1
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
2
|
Lekshmanan L, Pillai AS, Thomas MM, Sukumaran PA, Saif S, Thankamani PR, Surendran KP, Pillai S, Ajayaghosh A. Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres. SMALL METHODS 2024:e2402125. [PMID: 39703087 DOI: 10.1002/smtd.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 12/21/2024]
Abstract
To counter economic terrorism by preventing counterfeit currency, documents and high-value commercial products, new-generation security inks with multiple safety features are required. Herein, color-tunable pyrylium and pyridinium dye-encapsulated polymethyl methacrylate (PMMA) colloidal microspheres are reported to exhibiting brilliant emission and photonic properties. A combination of the PMMA colloidal photonic ink having structural color variation and the dye-encapsulated colloidal photonic ink with fluorescence modulation is used for security labeling. The angle-dependent structural color variations, a remarkable 250-fold fluorescence enhancement, non-toxicity, and the rare earth-free formulation have made the ink novel and suitable for dual-layer high-security printing. Covert security patterns and labels are made overt under 365 nm UV light, while also exhibiting angle-dependent structural color. The increased level of security with developed photonic colloidal inks is demonstrated with dual-layer screen-printed images and patterns on flexible substrates.
Collapse
Affiliation(s)
- Lekshmi Lekshmanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Adarsh S Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Meghana M Thomas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Priyanka A Sukumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Safna Saif
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Priya R Thankamani
- International School of Photonics, Cochin University of Science and Technology (CUSAT), Cochin, 682022, India
| | - Kuzhichalil P Surendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Saju Pillai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
3
|
Ahmad S, Eng J, Penfold TJ. Conformational Control of Donor-Acceptor Molecules Using Non-covalent Interactions. J Phys Chem A 2024; 128:8035-8044. [PMID: 39287185 PMCID: PMC11440601 DOI: 10.1021/acs.jpca.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Controlling the architecture of organic molecules is an important aspect in tuning the functional properties of components in organic electronics. For purely organic thermally activated delayed fluorescence (TADF) molecules, design is focused upon orthogonality orientated donor and acceptor units. In these systems, the rotational dynamics around the donor and acceptor bond has been shown to be critical for activating TADF; however, too much conformational freedom can increase the non-radiative rate, leading to a large energy dispersion of the emitting states and conformers, which do not exhibit TADF. To date, control of the motion around the D-A bond has focused upon steric hindrance. In this work, we computationally investigate eight proposed donor-acceptor molecules, exhibiting a B-N bond between the donor and acceptor. We compare the effect of steric hindrance and noncovalent interactions, achieved using oxygen (sulfur) boron heteroatom interactions, in exerting fine conformational control of the excited state dynamics. This work reveals the potential for judiciously chosen noncovalent interactions to strongly influence the functional properties of TADF emitters, including the accessible conformers and the energy dispersion associated with the charge transfer states.
Collapse
Affiliation(s)
- Shawana Ahmad
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| | - Julien Eng
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| | - Thomas J. Penfold
- Chemistry—School of Natural
and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1
7RU, U.K.
| |
Collapse
|
4
|
Thomas JP, Amal Raj RB, Virat G, Dev AV, Vijayakumar C, Gowd EB. Proximity-induced FRET and charge-transfer between quantum dots and curcumin enable reversible thermochromic hybrid polymeric films. Chem Commun (Camb) 2024; 60:10954-10957. [PMID: 39258526 DOI: 10.1039/d4cc03184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
This study introduces a novel strategy for developing reversible thermochromic fluorescent films by precisely controlling the nanoscale proximity of boron nitride quantum dots and curcumin molecules within a poly(3-hydroxybutyrate) matrix. The synergistic interaction and Förster resonance energy transfer between these fluorophores result in an energy transfer efficiency of ∼94%. This approach enables tunable color changes in response to temperature variations, governed by the segmental mobility of polymer chains. Practical applications of these films as temperature sensors for water bottles and electronic devices are demonstrated, highlighting their potential in temperature monitoring, smart packaging, and thermal management systems.
