1
|
Zhao Z, Ma D, Wang S, Zhou W, Zhang DW, Li ZT, Ma D. Amphiphilic Acyclic Cucurbit[ n]uril: Synthesis, Self-Assembly, and Chemotherapeutic Delivery to Overcome Multidrug Resistance. Mol Pharm 2025; 22:2259-2265. [PMID: 40009594 DOI: 10.1021/acs.molpharmaceut.5c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A new amphiphilic acyclic cucurbit[n]uril (CB[n]) is designed and synthesized. This amphiphilic acyclic CB[n] could encapsulate pharmaceutical drugs via a host-guest interaction. Self-assembly of this acyclic CB[n] forms spherical nanoparticles with diameters of 91 nm in water. The self-assembled nanoparticles are capable of delivering doxorubicin with high efficiency. Cell experiments show that the doxorubicin-loaded nanoparticles can improve cellular uptake and cytotoxicity by using the MCF-7/ADR cell line. The A549 tumor-bearing mouse model shows that self-assembled nanoparticles help overcome multidrug resistance in vivo. Cell study and histological assays confirm the biocompatibility of self-assembled nanoparticles.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Danying Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000 Zhejiang, China
| |
Collapse
|
2
|
Dai Y, Yu W, Cheng Y, Zhou Y, Zou J, Meng Y, Chen F, Qian Y, Yao Y. Recent developments in pillar[5]arene-based nanomaterials for cancer therapy. Chem Commun (Camb) 2025; 61:2484-2495. [PMID: 39789890 DOI: 10.1039/d4cc05660d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials possess unique size characteristics, enabling them to cross tissue gaps, penetrate the blood-brain barrier and endothelial cells, and release drugs at the cellular level. Additionally, the surface of nanomaterials is readily functionalized, endowing them with good biocompatibility, low biotoxicity, and specific targeting. All these advantages render nanomaterials broad application prospects in tumor therapy. Pillar[5]arenes are a new category of macrocyclic host compounds featuring rich host-guest properties and diverse environmental responses. In recent years, by combining the advantages of pillar[5]arenes and nanomaterials, the application of pillar[5]arene-based nanomaterials in tumor therapy has drawn extensive attention from scientists. In this review, we summarize five distinct types of pillar[5]arene-based nanomaterials: (1) pillar[5]arene-modified inorganic nanomaterials; (2) pillar[5]arene-modified organic porous materials; (3) pillar[5]arene-modified organic/inorganic hybrid materials; (4) nanomaterials self-assembled from pillar[5]arene-based host-guest complexes; (5) nanomaterials self-assembled from amphiphilic pillar[5]arenes. Moreover, the different tumor treatment modes of these nanomaterials, including chemotherapy, photodynamic therapy, photothermal therapy, gene therapy, and multimodal synergistic therapy, are also elaborated in detail.
Collapse
Affiliation(s)
- Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yushan Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yao Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Jiaye Zou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Feiyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yihan Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| |
Collapse
|
3
|
Li Z, Tan W, Li X, Wang Y, Dang Z, Zhang Z, Guan S, Zhu S, Li F, Zhang M. Unlocking lysosomal acidity to activate membranolytic module for accurately cancer theranostics. Bioorg Chem 2024; 153:107764. [PMID: 39232344 DOI: 10.1016/j.bioorg.2024.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Chemotherapy drug efflux, toxic side effects, and low efficacy against drug-resistant cells have plagued safe and efficient cancer theranostics. However, the materials or methods that resolve these defects all-in-one are scarce. Here, a new cancer theranostics strategy is proposed by utilizing changes in lysosomal acidity in cancer cells to activate the membranolytic model to overcome these obstacles together. Therefore, a simple fluorescent anthracene derivative Lyso-Mito is developed, which has a perfect pKa (4.62) value that falls between the pH of lysosomes in cancer and normal cells. Lyso-Mito itself can precisely target and convert the pH perturbation of lysosomes in cancer cells to fluorescent response and membranolytic module activity to accomplish the low drug efflux, weak toxic side effects, and low drug-resistant cancer diagnosis and treatment without linking other functional units or any additional assistance. Hereby, a new cancer theranostics strategy of integrating organelle microenvironment and the membranolytic model is realized.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenjia Tan
- China-Japan Union Hospital of Jilin University, Changchun 130041, China
| | - Xinru Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - YaJun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zetao Dang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhaoxia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuwen Guan
- College of Life Science, Jilin University, Changchun 130012, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Wu X, Hu JJ, Yoon J. Cell Membrane as A Promising Therapeutic Target: From Materials Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400249. [PMID: 38372669 DOI: 10.1002/anie.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| |
Collapse
|
6
|
Li X, Shen M, Yang J, Liu L, Yang YW. Pillararene-Based Stimuli-Responsive Supramolecular Delivery Systems for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313317. [PMID: 38206943 DOI: 10.1002/adma.202313317] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cancer poses a significant challenge to global public health, seriously threatening human health and life. Although various therapeutic strategies, such as chemotherapy (CT), radiotherapy, phototherapy, and starvation therapy, are applied to cancer treatment, their limited therapeutic effect, severe side effects, and unsatisfactory drug release behavior need to be carefully considered. Thus, there is an urgent need to develop efficient drug delivery strategies for improving cancer treatment efficacy and realizing on-demand drug delivery. Notably, pillararenes, as an emerging class of supramolecular macrocycles, possess unique properties of highly tunable structures, superior host-guest chemistry, facile modification, and good biocompatibility, which are widely used in cancer therapy to achieve controllable drug release and reduce the toxic side effects on normal tissues under various internal/external stimuli conditions. This review summarizes the recent advance of stimuli-responsive supramolecular delivery systems (SDSs) based on pillararenes for tumor therapy from the perspectives of different assembly methods and hybrid materials, including molecular-scale SDSs, supramolecular nano self-assembly delivery systems, and nanohybrid SDSs. Moreover, the prospects and critical challenges of stimuli-responsive SDSs based on pillararenes for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Meili Shen
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Jie Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Linlin Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| | - Ying-Wei Yang
