1
|
González-Sánchez M, Valera JS, Veiga-Herrero J, Chamorro PB, Aparicio F, González-Rodríguez D. Self-assembled nanotubes from the supramolecular polymerization of discrete cyclic entities. Chem Soc Rev 2025. [PMID: 40332948 DOI: 10.1039/d4cs01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Inspired by the extraordinary attributes displayed by nanotubes in Nature, the creation of self-assembled nano-sized hollow tubes is an area of significant and growing interest given its potential application in transmembrane ion channels, ion sensing or catalysis, among others. One of the most utilized strategies employed to build these supramolecular entities implies the stacking of discrete cyclic units. Given the intrinsic dynamicity of the forces that drive the self-assembly processes, this approach offers substantial advantages when compared to inorganic or covalent approaches, ranging from tunable pore designs to error correction, to name a few. Herein we focus on the different approaches explored to design discrete cyclic entities as building blocks for the construction of self-assembled nanotubes, as well as the analytical tools used to elucidate the resulting structures. Attending to the nature of the bond involved in the formation of the cycle, we have distinguised three main categories: covalent, non-novalent and dynamic-covalent cycles. This review thus constitutes a roadmap to build self-assembled nanotubes based on soft matter and paves the way to expand their current applications.
Collapse
Affiliation(s)
- Marina González-Sánchez
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jorge S Valera
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jacobo Veiga-Herrero
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Paula B Chamorro
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Fátima Aparicio
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Chen C, Zhang X, Ren C, Yan J, Wu K, Yan Y, Song X, Bu S, Niu Y. Synthesis and Photocatalytic Performance of Five Organic-Inorganic Hybrid Supramolecules with Chain-like Organic Cations for Tetracycline Degradation. Molecules 2025; 30:817. [PMID: 40005129 PMCID: PMC11858477 DOI: 10.3390/molecules30040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this paper, we synthesized a chain-like organic cation structure directing agent L·Cl2 by reacting triethylenediamine with 1,2-bis(2-chloroethoxy)ethane. We then used a room temperature volatilization method to react L·Cl2 with inorganic metal salts to synthesize five organic-inorganic hybrid supramolecules: {[L][HgI4]} (1), {[L][CdI4]} (2), {[(L)(Cu2I3)]·[CuI2]CH3CN}n (3) {[L][CoCl3]2} (4), and {[L][Ce(NO3)5·(H2O)2]} (5) (L=1,1'-((ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1,4-diazabicyclo [2.2.2]octan-1-ium) chloride). The compounds were characterized by X-ray diffraction, infrared spectroscopy, elemental analysis, and thermogravimetric analysis. Compounds 1, 2, and 5 are mononuclear anion compounds, while compound 3 is a 1D chain, and 4 is a binuclear anion compound. The results showed that 10 mg of compound 3 achieved 92.22% of tetracycline degradation efficiency in the initial TC solution pH = 7. The optimal conditions such as solution pH, catalyst dosage, and solution temperature for the photocatalytic degradation of TC wastewater by compound 3 were explored. Moreover, the photocatalytic degradation efficiency of compound 3 was above 86% each time after four cycles, indicating a good recyclability. The mechanism of photocatalytic degradation was also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yunyin Niu
- College of Chemistry and Pingyuan Laburatory, Zhengzhou University, Zhengzhou 450001, China (J.Y.); (S.B.)
| |
Collapse
|
3
|
Yan J, Ren L, Lu X, Li W, Zhang A. Supramolecular Chiral Assembly of Dendritic Amphiphiles in Aqueous Media. Chemistry 2025; 31:e202403450. [PMID: 39601355 DOI: 10.1002/chem.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities. Moreover, the crowded packing of dendritic segments facilitates the efficient chirality transfer from molecular level to supramolecular level, to achieve chirality amplification or enhancement. Dendritic moieties also provide chances to stabilize the assemblies in aqueous media through shielding and cooperative effects. The dendritic assemblies can be intriguingly made responsive to external stimuli including temperature, light, solvents or guests to switch their nanostructures or supramolecular chirality. Various dendritic amphiphiles bearing peptide or aromatic motifs have been reported in supramolecular chiral assembly, and their functional applications investigated. This review summarizes the significant progresses with a particular focus on the dendritic structural effects on supramolecular chiral assembly and the stimuli-responsiveness in aqueous media.