Collapse
Affiliation(s)
- Jefin Parukoor Thomas
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R B Amal Raj
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - G Virat
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amarjith V Dev
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - E Bhoje Gowd
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
6
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
7
|
Mardani H, Mehrbakhsh S, Sheikhzadegan S, Babazadeh-Mamaqani M, Roghani-Mamaqani H. Colloidal Polymer Nanoparticles as Smart Inks for Authentication and Indication of Latent Fingerprints and Scratch. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1605-1615. [PMID: 38150585 DOI: 10.1021/acsami.3c16574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
An environmentally friendly smart ink was developed by incorporating fluorescein into functionalized poly(methyl methacrylate) (PMMA) nanoparticles synthesized using an emulsifier-free emulsion copolymerization approach. The functional comonomers of 2-(dimethylamino)ethyl methacrylate (DMAEMA), acrylamide, hydroxyethyl methacrylate, and glycidyl methacrylate in 10 wt % with respect to methyl methacrylate were used to obtain the functionalized colloidal PMMA nanoparticles. Functional groups of the latex nanoparticles were characterized by Fourier-transform infrared spectroscopy. Field emission scanning electron microscopy results showed that all of the latex nanoparticles have nearly spherical morphologies with variations in size and surface smoothness due to the presence of different comonomers. Ultraviolet-visible and fluorescence spectra indicated that the fluorescein-doped latex nanoparticles containing the DMAEMA comonomer had the highest absorbance and fluorescence intensity. In the alkaline media, fluorescein turns to a dianion, showing a red shift and increased absorbance in the UV-vis spectroscopy. In addition, the electron inductive characteristics of the tertiary amine groups result in enhancing the conjugation of fluorescein molecules and increasing the fluorescence intensities. Therefore, the colloidal nanoparticles with amine functional groups were used in the formulation of a smart ink with applications in securing documents and fingerprints, encrypting banknotes and money, detecting latent fingerprints, crafting anticounterfeiting paper, and eventually providing optical detection and indication of surface scratches.
Collapse
Affiliation(s)
- Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Sana Mehrbakhsh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Sina Sheikhzadegan
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box, Tabriz 51335-1996, Iran
| |
Collapse
|
8
|
Ling Y, Liu J, Dong Y, Chen Y, Chen J, Yu X, Liang B, Zhang X, An W, Wang D, Feng S, Huang W. Conventional Non-Fluorescent Polymers: Unconventional Security Inks for Data Storage and Multidimensional Photonic Cryptography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303641. [PMID: 37347620 DOI: 10.1002/adma.202303641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Traditional security inks relying on fluorescent/phosphorescent molecules are facing increasing risks of forgery or tampering due to their simple readout scheme (i.e., UV-light irradiation) and the advancement of counterfeiting technologies. In this work, a multidimensional data-encryption method based on non-fluorescent polymers via a "lock-key" mechanism is developed. The non-fluorescent invisible polymer inks serve as the "lock" for data-encryption, while the anti-rigidochromic fluorophores that can distinctively light up the polymer inks with programed emissions are "keys" for decryption. The emission of decrypted data is prescribed by polymer chemical structure, molecular weight, topology, copolymer sequence, and phase structure, and shows distinct intensity, wavelength, and chirality compared with the intrinsic emission of fluorophores. Therefore, the data is triply encrypted and naturally gains a high-security level, e.g., only one out of 20 000 keys can access the only correct readout from 40 000 000 possible outputs in a three-polymers-based data-encryption matrix. Note that fluorophores lacking anti-rigidochrimism cannot selectively light up the inks and fail in data-decryption. Further, the diverse topologies, less well-defined structures, and random-coiled shapes of polymers make it impossible for them to be imitated. This work offers a new design for security inks and boosts data security levels beyond the reach of conventional fluorescent inks.
Collapse
Affiliation(s)
- Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuanyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jiamao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaolan Yu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaocheng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei An
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Xu R, Wu G, Jiang M, Cao S, Panahi-Sarmad M, Kamkar M, Xiao X. Multi-Stimuli Dually-Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207900. [PMID: 36802163 DOI: 10.1002/smll.202207900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Indexed: 05/18/2023]
Abstract
This work focuses on multi-stimuli-responsive materials with distinctive abilities, that is, color-changing and shape-memory. Using metallic composite yarns and polymeric/thermochromic microcapsule composite fibers, processed via a melt-spinning technique, an electrothermally multi-responsive fabric is woven. The resulting smart-fabric transfers from a predefined structure to an original shape while changing color upon heating or applying an electric field, making it appealing for advanced applications. The shape-memory and color-changing features of the fabric can be controlled by rationally controlling the micro-scale design of the individual fibers in the structure. Thus, the fibers' microstructural features are optimized to achieve excellent color-changing behavior along with shape fixity and recovery ratios of 99.95% and 79.2%, respectively. More importantly, the fabric's dual-response by electric field can be achieved by a low voltage of 5 V, which is smaller than the previously reported values. Above and beyond, the fabric is able to be meticulously activated by selectively applying a controlled voltage to any part of the fabric. The precise local responsiveness can be bestowed upon the fabric by readily controlling its macro-scale design. A biomimetic dragonfly with the shape-memory and color-changing dual-response ability is successfully fabricated, broadening the design and fabrication horizon of groundbreaking smart materials with multiple functions.