- College of Chemistry and School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|
7
|
Duran T, Karaselek MA, Kuccukturk S, Kursunlu AN, Ozmen M. Water-soluble Pillar[5]arene-based drug candidates for lung and breast cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38525947 DOI: 10.1080/07391102.2024.2331629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The objective of research was to examine the likely anticancer effectiveness of distinct pillar[5] arene derivatives, ws-penta-P[5] and ws-deca-P[5], on breast and lung cancer cell lines in vitro. To achieve this goal, breast cancer (MCF7) cells, lung cancer (A549) cells, healthy cells (HEK293) were utilized. The IC50 dose of ws-penta-P[5] and ws-deca-P[5] was determined using the MTT method. Both treatment (pillar[5] arene applied) and control (pillar[5] arene not applied) groups were established for all three cell lines. Real-time polymerase chain reaction (qPCR) was used to evaluate changes in gene expression following pillar[5] arene treatment. Flow cytometry analysis was used to determine apoptosis and cell cycle arrest. The treatment group and control group results were compared after the study. The results revealed that in both cell lines treated with ws-deca-P[5], proapoptotic gene expressions were upregulated, while antiapoptotic gene expressions and caspase activation gene expressions were down-regulated. The flow cytometry apoptosis and cell cycle analysis in treatment group compared to the control, it was observed that the apoptosis rate increased in the ws-deca-P[5] and ws-deca-P[5] were shown to cause G0/G1 phase arrest in both cell groups. Results from our study that pillar[5] arene derivatives had the potential for treating breast and lung cancer, and more research is required in this area.
Collapse
Affiliation(s)
- Tugce Duran
- Medicine Faculty, Department of Medical Genetic, KTO Karatay University, Konya, Türkiye
| | - Mehmet Ali Karaselek
- Meram Medicine Faculty, Department of Internal Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Serkan Kuccukturk
- Medicine Faculty, Department of Medical Biology, Karamanoğlu Mehmetbey University, Konya, Türkiye
| | | | - Mustafa Ozmen
- Science Faculty, Department of Chemistry, Selçuk University, Konya, Türkiye
| |
Collapse
|
8
|
Tang R, Zhou L, Dai Y, Wang Y, Cai Y, Chen T, Yao Y. Polydopamine modified by pillar[5]arene in situ for targeted chemo-photothermal cancer therapy. Chem Commun (Camb) 2024; 60:1160-1163. [PMID: 38192227 DOI: 10.1039/d3cc04196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A pillar[5]arene-modified polydopamine (PDA-P[5]OH) displaying pH/NIR dual-responsive properties was constructed successfully in situ for targeted chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong City Key Laboratory of Life-Organic Chemistry, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
9
|
Su P, Sun W, Wang G, Xu H, Bao B, Wang L. Size transformable organic nanotheranostic agents for NIR-II imaging-guided oncotherapy. J Colloid Interface Sci 2024; 654:740-752. [PMID: 37866046 DOI: 10.1016/j.jcis.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Nanotheranostic agents combined the second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging with phototherapy strategy have attracted tremendous interest. However, the actual efficacy of NIR-II probes could be weakened by their limited accumulation and penetration in tumor tissues. Herein, a size-transformable NIR-II nanotheranostic agent (BBT-HASS@FPMPL NPs) is employed for simultaneously enhanced penetration and retention in deep tumor tissue to realize precise image and effective PTT therapy. BBT-HASS@FPMPL NPs were first formed by using hyaluronic acid (HA) chains and disulfide bonds as stimuli-responsive "lock" to efficiently load conjugated oligomer (BBTN+), and then folic acid (FA) modified polylysine (FPMPL) shell was stacked at the surface by electrostatic interaction. Dual targeting with HA and FA is expected to lead to more selective targeting and better accumulation of BBT-HASS@FPMPL NPs in tumor sites. Simultaneously, obvious particle size reduction and charge reversal can be triggered in acidic tumor microenvironment to achieve deep intratumor filtration through transcytosis. Following tumor penetration, size change was further initiated by overexpressed hyaluronidase and GSH in tumor. Free BBTN+ can be subsequently released from nanoparticles to promote specific intratumor retention, which synergistically enhance photothermal therapeutic efficacy. Owing to sufficient tumor accumulation and deep penetration, the NIR-II emission of BBTN+ could further be used for precise monitoring of subcutaneous tumor progression in mice for 6 days with just one dose injection. We expect that such nanotheranostic platform that combined the high resolution of NIR-II fluorescence with deep tumor penetration and long intratumor retention could be useful for real-time monitoring of tumor process, precise diagnosis, and enhanced phototherapy.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenjun Sun
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guoqin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongpan Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Biqing Bao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
10
|
Tang Y, Shu Z, Zhu M, Li S, Ling Y, Fu Y, Hu Z, Wang J, Yang Z, Liao J, Xu L, Yu M, Peng Z. Size-Tunable Nanoregulator-Based Radiofrequency Ablation Suppresses MDSCs and Their Compensatory Immune Evasion in Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2302013. [PMID: 37665720 DOI: 10.1002/adhm.202302013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Radiofrequency ablation (RFA) is a widely used therapy for hepatocellular carcinoma (HCC). However, in cases of insufficient RFA (iRFA), nonlethal temperatures in the transition zone increase the risk of postoperative relapse. The pathological analysis of HCC tissues shows that iRFA-induced upregulation of myeloid-derived suppressor cells (MDSCs) in residual tumors is critical for postoperative recurrence. Furthermore, this study demonstrates, for the first time, that combining MDSCs suppression strategy during iRFA can unexpectedly lead to a compensatory increase in PD-L1 expression on the residual MDSCs, attributed to relapse due to immune evasion. To address this issue, a novel size-tunable hybrid nano-microliposome is designed to co-deliver MDSCs inhibitors (IPI549) and αPDL1 antibodies (LPIP) for multipathway activation of immune responses. The LPIP is triggered to release immune regulators by the mild heat in the transition zone of iRFA, selectively inhibiting MDSCs and blocking the compensatory upregulation of PD-L1 on surviving MDSCs. The combined strategy of LPIP + iRFA effectively ablates the primary tumor by activating immune responses in the transition zone while suppressing the compensatory immune evasion of surviving MDSCs. This approach avoids the relapse of the residual tumor in a post-iRFA incomplete ablation model and appears to be a promising strategy in RFA for the eradication of HCC.
