. Recent progress and application of the tetrahedral framework nucleic acid materials on drug delivery. Expert Opin Drug Deliv 2023; 20:1511-1530. [PMID: 37898874 DOI: 10.1080/17425247.2023.2276285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION The application of DNA framework nucleic acid materials in the biomedical field has witnessed continual expansion. Among them, tetrahedral framework nucleic acids (tFNAs) have gained significant traction as the foremost biological vectors due to their superior attributes of editability, low immunogenicity, biocompatibility, and biodegradability. tFNAs have demonstrated promising results in numerous in vitro and in vivo applications. AREAS COVERED This review summarizes the latest research on tFNAs in drug delivery, including a discussion of the advantages of tFNAs in regulating biological behaviors, and highlights the updated development and advantageous applications of tFNAs-based nanostructures from static design to dynamically responsive design. EXPERT OPINION tFNAs possess distinct biological regulatory attributes and can be taken up by cells without the requirement of transfection, differentiating them from other biological vectors. tFNAs can be easily physically/chemically modified and seamlessly incorporated with other functional systems. The static design of the tFNAs-based drug delivery system makes it versatile, reproducible, and predictable. Further use of the dynamic response mechanism of DNA to external stimuli makes tFNAs-based drug delivery more effective and specific, improving the uptake and utilization of the payload by the intended target. Dynamic targeting is poised to become the future primary approach for drug delivery.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Plastic Surgery and Cosmetic Dermatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ran Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Alhazzani K, A.Z. A, Alaseem AM, Al Awadh SA, Alanazi SA, AlSayyari AA, Alanazi MM, El-Wekil MM. A reliable ratiometric fluorescence sensing of heparin and its antidote based on cationic carbon quantum dots and acid red 87. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Yuan R, Liu M, Cheng Y, Yan F, Zhu X, Zhou S, Dong M. Biomimetic Nanoparticle-Mediated Target Delivery of Hypoxia-Responsive Plasmid of Angiotensin-Converting Enzyme 2 to Reverse Hypoxic Pulmonary Hypertension. ACS NANO 2023; 17:8204-8222. [PMID: 37071566 DOI: 10.1021/acsnano.2c12190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by pulmonary vascular sustained constriction and progressive remodeling, which are initiated by hypoxia then with hypoxia-induced additive factors including pulmonary vascular endothelium injury, intrapulmonary angiotension system imbalance, and inflammation. Now HPH is still an intractable disease lacking effective treatments. Gene therapy has a massive potential for HPH but is hindered by a lack of efficient targeted delivery and hypoxia-responsive regulation systems for transgenes. Herein, we constructed the hypoxia-responsive plasmid of angiotensin-converting enzyme 2 (ACE2) with endothelial-specific promoter Tie2 and a hypoxia response element and next prepared its biomimetic nanoparticle delivery system, named ACE2-CS-PRT@PM, by encapsulating the plasmid of ACE2 with protamine and chondroitin sulfate as the core then coated it with a platelet membrane as a shell for targeting the injured pulmonary vascular endothelium. ACE2-CS-PRT@PM has a 194.3 nm diameter with a platelet membrane-coating core-shell structure and a negatively charged surface, and it exhibits higher delivery efficiency targeting to pulmonary vascular endothelium and hypoxia-responsive overexpression of ACE2 in endothelial cells in a hypoxia environment. In vitro, ACE2-CS-PRT@PM significantly inhibited the hypoxia-induced proliferation of pulmonary smooth muscle cells. In vivo, ACE2-CS-PRT@PM potently ameliorated the hemodynamic dysfunction and morphological abnormality and largely reversed HPH via inhibiting the hypoxic proliferation of pulmonary artery smooth muscle cells, reducing pulmonary vascular remodeling, restoring balance to the intrapulmonary angiotension system, and improving the inflammatory microenvironment without any detectable toxicity. Therefore, ACE2-CS-PRT@PM is promising for the targeted gene therapy of HPH.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| | - Xiaoquan Zhu
- Medical Research Department, Air Force Medical Center, Haidian District, Beijing 100142, P.R. China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| |
Collapse
|
9
|
Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci 2022; 14:51. [PMID: 36316311 PMCID: PMC9622686 DOI: 10.1038/s41368-022-00199-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Collapse
Affiliation(s)
- Yunfeng Lin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- grid.458506.a0000 0004 0497 0637The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
| | - Quanyi Guo
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shuyun Liu
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shihui Zhu
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiang Fan
- grid.13291.380000 0001 0807 1581National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yong Sun
- grid.13291.380000 0001 0807 1581College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Xudong Tian
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Delun Luo
- Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
| | - Sirong Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li S, Liu Y, Zhang T, Lin S, Shi S, He J, Xie Y, Cai X, Tian T, Lin Y. A Tetrahedral Framework DNA-Based Bioswitchable miRNA Inhibitor Delivery System: Application to Skin Anti-Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204287. [PMID: 35901292 DOI: 10.1002/adma.202204287] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Indexed: 02/05/2023]
Abstract
MicroRNA (miR)-based therapy shows strong potential; however, structural limitations pose a challenge in fully exploiting its biomedical functionality. Tetrahedral framework DNA (tFNA) has proven to be an ideal vehicle for miR therapy. Inspired by the ancient Chinese myth "Sun and Immortal Birds," a novel bioswitchable miR inhibitor delivery system (BiRDS) is designed with three miR inhibitors (the three immortal birds) and a nucleic acid core (the central sun). The BiRDS fuses miR inhibitors within the framework, maximizing their loading capacity, while allowing the system to retain the characteristics of small-sized tFNA and avoiding uncertainty associated with RNA exposure in traditional loading protocols. The RNase H-responsive sequence at the tail of each "immortal bird" enables the BiRDS to transform from a 3D to a 2D structure upon entering cells, promoting the delivery of miR inhibitors. To confirm the application potential, the BiRDS is used to deliver the miR-31 inhibitor, with antiaging effects on hair follicle stem cells, into a skin aging model. Superior skin penetration ability and RNA delivery are observed with significant anti-aging effects. These findings demonstrate the capability and editability of the BiRDS to improve the stability and delivery efficacy of miRs for future innovations.
Collapse
Affiliation(s)
- Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyu Lin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajun He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Biomimetic Nanoerythrosome-Coated Aptamer-DNA Tetrahedron/Maytansine Conjugates: pH-Responsive and Targeted Cytotoxicity for HER2-Positive Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109609. [PMID: 35064993 DOI: 10.1002/adma.202109609] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Indexed: 02/05/2023]
Abstract
DNA materials have emerged as potential nanocarriers for targeted cancer therapy to precisely deliver cargos with specific purposes. The short half-life and low bioavailability of DNA materials due to their interception by the reticuloendothelial system and blood clearance further limit their clinical translation. This study employs an HER2-targeted DNA-aptamer-modified DNA tetrahedron (HApt-tFNA) as a drug delivery system, and combines maytansine (DM1) to develop the HApt-DNA tetrahedron/DM1 conjugate (HApt-tFNA@DM1, HTD, HApDC) for targeted therapy of HER2-positive cancer. To optimize the pharmacokinetics and tumor-aggregation of HTD, a biomimetic camouflage is applied to embed HTD. The biomimetic camouflage is constructed by merging the erythrocyte membrane with pH-responsive functionalized synthetic liposomes, thus with excellent performance of drug delivery and tumor-stimulated drug release. The hybrid erythrosome-based nanoparticles show better inhibition of HER2-positive cancer than other drug formulations and exhibit superior biosafety. With the strengths of precise delivery, increased drug loading, sensitive tumor probing, and prolonged circulation time, the HApDC represents a promising nanomedicine to treat HER2-positive tumors. Notably, this study developsa dual-targeting nanoparticle by combining pH-sensitive camouflage and HApDC, initiating an important step toward the development and application of DNA-based medicine and biomimetic cell membrane materials in cancer treatment and other potential biological applications.