Collapse
Affiliation(s)
- Runxin Xu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guanzheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, P. R. China
| | - Mengmeng Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shaojie Cao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Mahyar Panahi-Sarmad
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| | - Milad Kamkar
- Multiscale Materials Design Laboratory, Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
10
|
Zhao S, Li L, Hu C, Li B, Liu M, Zhu J, Zhou T, Shi W, Zou C. Multiphysical Field Modulated VO 2 Device for Information Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300908. [PMID: 37114834 PMCID: PMC10375123 DOI: 10.1002/advs.202300908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
In the information explosion society, information security is highly demanded in the practical application, which raised a surge of interest in designing secure and reliable information transmission channels based on the inherent properties of emerging devices. Here, an innovative strategy to achieve the data encryption and reading during the data confidential transmission based on VO2 device is proposed. Owing to the specific insulator-to-metal transition property of VO2 , the phase transitions between the insulator and metallic states are modulated by the combination of electric field, temperature, and light radiation. These external stimulus-induced phase diagram is directly associated with the defined VO2 device, which are applicable for control the "0" or "1" electrical logic state for the information encryption. A prototype device is fabricated on an epitaxial VO2 film, which displayed a unique data encryption function with excellent stability. The current study not only demonstrated a multiphysical field-modulated VO2 device for information encryption, but also supplied some clues for functional devices applications in other correlated oxide materials.
Collapse
Affiliation(s)
- Shanguang Zhao
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Liang Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Changlong Hu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Bowen Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Meiling Liu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Jinglin Zhu
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Ting Zhou
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Weidong Shi
- Research Institute of Chemical Defense, Beijing, 102205, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
11
|
Muthamma K, Gouda BM, Sunil D, Kulkarni SD, P.J. A. Water-based fluorescent flexo-ink for security applications. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractUV-readable fluorescent ink formulations find versatile applications in various fields including information encryption, automated identification systems, security markers and optical devices. In this context, a new bithiophene-based chalcone (BTCF) that exhibits good solution phase and solid-state fluorescence was synthesized as a colourant for formulating an eco-friendly UV fluorescent ink. The molecule demonstrated good thermal stability and photophysical features including intramolecular charge transfer, confirmed through emission studies in THF–hexane mixtures with varying hexane content. The intense greenish yellow solid-state fluorescence emission displayed by BTCF was exploited by using it as a colourant in a water-based fluorescent ink formulation. Further, the ink was used to print a fast-drying solid patch on an UV dull paper substrate using flexography technique. The analysis of colorimetric, densitometric and rub resistance properties of the printed paper samples demonstrated good fluorescence, moderate photostability and good rub resistance, and hence could be used for security printing applications.
Graphical abstract
Collapse
|
12
|
Xie J, Sun X, Guo X, Feng X, Chen K, Shu X, Wang C, Sun W, Liu Y, Shang B, Liu X, Chen D, Xu W, Li Z. Water-borne, durable and multicolor silicon nanoparticles/sodium alginate inks for anticounterfeiting applications. Carbohydr Polym 2023; 301:120307. [PMID: 36436869 DOI: 10.1016/j.carbpol.2022.120307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Recently, water-borne fluorescent inks have attracted extensive attention in anti-counterfeiting applications due to their convenient implementation and eco-friendliness. However, due to poor service durability, the latent authorization information from the inks is easily damaged, and even disappears when encountering water. Moreover, most of the existing fluorescent inks are monochromic, toxic, and allergic to skin, thus are unsuitable for their sustainability during real-life applications. Herein, this work presents environment-friendly, durable, and multicolor fluorescent anti-counterfeiting silicon nanoparticles (SiNPs)/sodium alginate (SA) inks. The multicolor SiNPs are synthesized by a one-pot method with defined morphologies and optical properties. Subsequently, SA is employed as the binder to prepare the fluorescent inks with optimized rheological properties. Practicability results show that the SiNPs/SA inks not only exhibit excellent printability, but also impart authentic information with superior covert performance. More notably, spraying solution of calcium dichloride can further improve fluorescent fastnesses of the SiNPs/SA inks by ionic crosslinking.
Collapse
Affiliation(s)
- Jing Xie
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xin Shu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Chenhao Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yang Liu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Bin Shang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xin Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Zhujun Li
- College of Textiles, Guangdong Polytechnic, Guangzhou 528041, PR China
| |
Collapse
|
13
|
Elewa AM, Liao CY, Li WL, Mekhemer IMA, Chou HH. Benzo[ d][1,2,3]thiadiazole-Based Polymer Dots as Photocatalysts for Enhanced Efficiency and Stability of Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ahmed M. Elewa
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Nuclear Chemistry Department, Egyptian Atomic Energy Authority, P.O. Box 13759, Inshas, Cairo 13759, Egypt
| | - Chuang-Yi Liao
- Raynergy Tek Incorporation, 2F, 60, Park Avenue 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Wei-Long Li
- Raynergy Tek Incorporation, 2F, 60, Park Avenue 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Islam M. A. Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
14
|
Dong Y, Ling Y, Wang D, Liu Y, Chen X, Zheng S, Wu X, Shen J, Feng S, Zhang J, Huang W. Harnessing molecular isomerization in polymer gels for sequential logic encryption and anticounterfeiting. SCIENCE ADVANCES 2022; 8:eadd1980. [PMID: 36322650 PMCID: PMC9629717 DOI: 10.1126/sciadv.add1980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Using smart photochromic and luminescent tissues in camouflage/cloaking of natural creatures has inspired efforts to develop synthetic stimuli-responsive materials for data encryption and anticounterfeiting. Although many optical data-encryption materials have been reported, they generally require only one or a simple combination of few stimuli for decryptions and rarely offer output corruptibility that prevents trial-and-error attacks. Here, we report a series of multiresponsive donor-acceptor Stenhouse adducts (DASAs) with unprecedented switching behavior and controlled reversibility via diamine conformational locking and substrate free-volume engineering and their capability of sequential logic encryption (SLE). Being analogous to the digital circuits, the output of DASA gel-based data-encryption system depends not only on the present input stimulus but also on the sequence of past inputs. Incorrect inputs/sequences generate substantial fake information and lead attackers to the point of no return. This work offers new design concepts for advanced data-encryption materials that operate via SLE, paving the path toward advanced encryptions beyond digital circuit approaches.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiya Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd, Piscataway, NJ 08854, USA
- Corresponding author. (W.H.); (J.Z.)