Collapse
Affiliation(s)
- Yuhao Tang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zhilin Shu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meiyan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Shuping Li
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yunyan Ling
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yizhen Fu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zili Hu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Jiongliang Wang
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Zhenyun Yang
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Junbin Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Li Xu
- Department of Liver Surgery, The Sun Yat-sen University Cancer Center, Guangzhou, 510080, P. R. China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
11
|
Lu B, Huang Y, Quan H, Xia J, Wang J, Ding Y, Wang Y, Yao Y. Mitochondria-Targeting Multimodal Phototheranostics Based on Triphenylphosphonium Cation Modified Amphiphilic Pillararenes and A-D-A Fused-Ring Photosensitizers. ACS Macro Lett 2023; 12:1365-1371. [PMID: 37737579 DOI: 10.1021/acsmacrolett.3c00454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Tumor-targeting phototheranostics has gradually developed as a powerful tool for the precise diagnosis and treatment of cancer. However, the designs of tumor-targeting phototheranostics agents with excellent multimodal phototherapy and fluorescence imaging (FLI) capability, as well as very few components, are still scarce and challenging for cancer treatment. Herein, a mitochondria-targeting multimodal phototheranostics system has been constructed by combining a designed amphiphilic pillararene WP5-2PEG-2TPP and the A-D-A fused-ring photosensitizer F8CA5. WP5-2PEG-2TPP is constructed by attaching the triphenylphosphonium cations to our previously reported dual PEG-functionalized amphiphilic pillararene, which can self-assemble into regular spherical nanocarriers with outstanding mitochondria targeting and water solubility. The A-D-A photosensitizer F8CA5 containing two methyl cyanoacetate group modified end groups displays superior photothermal conversion ability and dual type I/II photodynamic activity as well as strong NIR fluorescence emission. Through their strong union, multifunctional mitochondria-targeting phototheranostics agent F8CA5 NPs were obtained to be applied into FLI-guided synergistic photothermal and type I/II photodynamic therapy. As a result, F8CA5 NPs show good mitochondria-targeting and phototherapy effects in various tumor cells. Not only that, they can combat tumor hypoxia, which hinders the efficacy of photodynamic therapy. Therefore, this work provides a creative ideal for the construction of multifunctional tumor-targeting phototheranostic agents with excellent performance.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jiacheng Xia
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
12
|
Lu B, Xia J, Huang Y, Yao Y. The design strategy for pillararene based active targeted drug delivery systems. Chem Commun (Camb) 2023; 59:12091-12099. [PMID: 37740359 DOI: 10.1039/d3cc04021f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pillararenes have columnar architectures with electron-rich cavities to endow themselves with unique host-guest complexation capability. Easy structural modifiability facilitates them to be used in many applications. Currently, pillararene based drug delivery systems (DDSs) have been developed as a powerful tool for precise diagnosis and treatment of cancer. Various functional guest molecules could be integrated with pillararenes to construct nanomaterials for cancer chemotherapy, phototherapy and chemodynamic therapy. In order to improve cancer therapy efficacy, active targeted DDSs have become particularly important. Benefiting from the good host-guest properties and structural variability of pillararenes, tumor targeting groups could be easily introduced into pillararene based DDSs to realize precise drug delivery at tumor sites. In this feature article, we provide a comprehensive summary of the present design strategy for pillararene based active targeted DDSs, which can be classified into three types namely host-guest complexation, charge reversal and targeted group modified pillararenes. Some important examples are selected to for a detailed discussion on their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
13
|
Yi X, Wan P, Shen W, Zhang X, Zhang P, Xiao C. Synthetic lipo-polylysine with anti-cancer activity. Biomater Sci 2023; 11:6611-6618. [PMID: 37605903 DOI: 10.1039/d3bm01099f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Development of novel therapeutic agents that possess different anticancer mechanisms from the traditional antitumor drugs is highly attractive as no medication can cure all types of cancers. Herein, we report a rational design of antitumor lipo-polylysine polymers as synthetic mimics of biosynthetic lipopeptide surfactants featuring antimicrobial or cytotoxic activities for cancer therapy. The optimal polymer shows a wide range of anticancer activities against multiple cancer cells, including highly metastatic and drug-resistant ones, but low toxicity to normal cells. Mechanism studies show that the optimal polymer can interact with the membrane of cancer cells and induce cell necrosis by triggering cell membrane perforation, which is different from the therapeutic mechanisms of traditional anticancer drugs. In vivo studies imply that the optimal polymer efficiently inhibits tumor growth without causing obvious side effects on a C26 graft tumor model. Overall, the lipopeptide-mimicking lipo-polylysine with the advantages of easy synthesis and low cost provides a new anticancer strategy with high efficacy and biocompatibility.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
