1
|
Sun Z, Huang Y, Kong J, Tang J, Du Z. Advances in materials and devices for smartlife photovoltaic innovations. Chem Commun (Camb) 2025; 61:1243-1261. [PMID: 39668781 DOI: 10.1039/d4cc05210b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The rapid development of photovoltaic (PV) technologies is expanding their applications beyond conventional outdoor energy harvesting into innovative smart-life energy solutions. This review examines the most recent progress in materials and device designs for various emerging PV systems, particularly in indoor and low-light environments, semitransparent devices, and flexible, wearable applications. These advancements have great potential to support autonomous smart life, enhance the energy efficiency of building-integrated solutions, and improve wearable technologies. Despite these gains, challenges such as improving efficiency, durability, scalability, and affordability remain, requiring interdisciplinary collaboration and further research to fully unlock PV technologies' role in sustainable, energy-efficient smart life.
Collapse
Affiliation(s)
- Zhe Sun
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yixiao Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jiahua Kong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
2
|
Chai Z, Lin H, Bai H, Huang Y, Guan Z, Liu F, Wei J. Application of Metal Halide Perovskite in Internet of Things. MICROMACHINES 2024; 15:1152. [PMID: 39337812 PMCID: PMC11433748 DOI: 10.3390/mi15091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Internet of Things (IoT) technology connects the real and network worlds by integrating sensors and internet technology, which has greatly changed people's lifestyles, showing its broad application prospects. However, traditional materials for the sensors and power components used in the IoT limit its development for high-precision detection, long-term endurance, and multi-scenario applications. Metal halide perovskite, with unique advantages such as excellent photoelectric properties, an adjustable bandgap, flexibility, and a mild process, exhibits enormous potential to meet the requirements for IoT development. This paper provides a comprehensive review of metal halide perovskite's application in sensors and energy supply modules within IoT systems. Advances in perovskite-based sensors, such as for gas, humidity, photoelectric, and optical sensors, are discussed. The application of indoor photovoltaics based on perovskite in IoT systems is also discussed. Lastly, the application prospects and challenges of perovskite-based devices in the IoT are summarized.
Collapse
Affiliation(s)
- Zhihao Chai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hui Lin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hang Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Yixiang Huang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Zhen Guan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Fangze Liu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China;
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| |
Collapse
|
3
|
Yadagiri B, Kumar Kaliamurthy A, Yoo K, Cheol Kang H, Ryu J, Kwaku Asiam F, Lee J. Molecular Engineering of Photosensitizers for Solid-State Dye-Sensitized Solar Cells: Recent Developments and Perspectives. ChemistryOpen 2023; 12:e202300170. [PMID: 37874016 PMCID: PMC10695739 DOI: 10.1002/open.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Dye-sensitized solar cells (DSSCs) are a feasible alternative to traditional silicon-based solar cells because of their low cost, eco-friendliness, flexibility, and acceptable device efficiency. In recent years, solid-state DSSCs (ss-DSSCs) have garnered much interest as they can overcome the leakage and evaporation issues of liquid electrolyte systems. However, the poor morphology of solid electrolytes and their interface with photoanodes can minimize the device performance. The photosensitizer/dye is a critical component of ss-DSSCs and plays a vital role in the device's overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono- and co-sensitization of ruthenium, porphyrin, and metal-free organic dyes under 1 sun and ambient/artificial light conditions. We also discuss the various requirements that efficient photosensitizers should satisfy and provide an overview of their historical development over the years.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Kicheon Yoo
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Junyeong Ryu
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae‐Joon Lee
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| |
Collapse
|
4
|
Li Y, Wang J, Wang H, Di Z, Liu M, Zong X, Li C, Sun Y, Liang M, Sun Z. Transparent PEDOT counter electrodes for bifacial dye-sensitized solar cells using a cobalt complex mediator. Chem Commun (Camb) 2023; 59:13482-13485. [PMID: 37881006 DOI: 10.1039/d3cc04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) aggregate-deposited counter electrodes (CEs) were applied to bifacial dye-sensitized solar cells with a cobalt complex electrolyte. The high transparency and excellent electrochemical activity of PEDOT CEs result in an impressive cell bifaciality of 0.92 under standard test conditions (AM 1.5G, 100 mW cm-2), and maximum power production of 11.3% under realistic conditions with an effective albedo of 50%.