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Corresponding author. (W.H.); (J.Z.)
| |
Collapse
|
15
|
A Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission: Applications in Encryption. Angew Chem Int Ed Engl 2022; 61:e202208516. [DOI: 10.1002/anie.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/07/2022]
|
16
|
Snari RM, Al‐Qahtani SD, Aldawsari AM, Alnoman RB, Ibarhiam SF, Alaysuy O, Shaaban F, El‐Metwaly NM. Development of novel reversible thermometer from
N
‐isopropylacrylamide and dicyanodihydrofuran hydrazone probe. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Razan M. Snari
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Salhah D. Al‐Qahtani
- Department of Chemistry, College of Science Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Afrah M. Aldawsari
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry King abdulaziz City for Science and Technology Riyadh Saudi Arabia
| | - Rua B. Alnoman
- Department of Chemistry, College of Science Taibah University Madinah Saudi Arabia
| | - Saham F. Ibarhiam
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science University of Tabuk Tabuk Saudi Arabia
| | - Fathy Shaaban
- Environment and Health Research Department, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research Umm Al‐Qura University Makkah Saudi Arabia
- Geomagnetic and Geoelectric Department National Research Institute of Astronomy and Geophysics Cairo Egypt
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
17
|
Jiang Y, Ma J, Ran Z, Zhong H, Zhang D, Hadjichristidis N. Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission. Application in Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Jiang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science Minzu Road Wuhan CHINA
| | - Jiahui Ma
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Ziyu Ran
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Huiqing Zhong
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Daohong Zhang
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Nikos Hadjichristidis
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center SAUDI ARABIA
| |
Collapse
|
18
|
A Self-Color-Changing Film with Periodic Nanostructure for Anti-Counterfeit Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A self-color-changing film aimed at enhanced security and anti-counterfeit packaging is presented. Its function is to change color automatically when flipped under visible light. It is low-cost, takes a few seconds to check by the naked eye, and does not need any special tools to evaluate. The design of the color-changing, anti-counterfeiting film is based on a frequency-selective surface (FSS). The film is designed with aluminum nanocubes. They are laid out as an array in a plane with equal distance from one another. This arrangement allows us to select certain wavelengths of light to pass through by the size of the cubes and the separation distance between them. The performance is evaluated by a finite element analysis (FEA) method. The results show that the intersection of transmittance and the reflectance curves cause the film to change its color automatically when flipped. We also propose a method to predict the color of the film based on the transmittance values. The accuracy of this method is verified by actual colors from experiments with an error of no more than 12.8%, analyzed by the CIE chromaticity diagram.
Collapse
|
19
|
Gao M, Li J, Xia D, Jiang L, Peng N, Zhao S, Li G. Lanthanides-based security inks with reversible luminescent switching and self-healing properties for advanced anti-counterfeiting. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Rani K, Sengupta S. Multi-stimuli programmable FRET based RGB absorbing antennae towards ratiometric temperature, pH and multiple metal ion sensing. Chem Sci 2021; 12:15533-15542. [PMID: 35003582 PMCID: PMC8654024 DOI: 10.1039/d1sc05112a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
A red-green-blue (RGB) multichromophoric antenna 1 consisting of energy donors naphthalimides and perylenediimides and a central aza-BODIPY energy acceptor along with two subchromophoric red-blue (RB 6) and green-blue (GB 12) antennae was designed that showed efficient cascade Förster resonance energy transfer (FRET). RGB antenna 1 showed pronounced temperature-dependent emission behaviour where emission intensities in green and red channels could be tuned in opposite directions by temperature giving rise to unique ratiometric sensing with a temperature sensitivity of 0.4% °C. RGB antenna 1 showed reversible absorption modulation selectively in the blue region (RGB ↔ RG) upon acid/base addition giving rise to pH sensing behaviour. Furthermore, RGB antenna 1 was utilized to selectively sense metal ions such as Co2+ and Fe3+ through a FRET turn-off mechanism induced by a redox process at the aza-BODIPY site that resulted in the selective spectral modulation of the red band (i.e., RGB → GB). Model antenna RB 6 showed white light emission with chromaticity coordinates (0.32, 0.33) on acid addition. Antennae 1, 6 and 12 also exhibited solution state electrochromic switching characterized by distinct colour changes upon changing the potential. Finally, antennae 1, 6 and 12 served as reversible fluorescent inks in PMMA/antenna blends whereby the emission colours could be switched or tuned using different stimuli such as acid vapour, temperature and metal ions.