14
|
Kuccukturk S, Karaselek MA, Duran T, Kursunlu AN, Ozmen M. Impacts of potential anticancer agents based on pillar[5]arene for head and neck squamous cell carcinoma cells. J Cancer Res Clin Oncol 2023; 149:8711-8718. [PMID: 37126106 DOI: 10.1007/s00432-023-04822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE This study was conducted to investigate impacts of potential anticancer (associated with apoptosis and caspase pathways) of two newly synthesized derivatives of pillar[5]arene, named as d-Q-P5 and p-Q-P5, on Squamous cell carcinomas of the head and neck (HNSCC) cells. MATERIALS AND METHODS The MTT method was used to determine the IC50 doses of the derivatives on HNSCC cells, and the changes in gene expression were analyzed by real-time polymerase chain reaction (qPCR). The apoptosis change was confirmed by flow cytometry analysis. RESULTS The results showed that the d-Q-P5 and p-Q-P5 effectively inhibited the proliferation of the cells by upregulating proapoptotic genes (Bax, Bad, p53, Bak, and Apaf-1) and genes involved in the caspase pathway (Casp2, Casp3, and Casp9), while downregulating the antiapoptotic gene (Bcl-2). CONCLUSIONS This study is the first to demonstrate the potential anticancer effects of these two agents on HNSCC cells by positively regulating apoptosis gene expression.
Collapse
Affiliation(s)
- Serkan Kuccukturk
- Medicine Faculty, Department of Medical Biology, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Mehmet Ali Karaselek
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, 42080, Konya, Turkey
| | - Tugce Duran
- Medicine Faculty, Department of Medical Genetic, KTO Karatay University, 42020, Konya, Turkey
| | - Ahmed Nuri Kursunlu
- Science Faculty, Department of Chemistry, Selcuk University, 42250, Konya, Turkey
| | - Mustafa Ozmen
- Science Faculty, Department of Chemistry, Selcuk University, 42250, Konya, Turkey.
| |
Collapse
|
15
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
16
|
Zhang S, Gong X, Wei Q, Lv J, Du E, Wang J, Ji W, Li JL. Rationally Designed Enzyme-Resistant Peptidic Assemblies for Plasma Membrane Targeting in Cancer Treatment. Adv Healthc Mater 2023; 12:e2301730. [PMID: 37400071 DOI: 10.1002/adhm.202301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Peptides are being increasingly important for subcellular targeted cancer treatment to improve specificity and reverse multidrug resistance. However, there has been yet any report on targeting plasma membrane (PM) through self-assembling peptides. A simple synthetic peptidic molecule (tF4) is developed. It is revealed that tF4 is carboxyl esterase-resistant and self-assembles into vesical nanostructures. Importantly, tF4 assemblies interact with PM through orthogonal hydrogen bonding and hydrophobic interaction to regulate cancer cellular functions. Mechanistically, tF4 assemblies induce stress fiber formation, cytoskeleton reconstruction, and death receptor 4/5 (DR4/5) expression in cancer cells. DR4/5 triggers extrinsic caspase-8 signaling cascade, resulting in cell death. The results provide a new strategy for developing enzyme-resistant and PM-targeting peptidic molecules against cancer.
Collapse
Affiliation(s)
- Shijin Zhang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuewen Gong
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinchuan Wei
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiarong Lv
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiaqing Wang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ji-Liang Li
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China
| |
Collapse
|
17
|
Pan M, Lu C, Zhang W, Huang H, Shi X, Tang S, Liu D. Poly(l-Ornithine)-Based Polymeric Micelles as pH-Responsive Macromolecular Anticancer Agents. Pharmaceutics 2023; 15:pharmaceutics15041307. [PMID: 37111792 PMCID: PMC10143059 DOI: 10.3390/pharmaceutics15041307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Anticancer peptides and polymers represent an emerging field of tumor treatment and can physically interact with tumor cells to address the problem of multidrug resistance. In the present study, poly(l-ornithine)-b-poly(l-phenylalanine) (PLO-b-PLF) block copolypeptides were prepared and evaluated as macromolecular anticancer agents. Amphiphilic PLO-b-PLF self-assembles into nanosized polymeric micelles in aqueous solution. Cationic PLO-b-PLF micelles interact steadily with the negatively charged surfaces of cancer cells via electrostatic interactions and kill the cancer cells via membrane lysis. To alleviate the cytotoxicity of PLO-b-PLF, 1,2-dicarboxylic-cyclohexene anhydride (DCA) was anchored to the side chains of PLO via an acid-labile β-amide bond to fabricate PLO(DCA)-b-PLF. Anionic PLO(DCA)-b-PLF showed negligible hemolysis and cytotoxicity under neutral physiological conditions but recovered cytotoxicity (anticancer activity) upon charge reversal in the weakly acidic microenvironment of the tumor. PLO-based polypeptides might have potential applications in the emerging field of drug-free tumor treatment.
