1
|
Zhang X, Kang Q, Su M, Song C, Gao F, Lu Q. Template-Assisted Epitaxial Growth of Ordered SnO 2 Nanorods Arrays with Different Hollow Structures for High-Performance Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405322. [PMID: 39155418 DOI: 10.1002/smll.202405322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Anode materials for sodium ion batteries (SIBs) are confronted with severe volume expansion and poor electrical conductivity. Construction of assembled structures featuring hollow interior and carbon material modification is considered as an efficient strategy to address the issues. Herein, a novel template-assisted epitaxial growth method, ingeniously exploiting lattice matching nature, is developed to fabricate hollow ordered architectures assembled by SnO2 nanorods. SnO2 nanorods growing along [100] direction can achieve lattice-matched epitaxial growth on (110) plane of α-Fe2O3. Driven by the lattice matching, different α-Fe2O3 templates possessing different crystal plane orientations enable distinct assembly modes of SnO2, and four kinds of hollow ordered SnO2@C nanorods arrays (HONAs) with different morphologies including disc, hexahedron, dodecahedron and tetrakaidecahedron (denoted as Di-, He-, Do-, and Te-SnO2@C) are achieved. Benefiting from the synergy of hollow structure, carbon coating and ordered assembly structure, good structural integrity and stability and enhanced electrical conductivity are realized, resulting in impressive sodium storage performances when utilized as SIB anodes. Specifically, Te-SnO2@C HONAs exhibit excellent rate capability (385.6 mAh·g-1 at 2.0 A·g-1) and remarkable cycling stability (355.4 mAh·g-1 after 2000 cycles at 1.0 A·g-1). This work provides a promising route for constructing advanced SIB anode materials through epitaxial growth for rational structural design.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qiaoling Kang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Mengfei Su
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chuang Song
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Dang L, Li J, Yang Y, Xue F, Hu J, Zhang S, Gao Y, Liu M, Zhao J. Highly stable Fe 2O 3@SnO 2@HNCS hollow nanospheres with enhanced lithium-ion battery performance. NEW J CHEM 2023. [DOI: 10.1039/d2nj05799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hollow Fe2O3@SnO2@HNCS nanospheres recombined the merits of the synergistic effect of metal oxides, rigid hollow structure and highly conductive N-doping.
Collapse
Affiliation(s)
- Liyun Dang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Jinghao Li
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Yilong Yang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Fei Xue
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Jiyong Hu
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Shuaiguo Zhang
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Yuan Gao
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Mengjiao Liu
- College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Jin'an Zhao
- College of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou 450001, Henan, China
| |
Collapse
|
3
|
Zhang C, Li Y, Song J, Wang J, Chen M, Tian Q. Simple scalable preparation of SnOx/FexOy/C composite and its enhanced lithium storage. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Sandwich-like SnO2/Cu@Carbon composites with long-term cycling stability as lithium-ion battery anodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Safari M, Mazloom J, Boustani K, Monemdjou A. Hierarchical Fe 2O 3 hexagonal nanoplatelets anchored on SnO 2 nanofibers for high-performance asymmetric supercapacitor device. Sci Rep 2022; 12:14919. [PMID: 36056049 PMCID: PMC9440100 DOI: 10.1038/s41598-022-18840-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Metal oxide heterostructures have gained huge attention in the energy storage applications due to their outstanding properties compared to pristine metal oxides. Herein, magnetic Fe2O3@SnO2 heterostructures were synthesized by the sol-gel electrospinning method at calcination temperatures of 450 and 600 °C. XRD line profile analysis indicated that fraction of tetragonal tin oxide phase compared to rhombohedral hematite was enhanced by increasing calcination temperature. FESEM images revealed that hexagonal nanoplatelets of Fe2O3 were hierarchically anchored on SnO2 hollow nanofibers. Optical band gap of heterogeneous structures was increased from 2.06 to 2.40 eV by calcination process. Vibrating sample magnetometer analysis demonstrated that increasing calcination temperature of the samples reduces saturation magnetization from 2.32 to 0.92 emu g-1. The Fe2O3@SnO2-450 and Fe2O3@SnO2-600 nanofibers as active materials coated onto Ni foams (NF) and their electrochemical performance were evaluated in three and two-electrode configurations in 3 M KOH electrolyte solution. Fe2O3@SnO2-600/NF electrode exhibits a high specific capacitance of 562.3 F g-1 at a current density of 1 A g-1 and good cycling stability with 92.8% capacitance retention at a high current density of 10 A g-1 after 3000 cycles in three-electrode system. The assembled Fe2O3@SnO2-600//activated carbon asymmetric supercapacitor device delivers a maximum energy density of 50.2 Wh kg-1 at a power density of 650 W kg-1. The results display that the Fe2O3@SnO2-600 can be a promising electrode material in supercapacitor applications.