Collapse
Affiliation(s)
- Kavita Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| |
Collapse
|
21
|
Niu Y, Li S, Zhang J, Wan W, He Z, Liu J, Liu K, Ren S, Ge L, Du X, Gu Z. Static-Dynamic Fluorescence Patterns Based on Photodynamic Disulfide Reactions for Versatile Information Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102224. [PMID: 34310021 DOI: 10.1002/smll.202102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Dynamic fluorescence patterns with variable output in response to external stimulus can make the current information storage technologies more flexible and intelligent. Yet it remains a great challenge to create such dynamic patterns because of the complicated synthesis process, high cost, limited stability, and biocompatibility of the functional fluorophores. Herein, a facile approach is presented for creating dynamic fluorescence patterns using the photodynamic surface chemistry based on disulfide bonds. By this method, high-resolution (≈20 µm) multicolor dynamic fluorescence patterns that are low-cost and dynamically rewritable can be easily fabricated using classical fluorophores such as fluorescein, rhodamine, and dansyl acid. Owing to the spatio-temporal controllability of light, the fluorescence patterns can be partly or entirely erased/rewritten on demand, and complex gray-level fluorescence images with increased information capacity can be easily generated. The obtained fluorescence patterns exhibit little changes after storing in air and solvent environments for 100 days, demonstrating their high stability. In addition, static patterns can also be created on the same disulfide surface using irreversible disulfide-ene chemistry, to selectively control the dynamicity of the generated fluorescence patterns. The authors show the successful application of this strategy on information protection and transformation.
Collapse
Affiliation(s)
- Yanfang Niu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sen Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junning Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wang Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhenzhu He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Keliang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Sainan Ren
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Biomaterials and Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| |
Collapse
|
22
|
Du J, Sheng L, Xu Y, Chen Q, Gu C, Li M, Zhang SXA. Printable Off-On Thermoswitchable Fluorescent Materials for Programmable Thermally Controlled Full-Color Displays and Multiple Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008055. [PMID: 33829556 DOI: 10.1002/adma.202008055] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Thermoswitchable fluorescent materials (TFMs) have received special attention due to their unique fluorescent colorimetric responses to temperature. Conventional TFMs generally display unicolor with switching from one color to another, showing unprintable and unsatisfied performances. These limitations greatly hinder their development and expansion toward advanced applications. Herein, the superior integration of full-color, off-on switching mode, printability, and high performance to TFMs is achieved successfully. The success is due to a thermally induced synchronous "dual/multichannel" stimulus-response mode regulated by a self-crystalline phase-change material; that is, synergistic changes of the molecular existence states and subsequent colors/spectra of the fluorescent modifier and fluorophores, accompanied by corresponding high-efficiency on-off switching of Förster resonance energy transfer. These TFMs are simple to prepare and show good performance, such as high fluorescence emission contrast (>100), great reversibility (>200 cycles), and easy-to-adjust response temperature. Particularly, these R/G/B TFMs can be prepared as tricolor fluorescent inks, and thus full-color emissions on flexible substrate can be easily obtained by printing. Finally, their great potential in switchable dynamic interior decoration, programmatic temperature-control information display, and senior information encryption are illustrated. This successful exploration offers a new perspective for designing and optimizing various other switchable materials with higher comprehensive performances.
Collapse
Affiliation(s)
- Jiahui Du
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lan Sheng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuan Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiaonan Chen
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
23
|
Shen X, Hu Q, Ge M. Fabrication and characterization of multi stimuli-responsive fibers via wet-spinning process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119245. [PMID: 33303381 DOI: 10.1016/j.saa.2020.119245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Luminescent fibers have attracted much attention due to their application in smart textiles for anti-counterfeiting, camouflage, fashion designs and so on. However, fibers with single function of luminescent is fail to meet the growing demand of smart textiles. Herein, we develop a multifunctional fiber with quick-responsive reversible photochromic and light-emitting with long afterglow. Doping with rare earth material SrAl2O4:Eu2+, Dy3+ phosphors and photochromic pigments into polyacrylonitrile (PAN) fibers enable by facile wet-spinning process, the properties of photochromic luminescent fibers were experimentally investigated in details. The results make clear that resulting fibers exhibit quick-responsive reversible photochromic properties and can be excited by a wide range of ray from 300 to 450 nm, displaying a wide band with a maximum peak at 525 nm. The photochromic pigments and SrAl2O4:Eu2+, Dy3+ phosphors distributed in fibers evenly and the fibers are stable below 258.76 °C. Persistent luminescent properties of fibers are excellent and the afterglow can last for more than 1 h. The ultimate strength of fibers are more than 1.39 MPa. Comparing with a lot of investigated luminescent fibers, our work to photochromic luminescent fibers show huge potential in anti-counterfeiting, aesthetics fashion designs and so on for smart textiles.