Collapse
Affiliation(s)
- Miao Pan
- Plastic Surgery Institute of Shantou University Medical College, Shantou 515041, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Shantou Plastic Surgery Clinical Research Center, Shantou 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wancong Zhang
- Plastic Surgery Institute of Shantou University Medical College, Shantou 515041, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Shantou Plastic Surgery Clinical Research Center, Shantou 515041, China
| | - Huan Huang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Xingyu Shi
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Shijie Tang
- Plastic Surgery Institute of Shantou University Medical College, Shantou 515041, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Shantou Plastic Surgery Clinical Research Center, Shantou 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
18
|
Moroishi K, Nakamoto M, Matsusaki M. Fabrication of Molecular Blocks with High Responsiveness to the Cancer Microenvironment by Ursodeoxycholic Acid. Biomacromolecules 2023; 24:2369-2379. [PMID: 37053088 DOI: 10.1021/acs.biomac.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In cancer therapy, a drug delivery system (DDS) has been widely studied to achieve selective drug accumulation at the tumor site. However, DDS still has a major drawback in that it requires multistep processes for intracellular delivery, resulting in low efficiency of drug delivery. To overcome this problem, we recently reported a molecular block (MB) that disrupts cancer cell membranes in the cancer microenvironment using deoxycholic acid (DCA). However, the MB showed considerable cytotoxicity even at neutral pH, possibly due to the structural hydrophobic property of DCA. Herein, we focused on selecting the most suitable bile acid for an MB that possessed high responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Cell viabilities of the free bile acids such as DCA, chenodeoxycholic acid (CDCA), cholic acid (CA), and ursodeoxycholic acid (UDCA) were evaluated at neutral pH (pH = 7.4) and a cancer acidic environment (pH = 6.3-6.5). The half-maximal inhibition concentration (IC50) value of UDCA at pH = 7.4 showed an approximately 7.5-fold higher IC50 value than that at pH = 6.3, whereas the other bile acids yielded less than a 4-fold IC50 value difference between the same pHs. Biocompatible poly(vinyl alcohol) (PVA) was functionalized with UDCA (PVA-UDCA) for the synthesis of higher responsiveness to the cancer microenvironment without cytotoxicity at neutral pH. Importantly, 56% pancreatic cancer cell death was observed at pH = 6.5, whereas only 10% was detected at neutral pH by the PVA-UDCA treatment. However, PVA-DCA indicated almost the same cancer cell death property, independent of pH conditions. These results suggest PVA-UDCA shows great potential for a new class of MB.
Collapse
Affiliation(s)
- Kazuki Moroishi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Chao S, Shen Z, Li B, Pei Y, Pei Z. An L-arginine-functionalized pillar[5]arene-based supramolecular photosensitizer for synergistically enhanced cancer therapeutic effectiveness. Chem Commun (Camb) 2023; 59:3455-3458. [PMID: 36866731 DOI: 10.1039/d3cc00123g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An L-arginine-functionalized pillar[5]arene-based supramolecular photosensitizer LAP5⊃NBSPD was constructed by host-guest interactions, which could self-assemble into nano-micelles to achieve effective delivery and selective release of LAP5 and NBS in cancer cells. In vitro studies revealed that LAP5⊃NBSPD NPs exhibited excellent cancer cell membrane disruption and ROS generation properties, which provides a novel route for synergistically enhanced cancer therapeutic effectiveness.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
- College of Plant protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Bowen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
- College of Plant protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Karaselek MA, Kuccukturk S, Duran T, Kursunlu AN, Ozmen M, Bozdag C, Alkan S, Varman A, Yildirim MA, Kucukkartallar T, Vatansev C. Effective anticancer agents based-on two Pillar[5]arene derivatives for pancreas cancer cell lines: synthesis, apoptotic effect, caspase pathway. Invest New Drugs 2023; 41:202-209. [PMID: 36905565 DOI: 10.1007/s10637-023-01343-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
This study aimed to evaluate the possible anticancer effects of two different pillar[5]arene derivatives (5Q-[P5] and 10Q-P[5]) on two different pancreatic cancer cell lines in vitro. For this purpose, changes in the expression of major genes that play a role in apoptosis and caspase pathways were investigated. Panc-1 and BxPC-3 cell lines were used in the study and the cytotoxic dose of pillar[5]arenes was determined by the MTT method. Changes in gene expression after pillar[5]arenes treatment were evaluated by real-time polymerase chain reaction (qPCR). Apoptosis was studied by flow cytometry. As a result of analysis, it was determined that proapoptotic genes and genes involved in major caspase activation were upregulated and antiapoptotic genes were down-regulated in Panc-1 cell line treated with pillar[5]arenes. Flow cytometric apoptosis analysis also showed an increased apoptosis rate in this cell line. On the contrary, although MTT analysis showed cytotoxic effect in BxPC-3 cell line treated with two pillar[5]arene derivatives, the apoptosis pathway was not active. This suggested that it may activate different death pathways for BxPC-3 cell line. Thus, it was first determined that the pillar[5]arene derivatives reduced cancer cell proliferation on pancreatic cancer cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaselek
- Meram Medicine Faculty, Department of Internal Medicine, Necmettin Erbakan University, Konya, 42080, Türkiye
| | - Serkan Kuccukturk
- Medicine Faculty, Department of Medical Biology, Karamanoglu Mehmetbey University, Karaman, 70100, Türkiye
| | - Tugce Duran
- Medicine Faculty, Department of Medical Genetic, KTO Karatay University, Konya, 42020, Türkiye
| | - Ahmed Nuri Kursunlu
- Science Faculty, Department of Chemistry, Selcuk University, Konya, 42250, Türkiye.