Collapse
Affiliation(s)
- Jiatao Yan
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| |
Collapse
|
4
|
Han J, Back HJ, Hossain MM, Jung OS, Lee YA. Self-assembly of Ni(II) with a chiral ligand pair vs. mixture of the chiral ligand pair: structural features and recognition ability of Ni 2L 4 cages. Dalton Trans 2024; 53:8934-8939. [PMID: 38738336 DOI: 10.1039/d4dt00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The self-assembly of NiCl2 with a chiral bidentate ligand pair, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl nicotinate (r,s-L and s,r-L) in a mixture of ethanol and dioxane, gives rise to stable crystals consisting of [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral cages, respectively, with two encapsulated chloride anions in the cavities. The most interesting feature is that the self-assembly of NiCl2 with the mixture of r,s-L and s,r-L (1 : 1-1 : 4) produces crystals of thermodynamically stable achiral cages, [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2, in the molar ratio range. Furthermore, the [2Cl@Ni2Cl2(s,r-L)4(H2O)2]·4C4H8O2·EtOH and [2Cl@Ni2Cl2(r,s-L)4(H2O)2]·4C4H8O2·EtOH chiral crystals can recognize the pairs of L-,D-tryptophan and L-,D-cysteine via cyclic voltammetry (CV) signals, in contrast to the [2Cl·2H2O@Ni2Cl2(s,r-L)2(r,s-L)2(H2O)2]·7C4H8O2 achiral crystal.
Collapse
Affiliation(s)
- Jihun Han
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jeong Back
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Mohammad M Hossain
- Department of Electrochemistry, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Young-A Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
5
|
Back HJ, Kim D, Kim D, Han J, Hossain MM, Jung OS, Lee YA. Formation Process of SiF 6@Cu 2L 4 Chiral Cage Pairs in a Glass Vessel: Catechol Oxidation Catalysis and Chiral Recognition. ACS OMEGA 2023; 8:39720-39729. [PMID: 37901500 PMCID: PMC10601440 DOI: 10.1021/acsomega.3c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Self-assembly of CuX2 (X- = BF4-, PF6-, and SbF6-) with a pair of chiral bidentate ligands, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl-nicotinate (r,s-L or s,r-L), in a mixture solvent including ethanol in a glass vessel gives rise to SiF62--encapsulated Cu2L4 chiral cage products. The SiF62- anion from the reaction of X- with SiO2 of the glass-vessel surface acts as a cage template or cage bridge. One of the products, [SiF6@Cu2(SiF6)(s,r-L)4]·3CHCl3·4EtOH, is one of the most effective heterogeneous catalysts for the oxidation of 3,5-di-tert-butylcatechol. Furthermore, an l-DOPA/d-DOPA pair is recognizable by the cyclic voltammetry (CV) signals of its combination with chiral cages [SiF6@Cu2(BF4)2(s,r- or r,s-L)4]·4CHCl3·2EtOH pair and [SiF6@Cu2(SiF6)(s,r- or r,s-L)4]·3CHCl3·4EtOH pair.
Collapse
Affiliation(s)
- Hyo Jeong Back
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Daeun Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwon Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jihun Han
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Mohammad Mozammal Hossain
- Department
of Electrochemistry, Korea Institute of
Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Ok-Sang Jung
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Young-A Lee
- Department
of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Photocatalytic Degradation of Tetracycline by Supramolecular Materials Constructed with Organic Cations and Silver Iodide. Catalysts 2022. [DOI: 10.3390/catal12121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photocatalytic degradation, as a very significant advanced oxidation technology in the field of environmental purification, has attracted extensive attention in recent years. The design and synthesis of catalysts with high-intensity photocatalytic properties have been the focus of many researchers in recent years. In this contribution, two new supramolecular materials {[(L1)·(Ag4I7)]CH3CN} (1), {[(L2)·(Ag4I7)]CH3CN} (2) were synthesized by solution volatilization reaction of two cationic templates 1,3,5-Tris(4-aminopyridinylmethyl)-2,4,6-Trimethylphenyl bromide (L1) and 1,3,5-Tris(4-methyl pyridinyl methyl)-2,4,6-trimethylphenyl bromide (L2) with metal salt AgI at room temperature, respectively. The degradation effect of 1 and 2 as catalyst on tetracycline (TC) under visible light irradiation was studied. The results showed that the degradation of TC by 1 was better than that by 2 and both of them had good stability and cyclability. The effects of pH value, catalyst dosage, and anion in water on the photocatalytic performance were also investigated. The adsorption kinetics fit the quasi-first-order model best. After 180 min of irradiation with 1, the degradation rate of TC can reach 97.91%. In addition, the trapping experiments showed that ·OH was the main active substance in the photocatalytic degradation of TC compared with ·O2− and h+. Because of its simple synthesis and high removal efficiency, catalyst 1 has potential value for the treatment of wastewater containing organic matter.