Collapse
Affiliation(s)
- Morteza Safari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
| | - Komail Boustani
- Department of Physics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran
| | - Ali Monemdjou
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran
| |
Collapse
|
6
|
Li S, Luo S, Rong L, Wang L, Xi Z, Liu Y, Zhou Y, Wan Z, Kong X. Innovative Materials for Energy Storage and Conversion. Molecules 2022; 27:3989. [PMID: 35807232 PMCID: PMC9268226 DOI: 10.3390/molecules27133989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
The metal chalcogenides (MCs) for sodium-ion batteries (SIBs) have gained increasing attention owing to their low cost and high theoretical capacity. However, the poor electrochemical stability and slow kinetic behaviors hinder its practical application as anodes for SIBs. Hence, various strategies have been used to solve the above problems, such as dimensions reduction, composition formation, doping functionalization, morphology control, coating encapsulation, electrolyte modification, etc. In this work, the recent progress of MCs as electrodes for SIBs has been comprehensively reviewed. Moreover, the summarization of metal chalcogenides contains the synthesis methods, modification strategies and corresponding basic reaction mechanisms of MCs with layered and non-layered structures. Finally, the challenges, potential solutions and future prospects of metal chalcogenides as SIBs anode materials are also proposed.
Collapse
Affiliation(s)
- Shi Li
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Shi Luo
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liya Rong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Linqing Wang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ziyang Xi
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yong Liu
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yuheng Zhou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhongmin Wan
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xiangzhong Kong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; (S.L.); (S.L.); (L.W.); (Z.X.); (Y.L.); (Y.Z.); (Z.W.)
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
7
|
Liu J, Zhou T, Han T, Zhu L, Wang Y, Hu Y, Chen Z. Engineering a ternary one-dimensional Fe 2P@SnP 0.94@MoS 2 mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode. Chem Commun (Camb) 2022; 58:5108-5111. [PMID: 35377377 DOI: 10.1039/d2cc00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering energy-storage materials possessing high-speed electronic and ionic transport properties for secondary batteries is significant. Here, we develop a ternary one-dimensional mesostructured anode composed of MoS2 nanosheets grown in situ on SnP0.94 nanotubes infilled with Fe2P nanospheres, which is prepared by magnetic-field-induced self-assembly. The mesostructure provides fast transport pathways for electrons, as verified through a galvanostatic intermittent titration technique; and the voids effectively alleviate the volume change, enabling long-term cycling stability. The Fe2P@SnP0.94@MoS2 anode displays a high capacity of 797.5 mA h g-1 after cycling 800 times at 2 A g-1, a coulombic efficiency of 99.4%, and stable rate-performance after three rounds of cycling. Furthermore, the anode shows high capacities at different temperatures, indicating that the composite presented here has a promising potential for use in real conditions.