Collapse
Affiliation(s)
- Wenjuan Ma
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jianwei Zhu
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Weiqiang Jia
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
12
|
Zhang B, Tian T, Xiao D, Gao S, Cai X, Lin Y. Facilitating In Situ Tumor Imaging with a Tetrahedral DNA Framework‐Enhanced Hybridization Chain Reaction Probe. ADVANCED FUNCTIONAL MATERIALS 2022. [DOI: 10.1002/adfm.202109728] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bowen Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
- College of Biomedical Engineering Sichuan University Sichuan Chengdu 610041 China
| |
Collapse
|
13
|
Sun W, Zhang F, Wang M, Wang N, Wang G, Su X. A ratiometric fluorescence strategy based on polyethyleneimine surface-modified carbon dots and Eosin Y for the ultrasensitive determination of protamine and trypsin. Analyst 2022; 147:677-684. [DOI: 10.1039/d1an02138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent nanoprobe for protamine and trypsin detection with excellent biocompatibility and high sensitivity was successfully constructed based on CDs-PEI and Eosin Y.
Collapse
Affiliation(s)
- Wenying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Feng Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
15
|
Chen X, Xie Y, Liu Z, Lin Y. Application of Programmable Tetrahedral Framework Nucleic Acid-Based Nanomaterials in Neurological Disorders: Progress and Prospects. Front Bioeng Biotechnol 2021; 9:782237. [PMID: 34900971 PMCID: PMC8662522 DOI: 10.3389/fbioe.2021.782237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tetrahedral framework nucleic acid (tFNA), a special DNA nanodevice, is widely applied in diverse biomedical fields. Due to its high programmability, biocompatibility, tissue permeability as well as its capacity for cell proliferation and differentiation, tFNA presents a powerful tool that could overcome potential barriers in the treatment of neurological disorders. This review evaluates recent studies on the use and progress of tFNA-based nanomaterials in neurological disorders.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yan J, Zhan X, Zhang Z, Chen K, Wang M, Sun Y, He B, Liang Y. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnology 2021; 19:412. [PMID: 34876145 PMCID: PMC8650297 DOI: 10.1186/s12951-021-01164-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, DNA nanostructures with vast application potential in the field of biomedicine, especially in drug delivery. Among these, tetrahedral DNA nanostructures (TDN) have attracted interest worldwide due to their high stability, excellent biocompatibility, and simplicity of modification. TDN could be synthesized easily and reproducibly to serve as carriers for, chemotherapeutic drugs, nucleic acid drugs and imaging probes. Therefore, their applications include, but are not restricted to, drug delivery, molecular diagnostics, and biological imaging. In this review, we summarize the methods of functional modification and application of TDN in cancer treatment. Also, we discuss the pressing questions that should be targeted to increase the applicability of TDN in the future.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Keqi Chen
- Department of Clinical Laboratory, Qingdao Special Servicemen Recuperation Centre of PLA Navy, Qingdao, 266021, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
17
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
18
|
Gao S, Zhou M, Li Y, Xiao D, Wang Y, Yao Y, Gao Y, Cai X, Lin Y. Tetrahedral Framework Nucleic Acids Reverse New-Onset Type 1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50802-50811. [PMID: 34665600 DOI: 10.1021/acsami.1c16151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is caused by breakdowns of central and peripheral immune tolerance and destructions of insulin-producing β-cells. Conventional insulin injection cannot cure the disease. Regulatory immune cells, including regulatory T-cells (Tregs) and regulatory B-cells (Bregs), play critical roles in immune tolerance. Inducing regulatory immune cells to halt the progress of T1D and restore immune tolerance is the promising approach in T1D immunotherapy. Here, tetrahedral framework nucleic acids (tFNAs) were utilized to treat T1D in non-obese diabetic (NOD) mice. 250 nM tFNA treatment was adopted in the experiment to reverse hyperglycemia and protect insulin-secreting β-cells in diabetic NOD mice. In addition, 250 nM tFNA treatment could induce Tregs and Bregs and suppress helper T (Th)-cells in the pancreas. In the pancreas, cytokines, as a significant signal during CD4+ T-cell differentiation, directly direct the differentiation programs. Apart from cytokines directing the differentiation of T-cells, the signal transducer and activator of transcription (STAT) signal is strongly associated with T-cell