| | - Mustafa Ozmen
- Science Faculty, Department of Chemistry, Selcuk University, Konya, 42250, Türkiye
| | - Ceren Bozdag
- Science Faculty, Department of Chemistry, Selcuk University, Konya, 42250, Türkiye
| | - Selman Alkan
- Meram Medicine Faculty, Department of General Surgery, Necmettin Erbakan University, Konya, 42080, Türkiye
| | - Alper Varman
- Meram Medicine Faculty, Department of General Surgery, Necmettin Erbakan University, Konya, 42080, Türkiye
| | - Mehmet Aykut Yildirim
- Meram Medicine Faculty, Department of General Surgery, Necmettin Erbakan University, Konya, 42080, Türkiye
| | - Tevfik Kucukkartallar
- Meram Medicine Faculty, Department of General Surgery, Necmettin Erbakan University, Konya, 42080, Türkiye
| | - Celalettin Vatansev
- Meram Medicine Faculty, Department of General Surgery, Necmettin Erbakan University, Konya, 42080, Türkiye
| |
Collapse
|
21
|
Li X, Zhou S, Zhao Q, Chen Y, Qi P, Zhang Y, Wang L, Guo C, Chen S. Supramolecular Enhancement of Charge Transport through Pillar[5]arene-Based Self-Assembled Monolayers. Angew Chem Int Ed Engl 2023; 62:e202216987. [PMID: 36728903 DOI: 10.1002/anie.202216987] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
Intermolecular charge transport is one of the essential modes for modulating charge transport in molecular electronic devices. Supermolecules are highly promising candidates for molecular devices because of their abundant structures and easy functionalization. Herein, we report an efficient strategy to enhance charge transport through pillar[5]arene self-assembled monolayers (SAMs) by introducing cationic guests. The current density of pillar[5]arene SAMs can be raised up to about 2.1 orders of magnitude by inserting cationic molecules into the cavity of pillar[5]arenes in SAMs. Importantly, we have also observed a positive correlation between the charge transport of pillar[5]arene-based complex SAMs and the binding affinities of the pillar[5]arene-based complexation. Such an enhancement of charge transport is attributed to the efficient host-guest interactions that stabilize the supramolecular complexes and lower the energy gaps for charge transport. This work provides a predictive pattern for the regulation of intermolecular charge transport in guiding the design of next generation switches and functional sensors in supramolecular electronics.
Collapse
Affiliation(s)
- Xiaobing Li
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Pan Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Yongkang Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
| |
Collapse
|
22
|
Yao Y, Li Z, Zhao R. Editorial: Supramolecular cancer therapeutic biomaterials. Front Chem 2023; 11:1162103. [PMID: 36936528 PMCID: PMC10020698 DOI: 10.3389/fchem.2023.1162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ruibo Zhao
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
24
|
Liman R, Kursunlu AN, Ozmen M, Arslan S, Mutlu D, Istifli ES, Acikbas Y. Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
25
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
26
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Ma L, Tang R, Zhou Y, Bei J, Wang Y, Chen T, Ou C, Han Y, Yan CG, Yao Y. Pillar[5]arene-based [1]rotaxanes with salicylaldimine as the stopper: synthesis, characterization and application in the fluorescence turn-on sensing of Zn 2+ in water. Chem Commun (Camb) 2022; 58:8978-8981. [PMID: 35861323 DOI: 10.1039/d2cc02893j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two pillar[5]arene-based [1]rotaxanes with salicylaldimine as the stopper were synthesized and characterized fully, and could be further applied in the fluorescence turn-on sensing of Zn2+ in water.
Collapse
Affiliation(s)
- Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Youjun Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
28
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
29
|
Guo W, Liu W, Wan P, Wang H, Xiao C, Chen L, Chen X. Cationic Amphiphilic Dendrons with Anticancer Activity. ACS Biomater Sci Eng 2022; 8:2121-2130. [PMID: 35395157 DOI: 10.1021/acsbiomaterials.2c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cancer has become the leading cause of human death worldwide, and there is an urgent need to design and develop new oncology drugs. In this study, we report series of cationic amphiphilic dendrons with different hydrophobic alkyl chains (Cn) and different generations (Gx) and demonstrate their use for anticancer applications. The results revealed that lower-generation dendrons (G1) with a longer hydrophobic alkyl chain (C12 and C18) have stronger antitumor activity. Among these dendrons, a lead candidate C12-G1 was identified that demonstrated excellent broad-spectrum antitumor activity in 7 cancer cell lines including highly metastatic tumor cells, while simultaneously, hemolysis was negligible. Mechanistic studies showed that C12-G1 could lead to cytoplasmic leakage and induce cancer cell necrosis through membrane disruption. In addition, C12-G1 showed potent inhibition of tumor growth in a B16-F10 melanoma model. In conclusion, these findings demonstrate that the cationic amphiphilic dendron might be a promising agent for anticancer application.
