1
|
Kumbhare LB, Udayan APM, Singla H, Sawant SN, Ruz P, Wadawale A, Bahadur J. Hydrogen-bonded linear chain assemblies of palladium(II)-selenoether complexes: solid state aggregates as templates for nano-structural Pd 17Se 15 leading to efficient electrocatalytic activity. Dalton Trans 2023. [PMID: 37997778 DOI: 10.1039/d3dt02170j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A analogous series of 2-(3,5-dimethylpyrazol-1-yl)phenyl substituted selenoether complexes of palladium [PdCl2(RSeC6H4dmpz)]; (R = CH2COOH (1), CH2CH2COOH (2), and CH2CH2OH (3); dmpz = dimethylpyrazole) were ably synthesized in a facile manner and exhaustively characterized. Insight into molecular structures of these complexes was keenly probed through single crystal X-ray diffraction (XRD) analysis, unfolding the structural scaffolds and laying into molecular aggregation, availed through hydrogen bonding interactions borne out of tethered protic groups. The complexes were converted to capping free palladium selenide (Pd17Se15) nanoparticles through pyrolysis and evaluated for their electrocatalytic efficacy towards the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline medium. In an alkaline medium, PSNP1 (Pd17Se15) obtained from the hydrogen bonded aggregate of complex PdCl2L1 (1) produced good HER activity. PSNP1 had a little decrease in current density after 300 continuous cycles, which proves that the catalyst presents high stability in the recycling process. For the electrocatalytic oxidation of CH3OH, the electrocatalytic rate constant (k) obtained was 0.3 × 103 cm3 mol-1 s-1.
Collapse
Affiliation(s)
| | - Anu Prathap M Udayan
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh 160012, India
| | - Hardik Singla
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh 160012, India
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Priyanka Ruz
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
2
|
Ipadeola AK, Abdelgawad A, Salah B, Abdullah AM, Eid K. Interfacial Engineering of Porous Pd/M (M = Au, Cu, Mn) Sponge-like Nanocrystals with a Clean Surface for Enhanced Alkaline Electrochemical Oxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13830-13840. [PMID: 37724885 DOI: 10.1021/acs.langmuir.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kamel Eid
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Abdolmaleki M, Hosseini J, Allahgholipour GR, Hanifehpour Y. Alkaline ethanol oxidation on porous Fe/Pd–Fe nanostructured bimetallic electrodes. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Pd Oxide Nanoparticles enhanced Biomass Driven N-doped Carbon for Hydrogen Evolution Reaction. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Nguyen MTX, Nguyen MK, Pham PTT, Huynh HKP, Pham HH, Vo CC, Nguyen ST. High-performance Pd-coated Ni nanowire electrocatalysts for alkaline direct ethanol fuel cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhu Z, Liu F, Fan J, Li Q, Min Y, Xu Q. C2 Alcohol Oxidation Boosted by Trimetallic PtPbBi Hexagonal Nanoplates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52731-52740. [PMID: 33169980 DOI: 10.1021/acsami.0c16215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of ternary Pt-based catalysts represents a new trend for the application of electrocatalysts in fuel cells. In the present study, intermetallic PtPbBi hexagonal nanoplates (HNPs) with a hexagonal close-packed structure have been successfully synthesized via a facile solvothermal synthesis approach. The optimized PtPbBi HNPs exhibited excellent mass activity in the ethanol oxidation reaction (8870 mA mg-1Pt) in an alkaline ethanol solution, which is 12.7 times higher than that of JM Pt/C. Meanwhile, the mass activity of PtPbBi HNPs in an ethylene glycol solution (10,225 mA mg-1Pt) is 1.85 times higher than that of JM Pt/C. In particular, its catalytic activity is better than that of most reported Pt-based catalysts. In addition, the optimized PtPbBi HNPs also show a better operational durability than commercial Pt/C. For the ethylene glycol oxidation reaction, a mass activity of 42.7% was retained even after a chronoamperometric test for 3600 s, which is rare among the reported Pt-based catalysts. By combining X-ray photoelectron spectroscopy and electrochemical characterization, we reveal the electron transfer between Pt, Pb, and Bi; this would lead to weakened CO adsorption and enhanced OH adsorption, thereby promoting the removal of toxic intermediates and ensuring that PtPbBi HNP samples have high activity and excellent stability. This work can inspire the design and synthesis of Pt-based nanocatalysts.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
| | - Feng Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
7
|
Gong S, Zhang YX, Niu Z. Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuyan Gong
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu-Xiao Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Niu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Bowl-like carbon supported AuPd and phosphotungstic acid composite for electrooxidation of ethylene glycol and glycerol. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Tian MH, Yang Y, Desmond C, Liu F, Zhu ZQ, Li QX. Pt-Surface-Enriched Platinum–Tungsten Bimetallic Nanoparticles Catalysts on Different Carbon Supports for Electro-Oxidation of Ethanol. Catal Letters 2020. [DOI: 10.1007/s10562-020-03238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|