differentiation and T1D progression. We demonstrated tFNA treatment inducing regulatory immune cells probably by increasing TGF-β levels and the STAT signal. To sum up, 250 nM tFNA treatment could protect the diabetic NOD mice from hyperglycemia and preserve the functions of β-cells by restoring peripheral immune tolerance. The possible mechanism of inducing immune tolerance was related to the STAT signal and cytokine changes in the pancreas. Moreover, immunoregulation capabilities of tFNAs were demonstrated in the experiment, which set the foundation of tFNAs participating in further antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Li P, Fu L, Liao Z, Peng Y, Ning C, Gao C, Zhang D, Sui X, Lin Y, Liu S, Hao C, Guo Q. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials 2021; 278:121131. [PMID: 34543785 DOI: 10.1016/j.biomaterials.2021.121131] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/08/2023]
Abstract
Articular cartilage (AC) injury repair has always been a difficult problem for clinicians and researchers. Recently, a promising therapy based on mesenchymal stem cells (MSCs) has been developed for the regeneration of cartilage defects. As endogenous articular stem cells, synovial MSCs (SMSCs) possess strong chondrogenic differentiation ability and articular specificity. In this study, a cartilage regenerative system was developed based on a chitosan (CS) hydrogel/3D-printed poly(ε-caprolactone) (PCL) hybrid containing SMSCs and recruiting tetrahedral framework nucleic acid (TFNA) injected into the articular cavity. TFNA, which is a promising DNA nanomaterial for improving the regenerative microenvironment, could be taken up into SMSCs and promoted the proliferation and chondrogenic differentiation of SMSCs. CS, as a cationic polysaccharide, can bind to DNA through electrostatic action and recruit free TFNA after articular cavity injection in vivo. The 3D-printed PCL scaffold provided basic mechanical support, and TFNA provided a good microenvironment for the proliferation and chondrogenic differentiation of the delivered SMSCs and promoted cartilage regeneration, thus greatly improving the repair of cartilage defects. In conclusion, this study confirmed that a CS hydrogel/3D-printed PCL hybrid scaffold containing SMSCs could be a promising strategy for cartilage regeneration based on chitosan-directed TFNA recruitment and TFNA-enhanced cell proliferation and chondrogenesis.
Collapse
Affiliation(s)
- Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhiyao Liao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Daxu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
20
|
Gao S, Wang Y, Li Y, Xiao D, Lin Y, Chen Y, Cai X. Tetrahedral Framework Nucleic Acids Reestablish Immune Tolerance and Restore Saliva Secretion in a Sjögren's Syndrome Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42543-42553. [PMID: 34477358 DOI: 10.1021/acsami.1c14861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As one of the most frequent autoimmune diseases, Sjogren's syndrome (SS) is characterized by overactive lymphocytic infiltration in the exocrine glands, with ensuing dry mouth and dry eyes. Unfortunately, so far, there are no appropriate therapies without causing overall immunosuppression. Tetrahedral framework nucleic acids (tFNAs) were regarded as promising nanoscale materials whose immunomodulatory capabilities have already been verified. Herein, we reveal, for the first time, that tFNAs were utilized to treat SS in female nonobese diabetic (NOD) mice, the animal model used for SS. We proved a 250 nM tFNA treatment was successful in suppressing inflammation and stimulating saliva secretion in NOD mice. Specialised proteins for the secretory function and structure of acinar cells in submandibular glands (SMGs) were restored. It has been the permanent goal for SS treatment to establish immune tolerance and stop disease development. Surprisingly, tFNA treatment guided T cells toward regulatory T cells (Tregs), while suppressing T helper (Th) cell responses. Th cells include Th1, Th17, and follicular helper T (Tfh) cells. Tregs are highly significant in immune tolerance. Inducing Tregs is a promising approach to reestablish immune tolerance. Comparable results were also observed in B cell responses. Reductions in the percentage of germinal center (GC) B cells and plasma cells were detected, and a marked increase in the percentage of regulatory B cells (Bregs) was also noticed. The mechanisms of inducing Tregs may associated with cytokine changes. Changes of T cell subsets, especially changes of Tfh, may influence the differentiation of B cells accordingly. Collectively, our results demonstrated the immunomodulatory capacities of tFNAs once again, which may provide a novel, safe, and effective option for the treatment of SS and other autoimmune diseases.