Collapse
Affiliation(s)
- Yiming Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Jing Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Hao Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Zhichao Di
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mingyan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xueping Zong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Yan Sun
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China
| | - Mao Liang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Zhe Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
5
|
Konwar S, Singh D, Strzałkowski K, Masri MNB, Yahya MZA, Diantoro M, Savilov SV, Singh PK. Stable and Efficient Dye-Sensitized Solar Cells and Supercapacitors Developed Using Ionic-Liquid-Doped Biopolymer Electrolytes. Molecules 2023; 28:5099. [PMID: 37446761 DOI: 10.3390/molecules28135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
An ionic liquid (IL) 1-ethyl, 2-methyl imidazolium thiocyanate incorporated biopolymer system is reported in this communication for applications in dual energy devices, i.e., electric double-layer capacitors (EDLCs) and dye-sensitized solar cells (DSSCs). The solution caste method has been used to synthesize ionic-liquid-incorporated biopolymer electrolyte films. The IL mixed biopolymer electrolytes achieve high ionic conductivity up to the order of 10-3 S/cm with good thermal stability above 250 °C. Electrical, structural, and optical studies of these IL-doped biopolymer electrolyte films are presented in detail. The performance of EDLCs was evaluated using low-frequency electrochemical impedance spectroscopy, cyclic voltammetry, and constant current charge-discharge, while that of DSSCs was assessed using J-V characteristics. The EDLC cells exhibited a high specific capacitance of 200 F/gram, while DSSCs delivered 1.53% efficiency under sun conditions.
Collapse
Affiliation(s)
- Subhrajit Konwar
- Center for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| | - Diksha Singh
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Karol Strzałkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Mohamad Najmi Bin Masri
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Kota Bharu 16100, Malaysia
| | - Muhd Zu Azhan Yahya
- Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Markus Diantoro
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Semarang 5, Malang 65145, Indonesia
| | - Serguei V Savilov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Pramod K Singh
- Center for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| |
Collapse
|
6
|
Kim HK. Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective. ACS OMEGA 2023; 8:6139-6163. [PMID: 36844550 PMCID: PMC9948191 DOI: 10.1021/acsomega.2c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A redox electrolyte is a crucial part of dye-sensitized solar cells (DSSCs), which plays a significant role in the photovoltage and photocurrent of the DSSCs through efficient dye regeneration and minimization of charge recombination. An I-/I3 - redox shuttle has been mostly utilized, but it limits the open-circuit voltage (V oc) to 0.7-0.8 V. To improve the V oc value, an alternative redox shuttle with more positive redox potential is required. Thus, by utilizing cobalt complexes with polypyridyl ligands, a significant power conversion efficiency (PCE) of above 14% with a high V oc of up to 1 V under 1-sun illumination was achieved. Recently, the V oc of a DSSC has exceeded 1 V with a PCE of around 15% by using Cu-complex-based redox shuttles. The PCE of over 34% in DSSCs under ambient light by using these Cu-complex-based redox shuttles also proves the potential for the commercialization of DSSCs in indoor applications. However, most of the developed highly efficient porphyrin and organic dyes cannot be used for the Cu-complex-based redox shuttles due to their higher positive redox potentials. Therefore, the replacement of suitable ligands in Cu complexes or an alternative redox shuttle with a redox potential of 0.45-0.65 V has been required to utilize the highly efficient porphyrin and organic dyes. As a consequence, for the first time, the proposed strategy for a PCE enhancement of over 16% in DSSCs with a suitable redox shuttle is made by finding a superior counter electrode to enhance the fill factor and a suitable near-infrared (NIR)-absorbing dye for cosensitization with the existing dyes to further broaden the light absorption and enhance the short-circuit current density (J sc) value. This review comprehensively analyzes the redox shuttles and redox-shuttle-based liquid electrolytes for DSSCs and gives recent progress and perspectives.