Collapse
|
7
|
Kim D, Seo KD, Shim YB, Lee K, Lee SH, Lee YA, Jung OS. Pair of chiral 2D silver(I) enantiomers: chiral recognition of L- and D-histidine via differential pulse voltammetry. Dalton Trans 2022; 51:6046-6052. [PMID: 35353103 DOI: 10.1039/d1dt03371a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-assembly of AgPF6 with a pair of chiral tridentate ligands (1S,1'S,1''S,2R,2'R,2''R) and (1R,1'R,1''R,2S,2'S,2''S)-(benzenetricarbonyltris(azanediyl))tris(2,3-dihydro-1H-indene-2,1-diyl)triisonicotinate (s,r-L) and (r,s-L) in a mixture of methanol and dioxane yields 2D sheets consisting of [Ag(s,r-L)](PF6)·3C4H8O2·0.5H2O and [Ag(r,s-L)](PF6)·3C4H8O2·0.5H2O, respectively. The differential pulse voltammetric (DPV) technique using the pair of chiral 2D-sheet enantiomers was employed for chiral discrimination of amino acid enantiomers, and was found to be an effective tool for enantio-recognition of L- and D-histidines. Both the size and the binding site of amino acids were strongly dependent on electrochemical enantio-recognition via the chiral 2D sheets.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kyeong-Deok Seo
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Yoon-Bo Shim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kyungsuh Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Young-A Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Chamorro PB, Aparicio F. Chiral nanotubes self-assembled from discrete non-covalent macrocycles. Chem Commun (Camb) 2021; 57:12712-12724. [PMID: 34749387 DOI: 10.1039/d1cc04968b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many strategies have been used to construct supramolecular hollow tubes, including helical folding of oligomers, bundling of rod-like structures, rolling-up of sheets and stacking of covalent cycles. On the other hand, controlling chirality at the supramolecular level continues attracting much interest because of its implications in future applications of porous systems. This review article covers the main examples in the literature that use simple molecular structures as chiral units for precise assembly into discrete non-covalent cyclic structures that are able to form chiral supramolecular tubular systems.
Collapse
Affiliation(s)
- P B Chamorro
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - F Aparicio
- Nanostructured Molecular Systems and Materials (MSMn) Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Aerathupalathu Janardhanan J, Valaboju A, Dhawan U, Mansoure TH, Yan CCS, Yang CH, Gautam B, Hsu CP, Yu HH. Molecular and nano structures of chiral PEDOT derivatives influence the enantiorecognition of biomolecules. In silico analysis of chiral recognition. Analyst 2021; 146:7118-7125. [PMID: 34739011 DOI: 10.1039/d1an01465j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study we investigated the synergistic effects of the chirality (molecular structure) and surface morphology (nanostructure) of a newly designed sensing platform for the stereoselective recognition of biomolecules. We synthesized 3,4-ethylenedioxythiophene monomers presenting an OH functional group on the side chain (EDOT-OH) with either R or S chirality and then electropolymerized them in a template-free manner to engineer poly(EDOT-OH) nanotubes and smooth films with R or S chirality. We used a quartz crystal microbalance (QCM) to examine the differential binding of fetal bovine serum, RGD peptide, insulin, and (R)- and (S)-mandelic acid (MA) on these chiral polymeric platforms. All of these biomolecules bound stereoselectively and with greater affinity toward the nanotubes than to the smooth films. The sensitive chiral recognition of (S)- and (R)-MA on the (R)-poly(EDOT-OH) nanotube surface occurred with the highest chiral discrepancy ratio of 1.80. In vitro experiments revealed a greater degree of protein deposition from MCF-7 cells on the chiral nanotube surfaces. We employed ab initio molecular dynamics simulations and density functional theory calculations to investigate the mechanism underlying the sensitive chiral recognition between the chiral sensing platforms and the chiral analyte molecules.