Collapse
Affiliation(s)
- Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Cui W, Fu W, Lin Y, Zhang T. Application of Nanomaterials in Neurodegenerative Diseases. Curr Stem Cell Res Ther 2021; 16:83-94. [PMID: 32213159 DOI: 10.2174/1574888x15666200326093410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease are very harmful brain lesions. Due to the difficulty in obtaining therapeutic drugs, the best treatment for neurodegenerative diseases is often not available. In addition, the bloodbrain barrier can effectively prevent the transfer of cells, particles and macromolecules (such as drugs) in the brain, resulting in the failure of the traditional drug delivery system to provide adequate cellular structure repair and connection modes, which are crucial for the functional recovery of neurodegenerative diseases. Nanomaterials are designed to carry drugs across the blood-brain barrier for targets. Nanotechnology uses engineering materials or equipment to interact with biological systems at the molecular level to induce physiological responses through stimulation, response and target site interactions, while minimizing the side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Some magnetic nanomaterials play a role as imaging agents or nanoprobes for Magnetic Resonance Imaging to assist in the diagnosis of neurodegenerative diseases. Although the current research on nanomaterials is not as useful as expected in clinical applications, it achieves a major breakthrough and guides the future development direction of nanotechnology in the application of neurodegenerative diseases. This review briefly discusses the application and advantages of nanomaterials in neurodegenerative diseases. Data for this review were identified by searches of PubMed, and references from relevant articles published in English between 2015 and 2019 using the search terms "nanomaterials", "neurodegenerative diseases" and "blood-brain barrier".
Collapse
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Sun Y, Liu Y, Zhang B, Shi S, Zhang T, Zhao D, Tian T, Li Q, Lin Y. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact Mater 2021; 6:2281-2290. [PMID: 33553815 PMCID: PMC7841501 DOI: 10.1016/j.bioactmat.2020.12.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Erythromycin is a commonly used broad-spectrum antibiotic, but resistance to this antibiotic makes its use less effective. Considerable efforts, beside finding alternatives, are needed to enhance its antimicrobial effect and stability against bacteria. Tetrahedral framework nucleic acids (tFNAs), a novel delivery vehicle with a three-dimensional nanostructure, have been studied as a carrying platform of antineoplastic drugs. In this study, the use of tFNAs in delivering erythromycin into Escherichia coli (E. coli) was investigated for the first time. The tFNAs vehicle increased the bacterial uptake of erythromycin and promoted membrane destabilization. Moreover, it increased the permeability of the bacterial cell wall, and reduced drug resistance by improving the movement of the drug across the membrane. The tFNAs-based delivery system enhanced the effects of erythromycin against E. coli. It may therefore provide an effective delivery vehicle for erythromycin in targeting antibiotic-resistant bacteria with thick cell wall.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Li J, Xiao L, Yan N, Li Y, Wang Y, Qin X, Zhao D, Liu M, Li N, Lin Y. The Neuroprotective Effect of MicroRNA‐22‐3p Modified Tetrahedral Framework Nucleic Acids on Damaged Retinal Neurons Via TrkB/BDNF Signaling Pathway. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104141] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Lirong Xiao