Collapse
Affiliation(s)
- Jinyun Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Ting Zhou
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Liying Zhu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Yan Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Yunfei Hu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518118, P. R. China.
| | - Zhonghua Chen
- Shenzhen FBTech Electronics Ltd, Shenzhen, Guangdong 518000, P. R. China.
| |
Collapse
|
8
|
Wang L, Lin C, Yang G, Wang N, Yan W. SnO2 nanosheets grown on in-situ formed N-doped branched TiO2/C nanofibers as binder-free anodes for sodium-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Long Z, Shi C, Wu C, Yuan L, Qiao H, Wang K. Heterostructure Fe 2O 3 nanorods@imine-based covalent organic framework for long cycling and high-rate lithium storage. NANOSCALE 2022; 14:1906-1920. [PMID: 35045148 DOI: 10.1039/d1nr07209a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fe2O3 as an anode for lithium-ion batteries has attracted intense attention because of its high theoretical capacity, natural abundance, and good safety. However, the inferior cycling stability, low-rate performance, and limited composite varieties hinder the application of Fe2O3-based materials. In this work, an Fe2O3@COF-LZU1 (FO@LZU1) anode was prepared via an imine-based covalent organic framework (COF-LZU1) covering on the exterior surface of Fe2O3 after rational optimization. With its unique heterostructure, the COF-LZU1 layer not only effectively alleviated the volume expansion during cycling but also improved the charge-transfer capability because of the π-conjugated system. Moreover, the organic functional group (CN, benzene ring) for COF-LZU1 provided more redox-active sites for Li+ storage. Under the contributions of both Fe2O3 nanorods and COF-LZU1, the FO@LZU150% exhibited an ultrahigh initial capacity and long-term cycling performance with initial discharge capacities of 2143 and 2171 mA h g-1 after 300 cycles under 0.1 A g-1, and rate performance of 1310 and 501 mA h g-1 at 0.3 and 3 A g-1, respectively. In addition, a high retention capacity of 1185 mA h g-1 was achieved at 1 A g-1 after 500 cycles. Furthermore, a full-cell with the FO@LZU150% anode and LiCoO2 cathode exhibited superior cycling and rate performance, which still maintained a reversible capacity of 260 mA h g-1 after 200 cycles even at a current density of 1 A g-1. The proposed strategy offers a new perspective for exploring the high-rate capability and designability of Fe2O3-based electrode materials.
Collapse
Affiliation(s)
- Zhiwen Long
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Chu Shi
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Caiqin Wu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Luhan Yuan
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hui Qiao
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Keliang Wang
- Fraunhofer USA, Inc., Center Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Liu J, Ding Y, Shen Z, Zhang H, Han T, Guan Y, Tian Y, Braun PV. A Lamellar Yolk-Shell Lithium-Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103517. [PMID: 34845856 PMCID: PMC8787391 DOI: 10.1002/advs.202103517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 05/23/2023]
Abstract
The shuttling behavior and slow conversion kinetics of the intermediate lithium polysulfides are the severe obstacles for the application of lithium-sulfur (Li-S) batteries over a wide temperature range. Here, an engineered lamellar yolk-shell structure of In2 O3 @void@carbon for the Li-S battery cathode is developed for the first time to construct a powerful barrier that effectively inhibits the shuttling of polysulfides. On the basis of the unique nanochannel-containing morphology, the continuous kinetic transformation of sulfur and polysulfides is confined in a stable framework, which is demonstrated by using X-ray nanotomography. The constructed Li-S battery exhibits a high cycling capability over 1000 cycles at 1.0 C with a capacity decay rate as low as 0.038% per cycle, good rate performance, and temperature tolerance at -10, 25, and 50 °C. A nondestructive in situ monitoring method of the interfacial reaction resistance in different cycling stages is proposed, which provides a new analysis perspective for the development of emerging electrochemical energy-storage systems.