Collapse
Affiliation(s)
- Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300, Taiwan
| | - Anusha Valaboju
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Udesh Dhawan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Tharwat Hassan Mansoure
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | | | - Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Bhaskarchand Gautam
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,National Center for Theoretical Sciences, Physics Division, Taipei 10617, Taiwan
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
10
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
11
|
Abstract
Nanopore structures in nature play a crucial role in performing many sophisticated functions such as signal transduction, mass transport, ion channel, and enzyme reaction. Inspired by pore-forming proteins, considerable effort has been made to design self-assembling molecules that are able to form nanostructures with internal pores in aqueous media. These nanostructures offer ample opportunity for applications because their internal pores are able to perform a number of unique functions required for a confined nanospace. However, unlike nanopore assembly in nature, the synthetic nanopore structures are mostly based on a fixed pore that impedes performing adaptable regulation of properties to environmental change. This limitation can be overcome by integration of hydrophilic oligo(ethylene oxide) dendrons into aromatic building blocks for nanopore self-assembly, because the dendritic chains undergo large conformational changes triggered by environmental change. The transition of the oligoether chains triggers the aromatic nanopore assembly to undergo reversible pore deformation through closing, squeezing, and shape change without structural collapse. These switching properties allow the aromatic nanopore structures to perform adaptable, complex functions which are difficult to achieve using a fixed pore assembly.In this Account, we summarize our recent progress in the development of switchable nanopore structures by self-assembly of rigid aromatic amphiphiles grafted by hydrophilic oligo(ethylene oxide) dendrons in aqueous media. We show that combining oligoether chains into aromatic segments generates switchable aromatic nanopore structures in aqueous media such as hollow tubules, toroidal structures, and 2D porous sheets depending on the shape of the aromatic building block. Next, we discuss the chemical principle behind the switching motion of the aromatic nanopore structures triggered by external stimuli. We show that the internal pores of the aromatic nanostructures are able to undergo reversible switching between open-closed or expanded-contracted states triggered by external stimuli such as temperature, pH, and salts. In the case of toroidal structures, closed ring-like aromatic frameworks can be spirally open triggered by heat treatment, which spontaneously initiate helical polymerization. Additionally, we discuss switchable functions carried out by the aromatic nanopores such as driving helicity inversion of DNA, consecutive enzymatic action, reversible actuation of lipid vesicles, and pumping of captured guests out of internal pores. By understanding the underlying chemical principle required for dynamic mechanical motion, aromatic assembly can be exploited more broadly to create emergent nanopore structures with functions as complex as those of biological systems.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Ye N, Pei YR, Han Q, Lee M, Jin LY. Self-assembly of propeller-shaped amphiphilic molecules: control over the supramolecular morphology and photoproperties of their aggregates. SOFT MATTER 2021; 17:6661-6668. [PMID: 34160543 DOI: 10.1039/d1sm00661d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state. In the solution-state, these molecules assemble into nanosheet-like aggregates, bowl-like objects, and spherical nanoparticles, respectively. The morphology of the molecular aggregates can be controlled by modifying the molecular chain length or introducing lateral methyl groups in the coil chain. Notably, these molecular assemblies exhibit strong AIE phenomena in a mixed THF/H2O solution and can be used as smart soft materials due to the restriction of their intramolecular motion.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
13
|
Dong SL, Xu Y, Chen YZ, Yan XS, Li Z, Xie JW, Jiang YB. Chiral Recognition by Flexible Coordination Polymers of Ag + with a Cysteine-Based Chiral Thiol Ligand That Bears a Binding Site. Inorg Chem 2021; 60:5413-5418. [PMID: 33788549 DOI: 10.1021/acs.inorgchem.1c00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a new scheme for chiral recognition using coordination polymers of Ag+ with a chiral thiol ligand that contains a binding group. N-Benzoyl-l-cysteine ethyl ester equipped with a boronic acid group at the para position of the phenyl ring forms coordination polymers with Ag+ in alkaline aqueous solutions that exhibit excellent selectivity toward a d-glucose enantiomer over l-glucose, while the coordination polymers from the d-cysteine-based thiol ligand are specific for l-glucose. It is assumed that a conformation change occurs upon interaction of a saccharide molecule with the polymeric chain receptor, for which the next binding is promoted, leading to the highly effective chiral recognition, despite the flexible nature of the polymeric receptor.