Collapse
Affiliation(s)
- Xiuyu Shen
- College Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Qian Hu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingqiao Ge
- College Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Liu X, Liang X, Hu Y, Han L, Qu Q, Liu D, Guo J, Zeng Z, Bai H, Kwok RTK, Qin A, Lam JWY, Tang BZ. Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. JACS AU 2021; 1:344-353. [PMID: 34467298 PMCID: PMC8395608 DOI: 10.1021/jacsau.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/14/2023]
Abstract
Photoresponsive polymers have attracted extensive attention due to their tunable functionalities and advanced applications; thus, it is significant to develop facile in situ synthesis strategies, extend polymers family, and establish various applications for photoresponsive polymers. Herein, we develop a catalyst-free spontaneous polymerization of dihaloalkynes and disulfonic acids without photosensitive monomers for the in situ synthesis of photoresponsive polysulfonates at room temperature in air with 100% atom economy in high yields. The resulting polysulfonates could undergo visible photodegradation with strong photoacid generation, leading to various applications including dual-emissive or 3D photopatterning, and practical broad-spectrum antibacterial activity. The halogen-rich polysulfonates also exhibit a high and photoswitched refractive index and could undergo efficient postfunctionalizations to further expand the variety and functionality of photoresponsive heteroatom-containing polyesters.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Liang
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Yubing Hu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lei Han
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Qing Qu
- Nano
Science and Technology Program and William Mong Institute of Nano
Science and Technology, The Hong Kong University
of Science and Technology, Clear
Water Bay, Hong Kong China
| | - Dongming Liu
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Guo
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zebing Zeng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haotian Bai
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Anjun Qin
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
25
|
Rival JV, Mymoona P, Vinoth R, Mohan AMV, Shibu ES. Light-Emitting Atomically Precise Nanocluster-Based Flexible QR Codes for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10583-10593. [PMID: 33591728 DOI: 10.1021/acsami.0c21127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite tremendous progress in the field of fluorescence-based anticounterfeiting, the advanced anticounterfeiting techniques are still posing challenges all over the world due to their cost and reliability. Recently, light-emitting atomically precise nanoclusters have emerged as attractive building blocks because of their well-defined structure, function, and stable photoluminescence. Herein, we report the room temperature fabrication of a stable, flexible, nontoxic, and low-cost precision nanocluster-based luminescent ink for the stencil printing of an optically unclonable security label. Nanocluster-based printing ink shows brilliant photoluminescence owing to its extended C-H···π/π···π interactions. Spectroscopic and microscopic investigations show that intercalated nanoclusters in the printed security labels are highly stable as their optical features and molecular compositions are unaffected. The exceptional mechanical, thermal, photo, and aqueous stabilities of the printed security labels endorse to demonstrate the printing and smartphone-based electronic reading of the quick response code on a currency. Finally, confidential information protection and decryption under a precise window of light have been achieved by adopting the optical contrast illusion. The overall cost of the security label is found to be approximately 0.013 USD per stamp.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - Paloli Mymoona
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad 201002, Uttar Pradesh, India
| | - Rajendran Vinoth
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad 201002, Uttar Pradesh, India
- Electrodics and Electrocatalysis (EEC) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - A M Vinu Mohan
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad 201002, Uttar Pradesh, India
- Electrodics and Electrocatalysis (EEC) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
26
|
Han Y, Zhang T, Chen X, Chen Q, Xue P. Spacer group-controlled luminescence and response of C3-symmetric triphenylamine derivatives towards force stimuli. CrystEngComm 2021. [DOI: 10.1039/d0ce01539c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spacer groups have the ability to regulate the responses of two C3-symmetric triphenylamine derivatives. Double bonds induced larger spectral shifts compared to that of single bonds.