Collapse
Affiliation(s)
- Jinyun Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Yingyi Ding
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Zihan Shen
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Huigang Zhang
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesNanjing UniversityNanjingJiangsu210093P. R. China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Provincial Engineering Laboratory for New‐Energy Vehicle Battery Energy‐Storage MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhuAnhui241002P. R. China
| | - Yong Guan
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yangchao Tian
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Paul V. Braun
- Department of Materials Science and EngineeringMaterials Research LaboratoryBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
11
|
Hu C, Chen L, Hu Y, Chen A, Chen L, Jiang H, Li C. Optimizing SnO 2- x /Fe 2 O 3 Hetero-Nanocrystals Toward Rapid and Highly Reversible Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103532. [PMID: 34677911 DOI: 10.1002/smll.202103532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Engineering oxygen vacancy and boosting Li2 O reversibility on oxides-based electrode are of significance but remains a challenge in high-power lithium-ion batteries. Herein, the heterogenous SnO2- x /Fe2 O3- y nanocrystals are demonstrated with tailorable x and y values enabled by a glucose-assisted spray combustion technique. Density functional theory calculations unveil the SnO2- x /Fe2 O3 with a maximum x value has the optimal electronic structure, the metallic Fe generated from Fe2 O3 can markedly reduce the free energy to break Li-O bonds for accelerating subsequent delithiation process of Li2 O. Consequently, the optimized SnO2- x /Fe2 O3 exhibits a remarkably enhanced electrochemical reversibility and reaction kinetics. After stabilized by reduced graphene oxide, the hybrid delivers a high reversible specific capacity of 1113 mAh g-1 with superior rate performance (474 mAh g-1 at 20 A g-1 ) and long cycle life (negligible loss after 500 cycles at 5 A g-1 ), the oxygen vacancy and microstructure are well-maintained after cycles. This work provides the possibilities for skillfully regulating oxygen vacancy and meantime enhancing Li2 O reversibility.
Collapse
Affiliation(s)
- Chen Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjie Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Aiping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Long Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
12
|
Huang S, Jin Z, Ding Y, Ning P, Chen Q, Fu J, Zhang Q, Zhang J, Xin P, Jiang Y, Hu Z. Encapsulating Fe 2 O 3 Nanotubes into Carbon-Coated Co 9 S 8 Nanocages Derived from a MOFs-Directed Strategy for Efficient Oxygen Evolution Reactions and Li-Ions Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103178. [PMID: 34655176 DOI: 10.1002/smll.202103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The development of high-efficiency, robust, and available electrode materials for oxygen evolution reaction (OER) and lithium-ion batteries (LIBs) is critical for clean and sustainable energy system but remains challenging. Herein, a unique yolk-shell structure of Fe2 O3 nanotube@hollow Co9 S8 nanocage@C is rationally prepared. In a prearranged sequence, the fabrication of Fe2 O3 nanotubes is followed by coating of zeolitic imidazolate framework (ZIF-67) layer, chemical etching of ZIF-67 by thioacetamide, and eventual annealing treatment. Benefiting from the hollow structures of Fe2 O3 nanotubes and Co9 S8 nanocages, the conductivity of carbon coating and the synergy effects between different components, the titled sample possesses abundant accessible active sites, favorable electron transfer rate, and exceptional reaction kinetics in the electrocatalysis. As a result, excellent electrocatalytic activity for alkaline OER is achieved, which delivers a low overpotential of 205 mV at the current density of 10 mA cm-2 along with the Tafel slope of 55 mV dec-1 . Moreover, this material exhibits excellent high-rate capability and excellent cycle life when employed as anode material of LIBs. This work provides a novel approach for the design and the construction of multifunctional electrode materials for energy conversion and storage.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhiqiang Jin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yanwei Ding
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Ping Ning
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jie Fu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qian Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Peijun Xin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhangjun Hu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
13
|
Li B, Bao S, Tan Q, Zhang R, Shan L, Wang C, Wu G, Xu B. Engineering tin dioxide quantum dots in a hierarchical graphite and graphene oxide framework for lithium-ion storage. J Colloid Interface Sci 2021; 600:649-659. [PMID: 34049020 DOI: 10.1016/j.jcis.2021.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The spontaneous aggregation and poor electronic conductivity are widely recognized as the main challenges for practically applied nano-sized tin dioxide-based anode candidates in lithium-ion batteries. This work describes a hierarchical graphite and graphene oxide (GO) framework stabilized tin dioxide quantum dot composite (SnO2@C/GO), which is synthesized by a solid-state ball-milling treatment and a water-phase self-assembly process. Characterization results demonstrate the engineered inside nanostructured graphite and outside GO layers from the SnO2@C/GO composite jointly contribute to a good immobilization effect for the SnO2 quantum dots. The hierarchical carbonaceous matrix supported SnO2 quantum dots could maintain good structure stability over a long cycling life under high current densities. As an anodic electrochemically active material for lithium-ion batteries, the SnO2@C/GO composite shows a high reversible capacity of 1156 mAh·g-1 at the current density of 1000 mA·g-1 for 350 continual cycles as well as good rate performance. The large pseudocapacitive behavior in this electrode is favorable for promoting the lithium-ion storage capability under higher current densities. The whole synthetic route is simple and effective, which probably has good potential for further development to massively fabricate high-performance electrode active materials for energy storage.
