1
|
Zhang L, Zhao Y, Li J, Fu Y, Peng B, Yang J, Lu X, Miao Q. Molecular Orbital Tuning of Pentacene-Based Organic Semiconductors through N-Ethynylation of Dihydrodiazapentacene. J Am Chem Soc 2025; 147:3459-3467. [PMID: 39835460 PMCID: PMC11783513 DOI: 10.1021/jacs.4c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
This study explores the concept of molecular orbital tuning for organic semiconductors through the use of N,N'-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene (2a and 2b). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives (1a and 1b), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels. Theoretical calculations based on crystal structures indicate that 2a and 2b could significantly enhance the hole mobilities of the parent compounds by improving the hole transfer integral. Organic field-effect transistors (OFETs) of 1a and 2a were fabricated by using dip-coating and bar-coating methods. Both types of devices for 2a demonstrated a hole mobility exceeding 1 cm2 V-1 s-1, more than twice that of the respective devices for 1a. Additionally, unlike its pentacene parent, 2a is transparent to visible light and exhibits significantly enhanced environmental stability against light and air, making it a promising candidate for broader applications in organic electronic devices.
Collapse
Affiliation(s)
- Li Zhang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| | - Yujie Zhao
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jiasheng Li
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yuang Fu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Boyu Peng
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yang
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
- State
Key
Laboratory of Synthetic Chemistry, The University
of Hong Kong, Hong Kong, China
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Qian Miao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Wu T, Tan L, Feng Y, Zheng L, Li Y, Sun S, Liu S, Cao J, Yu Z. Toward Ultrathin: Advances in Solution-Processed Organic Semiconductor Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61530-61550. [PMID: 39479971 DOI: 10.1021/acsami.4c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In recent years, organic semiconductor (OSC) ultrathin films and their solution-processed organic field-effect transistors (OFETs) have garnered attention for their high flexibility, light weight, solution processability, and tunable optoelectronic properties. These features make them promising candidates for next-generation optoelectronic applications. An ultrathin film typically refers to a film thickness of less than 10 nm, i.e., several molecular layers, which poses challenges for OSC materials and solution-processed methods. In this paper, first we introduce the carrier-transport regulation mechanism under ultrathin limits. Second, we summarize various solution-processed techniques for OSC ultrathin films and elucidate advances in their OFETs performance, such as enhanced or maintained mobilities, improved switching ratios, reduced threshold voltages, and minimized contact resistance. The relationship between the ultrathin-film thickness, microstructure of various OSCs (small molecules and polymers), and device performance is discussed. Third, we explore the recent application of OSC ultrathin-film-based OFETs, such as gas sensors, biosensors, photodetectors, and ferroelectric OFETs (Fe-OFETs). Finally, the conclusion is drawn, and the challenges and prospects of ultrathin OSC transistors are presented. Nowadays, research on ultrathin films is still in its early stages; further experience in precise film deposition control is crucial to advancing research and broadening the scope of applications for OSC ultrathin devices.
Collapse
Affiliation(s)
- Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Lin Tan
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yuguang Feng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Luyao Zheng
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Yongpeng Li
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengtao Sun
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Shengzhen Liu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Jin Cao
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| | - Zhaohui Yu
- Laboratory of Optoelectronic and Information Marking Materials, National Green Printing and Packaging Industry Collaborative Innovation Center, Beijing Institute of Graphic Communication, Beijing 102600, P. R. China
| |
Collapse
|
3
|
Nam K, Lee DY. Self-Organization via Dewetting in Polymeric Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400255. [PMID: 38597696 DOI: 10.1002/smll.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Dewetting is a spontaneous process involving a thin liquid film that minimizes interfacial energy by reducing the surface area via the generation of defects on the film. In industry, dewetting is regarded as a problem that results in defects or a heterogeneous surface; however, in this study, dewetting is intentionally induced to create various patterns at intended positions spontaneously with polymeric materials and nanoparticles. The dewetting-induced patterning process is conducted by controlling the capillary force and evaporation ratio through an evaporative self-assembly system. The linear-polymeric arrays on the substrate played an important role in modifying the surface geometry and treatment for a heterogeneous surface, and an additional patterning process is performed on patterned arrays to create dewetting-induced self-organizing patterns. Here, this method is used to introduce material arrays with specific shapes such as dots, dumbbells, potbellies, Vs, and trapezoids.