Collapse
Affiliation(s)
- Su-Li Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Yan Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Yin-Zhu Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Sheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| | - Jian-Wei Xie
- Institute of Pharmacology and Toxicology, Beijing 100027, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, and Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Yang Y, Han Q, Pei YR, Yu S, Huang Z, Jin LY. Stimuli-Responsive Supramolecular Chirality Switching and Nanoassembly Constructed by n-Shaped Amphiphilic Molecules in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1215-1224. [PMID: 33426895 DOI: 10.1021/acs.langmuir.0c03190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled nanomaterials composed of amphiphilic oligomers with functional groups have been applied in the fields of biomimetic chemistry and on-demand delivery systems. Herein, we report the assembly behavior and unique properties of an emergent n-shaped rod-coil molecule containing an azobenzene (AZO) group upon application of an external stimulus (thermal, UV light). The n-shaped amphiphilic molecules comprising an aromatic segment based on anthracene, phenyl linked with azobenzene groups, and hydrophilic oligoether (chiral) segments self-assemble into large strip-like sheets and perforated-nanocage fragments in an aqueous environment, depending on the flexible oligoether chains. Interestingly, the nano-objects formed in aqueous solution undergo a morphological transition from sheets and nanocages to small one-dimensional nanofibers. These molecules exhibit reversible photo- and thermal-responsiveness, accompanied by a change in the supramolecular chirality caused by the conformational transitions of the rod backbone. The architecture of n-shaped amphiphilic molecules with a photosensitive group makes them ideal candidates for intelligent materials for applications in advanced materials science.
Collapse
Affiliation(s)
- Yuntian Yang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Shengsheng Yu
- Department of Chemistry, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|
15
|
Yu J, Qi D, Li J. Design, synthesis and applications of responsive macrocycles. Commun Chem 2020; 3:189. [PMID: 36703444 PMCID: PMC9814784 DOI: 10.1038/s42004-020-00438-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Inspired by the lock and key principle, the development of supramolecular macrocyclic chemistry has promoted the prosperous growth of host-guest chemistry. The updated induced-fit and conformation selection model spurred the emerging research on responsive macrocycles (RMs). This review introduces RMs, covering their design, synthesis and applications. It gives readers insight into the dynamic control of macrocyclic molecules and the exploration of materials with desired functions.
Collapse
Affiliation(s)
- Jingjing Yu
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Dawei Qi
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Jianwei Li
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland ,grid.428986.90000 0001 0373 6302Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228 China
| |
Collapse
|
16
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
17
|
Lu J, Yu S, Li Z, Lee M, Yang Y, Jin LY. The relationship between molecular structure and supramolecular morphology in the self-assembly of rod-coil molecules with oligoether chains. SOFT MATTER 2020; 16:2224-2229. [PMID: 32055815 DOI: 10.1039/d0sm00018c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the morphology of rod-coil molecular aggregates is crucial for studying and obtaining functional materials with exceptional properties. In this paper, we report the construction of rod-coil molecular nanoaggregates with well-defined structures. The rod-coil molecules, labeled 1a-1d, consist of a rod section, composed of phenyl and biphenyl groups, and oligoether chains with 7 and 12 repeating units. The final assembled structures showed either oblique or hexagonal columnar structures, depending on the length of the coils in the bulk state. Interestingly, in water, molecules 1a and 1c self-assemble into scrolled nanofibers and cylindrical micelles. Instead, molecules 1b and 1d, which have methyl groups decorated at the interface of the rod and coil sections, self-organize into helical nanofibers and nanorings, respectively. Thus, controlling the length of the coil chains and inserting lateral methyl groups is an effective strategy to construct precise rod-coil molecular assemblies in the bulk and in aqueous solution.
Collapse
Affiliation(s)
- Jie Lu
- Department of Chemistry, Yanbian University, Yanji 133002, P. R. China.
| | - Shengsheng Yu
- Department of Chemistry, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zhaohua Li
- Department of Chemistry, Yanbian University, Yanji 133002, P. R. China.
| | - Myongsoo Lee
- School of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuntian Yang
- Department of Chemistry, Yanbian University, Yanji 133002, P. R. China.
| | - Long Yi Jin
- Department of Chemistry, Yanbian University, Yanji 133002, P. R. China.
| |
Collapse
|