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Naihong Yan
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Xin Qin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Ni Li
- Department of Ophthalmology West China Hospital Sichuan University Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- College of Biomedical Engineering Sichuan University Chengdu 610041 China
| |
Collapse
|
24
|
Cui W, Chen X, Zhu J, Zhang M, Xiao D, Qin X, Zhang T, Lin Y. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. NANOSCALE 2021; 12:17196-17202. [PMID: 32667372 DOI: 10.1039/d0nr03731a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zoledronic acid (ZA) is a bisphosphonate (BP) drug that has been widely used in clinical treatments as a potent bone resorption inhibitor. In recent years, an increasing number of cases of bisphosphonate-associated osteonecrosis of the jaw (BRONJ) have been reported. This is a severe maxillofacial complication characterized clinically by bone exposure, necrosis, pain, and halitosis. Its pathogenesis is still not clear, and there is no effective clinical treatment known. Therefore, prevention of BRONJ is especially important. To provide a new research direction for the treatment of BRONJ, this study used a new tetrahedral framework nucleic acid (TFNA), which can antagonize the inhibitory effect of ZA on the differentiation and maturation of osteoclasts (OCs). In vivo and in vitro experiments showed that TFNAs at a specific concentration exhibited no cytotoxicity and could reverse the inhibition of ZA on OC differentiation and maturation, effectively inhibiting the formation of BRONJ.
Collapse
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Tianyi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Zhang B, Qin X, Zhou M, Tian T, Sun Y, Li S, Xiao D, Cai X. Tetrahedral DNA nanostructure improves transport efficiency and anti-fungal effect of histatin 5 against Candida albicans. Cell Prolif 2021; 54:e13020. [PMID: 33694264 PMCID: PMC8088467 DOI: 10.1111/cpr.13020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Anti-microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His-5) was synthesized and the transport efficiency and anti-fungal effect were measured to evaluate the promotion of His-5 modified by TDNs. MATERIALS AND METHODS Tetrahedral DNA nanostructures/His-5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti-fungal effect of the TDN/His-5 complex was evaluated by determining the growth curve and colony-forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His-5. RESULTS The results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti-fungal effect against C. albicans. CONCLUSIONS Our study showed that TDN/His-5 was synthesized successfully. And by the modification of TDNs, His-5 showed increased transport efficiency and improved anti-fungal effect.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Qin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yue Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Songhang Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Dexuan Xiao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
26
|
Tetrahedral Framework Nucleic Acid-Based Delivery of Resveratrol Alleviates Insulin Resistance: From Innate to Adaptive Immunity. NANO-MICRO LETTERS 2021; 13:86. [PMID: 34138319 PMCID: PMC8006527 DOI: 10.1007/s40820-021-00614-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Tetrahedral framework nucleic acid (tFNA)-based delivery of resveratrol (RSV) ameliorates the performance of RSV. tFNAs-RSV improve insulin sensitivity in high-fat diet-fed mice by promoting Treg and Th2 and suppressing Th1 and Th17, and switching macrophage from M1 to M2 phenotype both in vitro and in vivo.
Obesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance. Here, we synthesized a tetrahedral framework nucleic acid (tFNA) nanoparticle that carried resveratrol (RSV) to inhibit tissue inflammation and improve insulin sensitivity in obese mice. The prepared nanoparticles, namely tFNAs-RSV, possessed the characteristics of simple synthesis, stable properties, good water solubility, and superior biocompatibility. The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy. In high-fat diet (HFD)-fed mice, the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status. tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages. As for adaptive immunity, the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg, leading to the alleviation of insulin resistance. Furthermore, this study is the first to demonstrate that tFNAs, a nucleic acid material, possess immunomodulatory capacity. Collectively, our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice, suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.![]()
Collapse
|
27
|
Zhang T, Cui W, Tian T, Shi S, Lin Y. Progress in Biomedical Applications of Tetrahedral Framework Nucleic Acid-Based Functional Systems. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47115-47126. [PMID: 32975109 DOI: 10.1021/acsami.0c13806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The past decades have witnessed the development of DNA nanotechnology and the emergence of various spatial DNA nanostructures, from two-dimensions to three-dimensions. The typical example is the tetrahedral framework nucleic acid (tFNA). In this review, we summarize the progress in fabrication, modification of tFNA-based functional systems and their potentials in biomedical applications. Through a one-step assembly process, tFNA is synthesized via four single stranded DNAs with three short sequences complementary to the other sequence of another single strand. Characterizations including polyacrylamide gel electrophoresis, atomic force microscopy, and dynamic light scattering measurement show tFNA as a pyramid-like nanostructure with the size of around 10 nm. Feathered with intrinsic biocompatibility and satisfactory cellular membrane permeability, the first generation of tFNA shows promising capacities in regulating cell biological behavior, promoting tissue regeneration, and immunomodulation. Along with excellent editability and relative biostability in complicated conditions, tFNA could be modified via hanging functional domains on the vertex or side arm and incorporating small-molecular-weight drugs to form the second generation, for reversing multidrug resistance in tumor cells or microorganisms, target therapy, anticancer and antibacterial treatments. The third generation of tFNA is currently tried via a multistep assembly process for stimuli-response and precise drug release. Although tFNAs show promising potentials in cargo delivery, massive efforts still need to be made to improve biostability, maximal load, and structural controllability.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc 2020; 15:2728-2757. [PMID: 32669637 DOI: 10.1038/s41596-020-0355-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/07/2020] [Indexed: 01/20/2023]
Abstract
Although organic nanomaterials and inorganic nanoparticles possess inherent flexibility, facilitating functional modification, increased intracellular uptake and controllable drug release, their underlying cytotoxicity and lack of specificity still cause safety concerns. Owing to their merits, which include natural biocompatibility, structural stability, unsurpassed programmability, ease of internalization and editable functionality, tetrahedral DNA nanostructures show promising potential as an alternative vehicle for drug delivery and biomedical treatment. Here, we describe the design, fabrication, purification, characterization and potential biomedical applications of a self-assembling tetrahedral DNA nanostructure (TDN)-based multifunctional delivery system. First, relying on Watson-Crick base pairing, four single DNA strands form a simple and typical pyramid structure via one hybridization step. Then, the protocol details four different modification approaches, including replacing a short sequence of a single DNA strand by an antisense peptide nucleic acid, appending an aptamer to the vertex, direct incubation with small-molecular-weight drugs such as paclitaxel and wogonin and coating with protective agents such as cationic polymers. These modified TDN-based complexes promote the intracellular uptake and biostability of the delivered molecules, and show promise in the fields of targeted therapy, antibacterial and anticancer treatment and tissue regeneration. The entire duration of assembly and characterization depends on the cargo type and modification method, which takes from 2 h to 3 d.
Collapse
|
29
|
Sun Y, Li S, Zhang Y, Li Q, Xie X, Zhao D, Tian T, Shi S, Meng L, Lin Y. Tetrahedral Framework Nucleic Acids Loading Ampicillin Improve the Drug Susceptibility against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36957-36966. [PMID: 32814381 DOI: 10.1021/acsami.0c11249] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qirong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Zhu J, Zhang M, Gao Y, Qin X, Zhang T, Cui W, Mao C, Xiao D, Lin Y. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct Target Ther 2020; 5:120. [PMID: 32678073 PMCID: PMC7366912 DOI: 10.1038/s41392-020-0173-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023] Open
Abstract
While the skin is considered the first line of defense in the human body, there are some vulnerabilities that render it susceptible to certain threats, which is an issue that is recognized by both patients and doctors. Cutaneous wound healing is a series of complex processes that involve many types of cells, such as fibroblasts and keratinocytes. This study showed that tetrahedral framework nucleic acids (tFNAs), a type of self-assembled nucleic-acid material, have the ability to promote keratinocyte(HaCaT cell line) and fibroblast(HSF cell line) proliferation and migration in vitro. In addition, tFNAs increased the secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in HSF cells and reduced the production of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in HaCaT cells by activating the AKT-signaling pathway. During in vivo experiments, tFNA treatments accelerated the healing process in skin wounds and decreased the development of scars, compared with the control treatment that did not use tFNAs. This is the first study to demonstrate that nanophase materials with the biological features of nucleic acids accelerate the healing of cutaneous wounds and reduce scarring, which indicates the potential application of tFNAs in skin tissue regeneration.