Collapse
Affiliation(s)
- Bowen Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shouchun Bao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingke Tan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Liangjie Shan
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Wang J, Yang X, Wang Y, Jin S, Cai W, Liu B, Ma C, Liu X, Qiao W, Ling L. Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116271] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Abstract
The world is suffering from chronic water shortage due to the increasing population, water pollution and industrialization. Desalinating saline water offers a rational choice to produce fresh water thus resolving the crisis. Among various kinds of desalination technologies, capacitive deionization (CDI) is of significant potential owing to the facile process, low energy consumption, mild working conditions, easy regeneration, low cost and the absence of secondary pollution. The electrode material is an essential component for desalination performance. The most used electrode material is carbon-based material, which suffers from low desalination capacity (under 15 mg·g−1). However, the desalination of saline water with the CDI method is usually the charging process of a battery or supercapacitor. The electrochemical capacity of battery electrode material is relatively high because of the larger scale of charge transfer due to the redox reaction, thus leading to a larger desalination capacity in the CDI system. A variety of battery materials have been developed due to the urgent demand for energy storage, which increases the choices of CDI electrode materials largely. Sodium-ion battery materials, lithium-ion battery materials, chloride-ion battery materials, conducting polymers, radical polymers, and flow battery electrode materials have appeared in the literature of CDI research, many of which enhanced the deionization performances of CDI, revealing a bright future of integrating battery materials with CDI technology.
Collapse
|
16
|
Li Q, Wang Y, Tan Q, Zhong Z, Su F. Structural Design and Synthesis of an SnO
2
@C@Co‐NC Composite as a High‐Performance Anode Material for Lithium‐Ion Batteries. Chemistry 2020; 26:12882-12890. [DOI: 10.1002/chem.202002583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Qiongguang Li
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P.R. China
- State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yanhong Wang
- State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
- Zhongke Langfang Institute of Process Engineering Fenghua Road No 1, Langfang Economic & Technical Development Zone Langfang 065001 Hebei Province P.R. China
| | - Qiangqiang Tan
- State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
- Zhongke Langfang Institute of Process Engineering Fenghua Road No 1, Langfang Economic & Technical Development Zone Langfang 065001 Hebei Province P.R. China
| | - Ziyi Zhong
- College of Engineering Guangdong Technion Israel Institute of Technology (GTIIT) 241 Daxue Road Jinping District Shantou 515063 P.R. China
- Technion Israel Institute of Technology (IIT) Haifa 32000 Israel
| | - Fabing Su
- State Key Laboratory of Multiphase Complex Systems CAS Key Laboratory of Green Process Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P.R. China
- Zhongke Langfang Institute of Process Engineering Fenghua Road No 1, Langfang Economic & Technical Development Zone Langfang 065001 Hebei Province P.R. China
- Institute of Industrial Chemistry and Energy Technology Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| |
Collapse
|