Collapse
Affiliation(s)
- Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wenchang Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
30
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Jeng JH, Tang JY, Chang HW. Synergistic Antiproliferation of Cisplatin and Nitrated [6,6,6]Tricycle Derivative (SK2) for a Combined Treatment of Oral Cancer Cells. Antioxidants (Basel) 2022; 11:926. [PMID: 35624790 PMCID: PMC9137724 DOI: 10.3390/antiox11050926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/19/2022] Open
Abstract
SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 μM/10 μg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
31
|
pH/ROS dual-responsive supramolecular polypeptide prodrug nanomedicine based on host-guest recognition for cancer therapy. Acta Biomater 2022; 143:381-391. [PMID: 35272024 DOI: 10.1016/j.actbio.2022.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular nanomedicine assembly combined with polypeptide prodrug could become a powerful strategy to minimize drug leakage in blood circulation and trigger sufficient drug release at tumor tissue. Here, we developed a charge-reversal amphiphilic pillar[5]arene-modified polypeptide (P5-PLL-DMA), and reactive oxygen species (ROS)-sensitive polypeptide prodrug (P-PLL-DOX) including a ROS-cleavable thioketal (TK) linker between doxorubicin (DOX) and poly(L-lysine) (PLL), which could assemble via pillar[5]arene host-guest recognition, and further encapsulate chlorin e6 (Ce6) to obtain a supramolecular polypeptide prodrug (SPP-DOX/Ce6). The chemical conjugation to load drugs of DOX and the negatively charge of SPP-DOX/Ce6 could prevent premature drug leakage, and reduce undesirable interaction with serum proteins to enhance stability under physiological conditions (pH 7.4). Simultaneously, the carried charge of SPP-DOX/Ce6 reversed from negative to positive could effectively enhance the cellular internalization for efficient DOX delivery under acidic tumor microenvironment (pH 6.5). Upon 660 nm near-infrared light (NIR) irradiation, the ROS generated by encapsulated Ce6 rapidly cleaved the TK linker to release activated DOX, inducing the tumor-specific drug delivery. This intelligent supramolecular polypeptide prodrug based on pillar[5]arene host-guest recognition represents new avenues to develop stimulus responsive prodrug for enhanced cancer therapy with minimized the side effect. STATEMENT OF SIGNIFICANCE: In this work, a pH/ROS dual-sensitive supramolecular polypeptide prodrug (SPP-DOX/Ce6) was developed to minimize drug leakage in blood circulation and trigger sufficient drug release at tumor tissue. The chemical conjugation to load drugs of DOX via a ROS-cleavable thioketal (TK) linker and the distinctive charge-reversal capacity of SPP-DOX/Ce6 significantly enhances the stability under physiological conditions (pH 7.4), while facilitates cellular uptake at tumor site (pH 6.8). Upon 660 nm near-infrared light (NIR) irradiation, the ROS generated by encapsulated Ce6 induces the rapid cleavage of TK linker to release activated DOX, achieving a tumor-specific drug delivery. This intelligent supramolecular polypeptide prodrug SPP-DOX/Ce6 provides an effective strategy to construct stimulus responsive prodrug for enhanced cancer therapy.
Collapse
|
32
|
Wang J, Cen M, Wang J, Wang D, Ding Y, Zhu G, Lu B, Yuan X, Wang Y, Yao Y. Water-soluble pillar[4]arene[1]quinone: Synthesis, host-guest property and application in the fluorescence turn-on sensing of ethylenediamine in aqueous solution, organic solvent and air. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Wang Y, Wang D, Wang J, Wang C, Wang J, Ding Y, Yao Y. Pillar[5]arene-derived covalent organic materials with pre-encoded molecular recognition for targeted and synergistic cancer photo- and chemotherapy. Chem Commun (Camb) 2022; 58:1689-1692. [PMID: 35022638 DOI: 10.1039/d1cc07072j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient targeted and synergistic cancer photo- and chemotherapy platform was constructed from aldehyde-modified pillar[5]arene and tetra-(4-aminophenyl)porphyrin successfully.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Di Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
34
|
Shi B, Chai Y, Qin P, Zhao XX, Li W, Zhang YM, Wei TB, Lin Q, Yao H, Qu WJ. Detection of aliphatic aldehydes by a pillar[5]arene-based fluorescent supramolecular polymer with vaporchromic behavior. Chem Asian J 2022; 17:e202101421. [PMID: 35037734 DOI: 10.1002/asia.202101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Indexed: 11/10/2022]
Abstract
The detection of volatile aliphatic aldehydes is of significance because of their chemical toxicity, physical volatility and widespread applications in chemical industrial processes. In this work, the direct detection of aliphatic aldehydes is tackled using a fluorescent supramolecular polymer with vaporchromic behavior which is contructed by pillar[5]arene-based host-guest intereactions. Thin films with strong orange-yellow fluorescence are prepared by coating the linear supramolecular polymer on glass sheets. When the thin films are exposed to aliphatic aldehydes with different carbon chain lengths, they can selectivly sensing n -butyraldehyde ( C 4 ) and caprylicaldehyde ( C 8 ), accompanied by fluorescence quenching, indicating that the supramolecular polymer is a highly selective vapochromic response material for aliphatic aldehydes with long alkyl chains.
Collapse
Affiliation(s)
- Bingbing Shi
- Northwest Normal University, college of chemistry and chemical engineering, 967 Anning East Road, 730070, Lanzhou, CHINA
| | - Yongping Chai
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Peng Qin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Xing-Xing Zhao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Weichun Li
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - You-Ming Zhang
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Tai-Bao Wei
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Qi Lin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Hong Yao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Wen-Juan Qu
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| |
Collapse
|
35
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
36
|
|
37
|
Jin J, Miao J, Cheng C. Mono-mercapto-functionalized pillar[5]arene: a host-guest complexation accelerated reversible redox dimerization. Chem Commun (Camb) 2021; 57:7950-7953. [PMID: 34286743 DOI: 10.1039/d1cc03010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mono-mercapto-functionalized pillar[5]arene and its dimer, capable of being reversibly interconverted, were successfully synthesized. Fascinatingly, a faster reversible redox conversion involving a dynamic disulfide bond was observed between their host-guest complexes compared with the hosts themselves.
