1
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Shahriar R, Zhao B, Aravind I, Cai Z, Wang YY, Zhang B, Cronin SB. Low Reducing Potentials Enabled by CaF 2-Supported Graphene Electrodes in High Impedance Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45724-45731. [PMID: 39161318 DOI: 10.1021/acsami.4c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We report electrochemical measurements using in situ Raman spectroscopy at graphene/D2O interfaces under extremely low applied potentials. Here, the hydrophobic and catalytically inert nature of graphene and the insulating nature of the deionized (DI) water enables potentials as low as Vapplied = -7 V vs Ag/AgCl to be applied without exceeding 200 μA/cm2 of current density. At higher currents, bubble formation (i.e., hydrogen evolution reaction) prohibits reliable spectra from being obtained from the electrode surface. Using CaF2 as the supporting substrate enables significantly lower reducing potentials to be reached compared to glass substrates, likely due to trapped charge and impurities in the glass substrate. G band Raman spectra taken under various applied electrochemical potentials exhibit a linear relationship between the G band shift (ΔωG) and the applied potential, with blueshifts as high as ΔωG = 18 cm-1. These large Raman shifts indicate a large change in the Fermi level of ΔEF = -0.43 eV for graphene electrodes in contact with water, favoring reduction half-reactions. Based on the solution resistance measurement, there is a VIR = 3.1 V voltage drop across the solution for D2O (when the applied potential was Vapplied = -7 V vs Ag/AgCl) and the effective reducing potential on the working electrode is Veffective = -3.9 V vs Ag/AgCl. We have also tested these graphene electrodes in ionic liquids [DEME][TFSI], which are limited to applied potentials above Vapplied = -2.7 V vs Ag/AgCl and a corresponding shift in the Fermi level ΔEF = -0.32 eV, indicating that pure water can provide a more robust electrolyte for reaching low reducing potentials than ionic liquids.
Collapse
Affiliation(s)
- Rifat Shahriar
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Bofan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Indu Aravind
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Yu Yun Wang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Shang B, Zhao F, Suo S, Gao Y, Sheehan C, Jeon S, Li J, Rooney CL, Leitner O, Xiao L, Fan H, Elimelech M, Wang L, Meyer GJ, Stach EA, Mallouk TE, Lian T, Wang H. Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:2267-2274. [PMID: 38207288 DOI: 10.1021/jacs.3c13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.
Collapse
Affiliation(s)
- Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Fengyi Zhao
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sa Suo
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuanzuo Gao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Colton Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sungho Jeon
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Oliver Leitner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Leizhi Wang
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
4
|
Zdaniauskienė A, Ignatjev I, Charkova T, Talaikis M, Lukša A, Šetkus A, Niaura G. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Probing Riboflavin on Graphene. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1636. [PMID: 35268866 PMCID: PMC8911488 DOI: 10.3390/ma15051636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023]
Abstract
Graphene research and technology development requires to reveal adsorption processes and understand how the defects change the physicochemical properties of the graphene-based systems. In this study, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and graphene-enhanced Raman spectroscopy (GERS) coupled with density functional theory (DFT) modeling were applied for probing the structure of riboflavin adsorbed on single-layer graphene substrate grown on copper. Intense and detailed vibrational signatures of the adsorbed riboflavin were revealed by SHINERS method. Based on DFT modeling and detected downshift of prominent riboflavin band at 1349 cm-1 comparing with the solution Raman spectrum, π-stacking interaction between the adsorbate and graphene was confirmed. Different spectral patterns from graphene-riboflavin surface were revealed by SHINERS and GERS techniques. Contrary to GERS method, SHINERS spectra revealed not only ring stretching bands but also vibrational features associated with ribityl group of riboflavin and D-band of graphene. Based on DFT modeling it was suggested that activation of D-band took place due to riboflavin induced tilt and distortion of graphene plane. The ability to explore local perturbations by the SHINERS method was highlighted. We demonstrated that SHINERS spectroscopy has a great potential to probe adsorbed molecules at graphene.
Collapse
Affiliation(s)
- Agnė Zdaniauskienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.Z.); (I.I.); (T.C.); (M.T.)
| | - Ilja Ignatjev
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.Z.); (I.I.); (T.C.); (M.T.)
| | - Tatjana Charkova
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.Z.); (I.I.); (T.C.); (M.T.)
| | - Martynas Talaikis
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.Z.); (I.I.); (T.C.); (M.T.)
| | - Algimantas Lukša
- Department of Physical Technologies, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.L.); (A.Š.)
| | - Arūnas Šetkus
- Department of Physical Technologies, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.L.); (A.Š.)
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.Z.); (I.I.); (T.C.); (M.T.)
| |
Collapse
|