Collapse
Affiliation(s)
- Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin
- P. R. China
| |
Collapse
|
27
|
Fu X, Li G, Cai S, Yang H, Lin K, He M, Wen J, Li H, Xiong Y, Chen D, Liu X. Color-switchable hybrid dots/hydroxyethyl cellulose ink for anti-counterfeiting applications. Carbohydr Polym 2021; 251:117084. [PMID: 33142625 DOI: 10.1016/j.carbpol.2020.117084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
Many anti-counterfeiting inks have been explored recently, most of them are commonly involved in weak fastness, high cost and long-term toxicity, impeding their real-life applications. Herein, an environment-friendly and inexpensive anti-counterfeiting ink with excellent fastness is reported. The untifake ink is developed by combining hybrid dots (silicon/carbon) with hydroxyethyl cellulose (HEC) binder. Interestingly, the HEC binder can effectively prevent from aggregation-induced quenching of hybrid dots. Subsequently, the customized patterns are successfully transferred onto different surfaces of various substrates including cotton fabric, cellulosic paper, glass, metal, silicon wafer and PET film, using the as-prepared ink by screen-printing technique, exhibiting that the hybrid dots/HEC ink possesses widespread practicability. Notably, fluorescent color of these patterns can be switchable by adjusting environmental pH-value, further imparting the as-prepared ink with excellent covert performance. This new fluorescent hybrid dots/HEC ink will be promising candidates for high-level anti-counterfeiting applications including food packaging, apparel and documents.
Collapse
Affiliation(s)
- Xijun Fu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China; School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Guoqing Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Shaoyong Cai
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Heng Yang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Kang Lin
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Miao He
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Junwei Wen
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Yabo Xiong
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
28
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS NANO 2020; 14:14417-14492. [PMID: 33079535 DOI: 10.1021/acsnano.0c07289] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Counterfeiting and inverse engineering of security and confidential documents, such as banknotes, passports, national cards, certificates, and valuable products, has significantly been increased, which is a major challenge for governments, companies, and customers. From recent global reports published in 2017, the counterfeiting market was evaluated to be $107.26 billion in 2016 and forecasted to reach $206.57 billion by 2021 at a compound annual growth rate of 14.0%. Development of anticounterfeiting and authentication technologies with multilevel securities is a powerful solution to overcome this challenge. Stimuli-chromic (photochromic, hydrochromic, and thermochromic) and photoluminescent (fluorescent and phosphorescent) compounds are the most significant and applicable materials for development of complex anticounterfeiting inks with a high-security level and fast authentication. Highly efficient anticounterfeiting and authentication technologies have been developed to reach high security and efficiency. Applicable materials for anticounterfeiting applications are generally based on photochromic and photoluminescent compounds, for which hydrochromic and thermochromic materials have extensively been used in recent decades. A wide range of materials, such as organic and inorganic metal complexes, polymer nanoparticles, quantum dots, polymer dots, carbon dots, upconverting nanoparticles, and supramolecular structures, could display all of these phenomena depending on their physical and chemical characteristics. The polymeric anticounterfeiting inks have recently received significant attention because of their high stability for printing on confidential documents. In addition, the printing technologies including hand-writing, stamping, inkjet printing, screen printing, and anticounterfeiting labels are discussed for introduction of the most efficient methods for application of different anticounterfeiting inks. This review would help scientists to design and develop the most applicable encryption, authentication, and anticounterfeiting technologies with high security, fast detection, and potential applications in security marking and information encryption on various substrates.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
29
|
Li P, Zeng J, Wang B, Cheng Z, Xu J, Gao W, Chen K. Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydr Polym 2020; 247:116721. [PMID: 32829845 DOI: 10.1016/j.carbpol.2020.116721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022]
Abstract
Nanofibrillated cellulose (NFC) is becoming popular in the field of anti-counterfeiting material due to its favorable biocompatibility, renewability, and easy modification properties, which give it great potentials as carrier of carbon quantum dots (CQDs). Herein, we report an effective method to fabricate Yb and Er doped CQDs grafted onto dialdehyde NFC (DANFC). Owning to special rheological properties of NFC, a waterborne fluorescent dual anti-counterfeiting ink was rationally designed and successfully prepared by adding NFC to waterborne ink to form a stable network structure and increase the thixotropy and yield stress. The resulting CQDs exhibited both photoluminescence (PL) and up-conversion luminescence (UCPL), emitting blue and green fluorescence at excitation wavelengths of 370 and 980 nm, respectively. The study provides a novel method to prepare the waterborne fluorescent dual anti-counterfeiting ink based on Yb and Er doped CQDs/DANFC composites, which provides a reference for its application in printing and packaging industry.