Collapse
Affiliation(s)
- Jianbing Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
38
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
39
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
41
|
|
42
|
Zhu H, Li Q, Khalil-Cruz LE, Khashab NM, Yu G, Huang F. Pillararene-based supramolecular systems for theranostics and bioapplications. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9932-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Cai Y, Yan X, Wang S, Zhu Z, Cen M, Ou C, Zhao Q, Yan Q, Wang J, Yao Y. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorg Chem 2021; 60:2883-2887. [PMID: 33570384 DOI: 10.1021/acs.inorgchem.0c03645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pillar[n]arene-based supramolecular polymers have attracted great interest because of their tunable morphologies and external stimuli responsiveness. However, most of the investigations of supramolecular polymers previously reported were focused on their formation and transformation, and investigations on their applications are rare. Herein, we designed and prepared hybrid polymeric materials by incorporating Pd nanoparticles into a supramolecular polymer, constructed from a pillar[5]arene dimer and a three-arm guest. The obtained hybrid polymer was fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray mapping, and X-ray diffraction technologies. Importantly, the hybrid supramolecular polymeric materials exhibited desirable catalytic activity for reductions of toxic nitroaromatics and C-C bond-forming Suzuki-Miyaura reaction in aqueous solution.
Collapse
Affiliation(s)
- Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Siyuan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zhiwen Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qian Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
44
|
Yang W, Yang L, Li F, Zhao Y, Liao X, Gao C, Yang J, Yang B. pH-sensitive β-cyclodextrin derivatives for the controlled release of Podophyllotoxin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Zhao S, Xue T, Pei D, Song Q, Pei Z, Nie J, Chang Y. Pillar[6]arene: Light Cleaves Macrocycle to Linear Oligomer Biradical to Initiate Photopolymerization. Org Lett 2021; 23:1709-1713. [DOI: 10.1021/acs.orglett.1c00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shuai Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tanlong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Di Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qiuyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
46
|
Cen M, Ding Y, Wang J, Yuan X, Lu B, Wang Y, Yao Y. Cationic Water-Soluble Pillar[5]arene-Modified Cu 2-xSe Nanoparticles: Supramolecular Trap for ATP and Application in Targeted Photothermal Therapy in the NIR-II Window. ACS Macro Lett 2020; 9:1558-1562. [PMID: 35617083 DOI: 10.1021/acsmacrolett.0c00714] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the rapid progress of nanotechnology, near-infrared (NIR), light-assisted phototherapy as a minimally invasive local cancer therapy, especially photothermal therapy (PTT), has captured broad research attention in recent years. However, combined target molecules with a PTT system through reversible supramolecular interactions has been reported rarely. In this work, we constructed a supramolecular nanosystem combining ATP capture and target PTT based on cationic pillar[5]arene (CWP5)-functionalized Cu2-xSe nanoparticles (Cu2-xSe@CWP5 NPs). Cu2-xSe@CWP5 NPs, with an average diameter of approximately 100 nm and strong absorption in the near-infrared-II window, were prepared in water through a facile one-step in situ synthesis method, then (4-carboxybutyl)triphenylphosphonium bromide (TPP), a mitochondria-targeted molecule, was modified on the surface of the particles through the host-guest recognition. Upon irradiation with a 1064 nm laser, the obtained Cu2-xSe@CWP5/TPP NPs showed remarkably photothermal ablation capability to HeLa cells. Importantly, our Cu2-xSe@CWP5/TPP NPs exhibited excellent therapeutic effect due to the combination of inhibited hydrolysis of ATP and targeted photothermal therapy upon in vitro and in vivo studies. Significantly, through host-guest interactions, we can modify different types of target molecules within this PTT system at will.
Collapse
Affiliation(s)
- Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| |
Collapse
|
47
|
Shen W, Zhang Y, Wan P, An L, Zhang P, Xiao C, Chen X. Antineoplastic Drug-Free Anticancer Strategy Enabled by Host-Defense-Peptides-Mimicking Synthetic Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001108. [PMID: 32700437 DOI: 10.1002/adma.202001108] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
An antineoplastic drug-free anticancer strategy enabled by host defense peptides (HDPs)-mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug-resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane-lytic mechanism. Moreover, a pH-sensitive zwitterionic derivative of ACPP (DA-ACPP) is prepared for in vivo application. DA-ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA-ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16-F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs-mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug-free synthetic polymers for cancer therapy.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130022, P. R. China
| | - Lin An
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, P. R. China
| |
Collapse
|
48
|
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020; 15:5873-5899. [PMID: 32848395 PMCID: PMC7429218 DOI: 10.2147/ijn.s255637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.
Collapse
Affiliation(s)
- Yijie Hua
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Shengbo Liu
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, People’s Republic of China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| |
Collapse
|
49
|
Xue W, Zavalij PY, Isaacs L. Pillar[n]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020; 59:13313-13319. [PMID: 32413198 PMCID: PMC7487980 DOI: 10.1002/anie.202005902] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/11/2022]
Abstract
We report the synthesis, X-ray crystal structure, and molecular recognition properties of pillar[n]arene derivative P[6]AS, which we refer to as Pillar[6]MaxQ along with analogues P[5]AS and P[7]AS toward guests 1-18. The ultratight binding affinity of P[5]AS and P[6]AS toward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non-covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents.
Collapse
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
50
|
Xue W, Zavalij PY, Isaacs L. Pillar[
n
]MaxQ: A New High Affinity Host Family for Sequestration in Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Weijian Xue
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|