Collapse
Affiliation(s)
- Kibeom Nam
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
4
|
Gong H, Lin J, Sun H. Nanocrystal Array Engineering and Optoelectronic Applications of Organic Small-Molecule Semiconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2087. [PMID: 37513098 PMCID: PMC10386679 DOI: 10.3390/nano13142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Collapse
Affiliation(s)
- Haoyu Gong
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huibin Sun
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
6
|
Sun L, Li T, Zhou J, Li W, Wu Z, Niu R, Cheng J, Asare‐Yeboah K, He Z. A Green Binary Solvent Method to Control Organic Semiconductor Crystallization. ChemistrySelect 2023. [DOI: 10.1002/slct.202203927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li Sun
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Tianyu Li
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Jiajian Zhou
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Wenhao Li
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Zhongming Wu
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Ruikun Niu
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Jinxiang Cheng
- School of Mechanical and Electrical Engineering Jinling Institute of Technology Nanjing Jiangsu 210014 China
| | - Kyeiwaa Asare‐Yeboah
- Department of Electrical and Computer Engineering Penn State Behrend Erie PA 16563 USA
| | - Zhengran He
- Department of Electrical and Computer Engineering The University of Alabama Tuscaloosa AL 35487 USA
| |
Collapse
|
7
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Du G, Wang Z, Zhai T, Li Y, Chang K, Yu B, Zhao X, Deng W. Flow-Enhanced Flexible Microcomb Printing of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13572-13583. [PMID: 35285622 DOI: 10.1021/acsami.1c22724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scalable and roll-to-roll compatible processing methods have become pressing needs to transfer organic solar cells (OSCs) to realistic energy sources. Herein a new fabrication method of flexible microcomb printing is proposed. The microcomb is based on a PET sheet micromachined into comb teeth by a laser marker. A computational fluid mechanics simulation shows that the fluid flow around the microcomb teeth induces high shear as well as extensional strain rates, which enhance the molecular alignment and lateral mass transport. The PTQ10:Y6-BO OSCs printed by the flexible microcomb demonstrate a substantially increased degree of crystallinity and phase separation with a suitable domain size. Devices printed by the flexible microcomb in air achieve PCEs of up to 15.93%, higher than those of control devices spin-coated in the N2 glovebox. The flexibility of the PET film makes the microcomb teeth contact directly with the substrate without a suspended liquid meniscus, thus facilitating printing on soft or curved substrates. Printing of flexible OSCs and large-area devices are demonstrated. The flexible OSCs exhibit PCEs of up to 13.62%, which is the highest for flexible OSCs made by scalable printing techniques to date. These results make flexible microcomb printing a feasible and promising strategy toward the manufacture of efficient OSCs.
Collapse
Affiliation(s)
- Gengxin Du
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Zhibei Wang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Tianqi Zhai
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Yaxing Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Kai Chang
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Boyang Yu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Xinyan Zhao
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| | - Weiwei Deng
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, People's Republic of China
| |
Collapse
|
9
|
Wang H, Fontein F, Li J, Huang L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L. Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48854-48860. [PMID: 32981323 DOI: 10.1021/acsami.0c14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA. This strategy can be applied to self-align the microsized organic single crystals on predesigned locations. With this method, suppression of cross-talk among devices, organic field-effect transistors, and basic logic gate arrays with reading-out electrodes are further demonstrated.
Collapse
Affiliation(s)
- Hong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
- School of Materials and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, Guangdong, P. R. China
| | - Florian Fontein
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Jianping Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lizhen Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Harald Fuchs
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
10
|
Yang Z, Guo C, Shi C, Wang DK, Zhang T, Zhu Q, Lu ZH. Improving Bias-Stress Stability of p-Type Organic Field-Effect Transistors by Constructing an Electron Injection Barrier at the Drain Electrode/Semiconductor Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41886-41895. [PMID: 32845606 DOI: 10.1021/acsami.0c12188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bias-stress instability has been a challenging problem and a roadblock for developing stable p-type organic field-effect transistors (OFETs). This device instability is hypothesized because of electron-correlated charge carrier trapping, neutralization, and recombination at semiconductor/dielectric interfaces and in semiconductor channels. Here, in this paper, a strategy is demonstrated to improve the bias-stress stability by constructing a multilayered drain electrode with energy-level modification layers (ELMLs). Several organic small molecules with high lowest unoccupied molecular orbital (LUMO) energy levels are experimented as ELMLs. The energy-level offset between the Fermi level of the drain electrode and the LUMOs of the ELMLs is shown to construct the interfacial barrier, which suppresses electron injection from the drain electrode into the channel, leading to significantly improved bias-stress stability of OFETs. The mechanism of the ELMLs on the bias-stress stability is studied by quantitative modeling analysis of charge carrier dynamics. Of all injection models evaluated, it is found that Fowler-Nordheim tunneling describes best the observed experimental data. Both theory and experimental data show that, by using the ELMLs with higher LUMO levels, the electron injection can be suppressed effectively, and the bias-stress stability of p-type OFETs can thereby be improved significantly.
Collapse
Affiliation(s)
- Zhenxin Yang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Chunhua Guo
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Changsheng Shi
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Deng-Ke Wang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Tao Zhang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Qiang Zhu
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Zheng-Hong Lu
- Department of Materials Science and Engineering, University of Toronto, Toronto M5S 3E4, Canada
| |
Collapse
|