Collapse
Affiliation(s)
- Pengfei Li
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jinsong Zeng
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Bin Wang
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Zheng Cheng
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jun Xu
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Wenhua Gao
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Kefu Chen
- Plant Fiber Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
30
|
Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydr Polym 2020; 245:116507. [DOI: 10.1016/j.carbpol.2020.116507] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 01/24/2023]
|
31
|
Ding L, Wang XD. Luminescent Oxygen-Sensitive Ink to Produce Highly Secured Anticounterfeiting Labels by Inkjet Printing. J Am Chem Soc 2020; 142:13558-13564. [DOI: 10.1021/jacs.0c05506] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Longjiang Ding
- Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| | - Xu-dong Wang
- Department of Chemistry, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
32
|
Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B. Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles. J Colloid Interface Sci 2020; 580:192-210. [PMID: 32683117 DOI: 10.1016/j.jcis.2020.06.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Counterfeiting of confidential documents has been a costly challenge for banks, companies, and customers. Encryption of invisible security marks, such as barcodes, quick response codes, and logos, in national or international confidential documents by high-security anticounterfeiting inks is the most significant solution for counterfeiting problems. Ecofriendly multi-color photoluminescent anticounterfeiting inks based on highly-fluorescent polymer nanoparticles functionalized with new oxazolidine derivatives were developed for the fast and facile encryption of security labels on cellulosic documents, such as paper currency, passport, and certificate. Depending on the polarity of functionalized polymer nanoparticles, a wide range of colors and fluorescence emissions were observed as a result of polar-polar interactions between the oxazolidine molecules and surface functional groups of the nanoparticles. The fluorescent polymer nanoparticles showed spherical, vesicular, and cauliflower-like morphologies resulted from different surface functional groups. Functional polymer nanoparticles displayed high stability and printability on cellulosic substrates due to hydrogen bonding interactions. The highly-fluorescent polymer nanoparticles were also used to prepare anticounterfeiting inks with different colors and fluorescence emissions. All the ecofriendly polymeric anticounterfeiting inks were loaded to stamps with specific marks, and then applied to different confidential documents. Printed labels displayed highly intense fluorescence emission in different colors (green, orange, pink, and purple depending on the matrix polarity) under UV irradiation (365 nm). These water-based multi-color fluorescent anticounterfeiting inks with highly intense, bright, and sensitive fluorescence emission have potential applications in encryption and authentication of security patterns.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
33
|
Mahapatra M, Dutta A, Roy JSD, Deb M, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Synthesis of Biocompatible Aliphatic Terpolymers via In Situ Fluorescent Monomers for Three-in-One Applications: Polymerization of Hydrophobic Monomers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6178-6187. [PMID: 32418427 DOI: 10.1021/acs.langmuir.0c00636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biocompatible, nonconventional, multifunctional, purely aliphatic, light-emitting terpolymers, i.e., acrylonitrile-co-3-(N-isopropylacrylamido)propanenitrile-co-N-isopropylacrylamide (AN-co-NIPAMPN-co-NIPA, 1) and acrylonitrile-co-3-(N-hydroxymethylacrylamido)propanenitrile-co-N-hydroxymethylacrylamide (AN-co-NHMAMPN-co-NHMA, 2), were designed and synthesized via N-H-functionalized C-C + N-C-coupled in situ protrusions/grafting of fluorophore monomers, i.e., NIPAMPN and NHMAMPN, by solution polymerization of two highly hydrophobic nonemissive monomers in water. These scalable and reusable 1 and 2 were suitable for high-performance three-in-one applications, such as Fe(III) sensors, imaging of Madin-Darby canine kidney (MDCK) and human lung cancer (A549) cells, and security inks. The structures of 1 and 2, N-C-coupled in situ attachments/grafting of third fluorophore monomers, grafting events, and aggregation-enhanced emissions (AEEs), were analyzed by 1H and 13C NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric (TG) analysis, high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, and absorption/emission properties of 1 and 2 at optimized compositions were examined by density functional theory (DFT), time-dependent DFT (TDDFT), and natural transition orbital (NTO) analyses. The limits of detection were 3.20 × 10-7 and 1.37 × 10-7 M for 1 and 2, respectively. The excellent biocompatibility of 1 and 2 was confirmed by >95% retention of MDCK and A549 cell morphologies.
Collapse
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Ujjal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
34
|
Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers (Basel) 2020; 12:polym12061226. [PMID: 32481616 PMCID: PMC7362226 DOI: 10.3390/polym12061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present the use of a disubstituted polyacetylene with high thermal stability and quantum yield as a fluorescence label for the identification, tracing, recycling, and eventually anti-counterfeiting applications of thermoplastics. A new method was developed for the dispersion of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) into polymer blends. For such purposes, four representative commodity plastics were selected, i.e., polypropylene, low-density polyethylene, poly(methyl methacrylate), and polylactide. Polymer recycling was mimicked by two reprocessing cycles of the material, which imparted intensive luminescence to the labelled polymer blends when excited by proper illumination. The concentration of the labelling polymer in the matrices was approximately a few tens ppm by weight. Luminescence was visible to the naked eye and survived the simulated recycling successfully. In addition, luminescence emission maxima were correlated with polymer polarity and glass transition temperature, showing a marked blueshift in luminescence emission maxima with the increase in processing temperature and time. This blueshift results from the dispersion of the labelling polymer into the labelled polymer matrix. During processing, the polyacetylene chains disentangled, thereby suppressing their intermolecular interactions. Moreover, shear forces imposed during viscous polymer melt mixing enforced conformational changes, which shortened the average conjugation length of PTMSDPA chain segments. Combined, these two mechanisms shift the luminescence of the probe from a solid- to a more solution-like state. Thus, PTMSDPA can be used as a luminescent probe for dispersion quality, polymer blend homogeneity, and processing history, in addition to the identification, tracing, and recycling of thermoplastics.
Collapse
|