Collapse
Affiliation(s)
- Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China.
| |
Collapse
|
31
|
Liu Y, Sun Y, Li S, Liu M, Qin X, Chen X, Lin Y. Tetrahedral Framework Nucleic Acids Deliver Antimicrobial Peptides with Improved Effects and Less Susceptibility to Bacterial Degradation. NANO LETTERS 2020; 20:3602-3610. [PMID: 32272018 DOI: 10.1021/acs.nanolett.0c00529] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Gao Y, Zhang T, Zhu J, Xiao D, Zhang M, Sun Y, Li Y, Lin Y, Cai X. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. MATERIALS CHEMISTRY FRONTIERS 2020. [DOI: 10.1039/d0qm00329h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenges associated with muscle degenerative diseases and volumetric muscle loss (VML) emphasizes the prospects of muscle tissue regeneration.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Mei Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yue Sun
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - XiaoXiao Cai
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
33
|
Kong T, Zhou R, Zhang Y, Hao L, Cai X, Zhu B. AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging. Cell Prolif 2019; 53:e12713. [PMID: 31691382 PMCID: PMC6985679 DOI: 10.1111/cpr.12713] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Carbon dots (CDs), as a fascinating class of fluorescent carbon nanomaterials, have been proven to be powerful tools in the field of bioimaging and biosensing due to their small size, suitable photostability and favourable biocompatibility. However, the cellular uptake of free CDs lacks selectivity and the same negative charges as cell membranes may cause inefficient cell internalization. In this study, an efficient detecting and targeting nanosystem was developed based on the DNA aptamer AS1411 modified CDs with polyethyleneimine (PEI) as connecting bridge. MATERIALS AND METHODS Hydrothermally prepared CDs were assembled with positive-charged PEI, followed by conjugation with AS1411 through electrostatic interaction to form CDs-PEI-AS1411 nanocomplexes. The CDs, CDs-PEI and CDs-PEI-AS1411 were characterized by transmission electron microscopy (TEM), fourier transform infrared (FTIR) spectra, UV-vis spectra, zeta potential measurements and capillary electrophoresis characterizations. The cytotoxicity investigation of the CDs-PEI-AS1411 and CDs-PEI in both MCF-7 and L929 cells was carried out by the CCK-8 assay. The cellular uptake of the CDs-PEI-AS1411 was studied with confocal microscopy and flow cytometry. RESULTS The as-prepared nanosystem possessed good photostability and no obvious cytotoxicity. On the basis of the confocal laser scanning microscope observation and the flow cytometry studies, the cellular uptake of CDs-PEI-AS1411 nanosystem in MCF-7 cells was significantly higher than that of L929 cells, which revealed the highly selective detection ability of nucleolin-positive cells. CONCLUSIONS The results of this study indicated that the CDs-PEI-AS1411 nanosystem had a potential value in cancer cell targeted imaging.
Collapse
Affiliation(s)
- Tingting Kong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Qin X, Li N, Zhang M, Lin S, Zhu J, Xiao D, Cui W, Zhang T, Lin Y, Cai X. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. NANOSCALE 2019; 11:20667-20675. [PMID: 31642452 DOI: 10.1039/c9nr07171g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injuries are involved in the universal pathological processes of many ophthalmic diseases, including glaucoma, diabetic retinopathy, and retinal arterial occlusion.
Collapse
|