Collapse
|
7
|
Sarrato J, Pinto AL, Cruz H, Jordão N, Malta G, Branco PS, Lima JC, Branco LC. Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2988. [PMID: 36080024 PMCID: PMC9457700 DOI: 10.3390/nano12172988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The use of ionic liquid and organic salts as additives for electrolyte systems in dye-sensitized solar cells have been widely described in recent years. The tunability of their physical-chemical properties according to the cation-anion selection contributes toward their high efficiencies. For this purpose, several iodide-based organic salts including imidazolium, picolinium, guanidinium and alkylammonium cations were tested using acetonitrile/valeronitrile electrolytes and their photovoltaic parameters were compared. A best efficiency of 4.48% (4.15% for the reference) was found for 1-ethyl-2,3-dimethylimidazolium iodide ([C2DMIM]I) containing electrolyte, reaffirming the effectiveness of these additives. 4-tertbutylpyridine was included into the formulation to further improve the performance while determining which iodide salts demonstrate the highest synergy with this additive. [C2DMIM]I once again proved to be the superior additive, achieving an efficiency of 6.48% (6% for the reference). Electrochemical impedance spectroscopy was employed to elucidate the effects of the various additives, demonstrating the relevance of the counter electrode resistance on device performance. Finally, several computational descriptors for the cationic structures were calculated and correlated with the photovoltaic and resistance parameters, showing that properties related to polarity, namely relative positive charge, molecular polarizability and partition coefficient are in good agreement with the counter-electrode resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luis C. Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Barichello J, Spadaro D, Gullace S, Sinopoli A, Calandra P, Irrera A, Matteocci F, Calogero G, Caramori S, Bignozzi CA. Optically Transparent Gold Nanoparticles for DSSC Counter-Electrode: An Electrochemical Characterization. Molecules 2022; 27:molecules27134178. [PMID: 35807425 PMCID: PMC9268613 DOI: 10.3390/molecules27134178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dye-sensitized solar cells (DSSCs). A series of DSSC devices, utilizing I−/I3− and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4′ditert-butyl-2,2′-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transmittance. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I−/I3−-based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.
Collapse
Affiliation(s)
- Jessica Barichello
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy; (J.B.); (D.S.); (A.I.)
- CHOSE—Center for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Donatella Spadaro
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy; (J.B.); (D.S.); (A.I.)
| | - Sara Gullace
- ISIS UMR 7006, CNRS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France;
| | - Alessandro Sinopoli
- QEERI—Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Pietro Calandra
- CNR-ISMN, National Research Council—Institute for the Study of Nanostructured Materials, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy;
| | - Alessia Irrera
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy; (J.B.); (D.S.); (A.I.)
| | - Fabio Matteocci
- CHOSE—Center for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Giuseppe Calogero
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy; (J.B.); (D.S.); (A.I.)
- Correspondence: (G.C.); (S.C.)
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
- Correspondence: (G.C.); (S.C.)
| | - Carlo Alberto Bignozzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
9
|
Hora C, Santos F, Pereira AM, Sales MF, Ivanou D, Mendes A. PEDOT-graphene counter-electrode for solar and improved artificial light conversion in regular, bifacial and FTO-less cobalt mediated DSSCs. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics. ENERGIES 2022. [DOI: 10.3390/en15072486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The current investigation shows a possible new pathway for more efficient and cost-effective energy-harvesting photovoltaic devices. Our approach could permit all emerging technologies that are currently used for indoors and smart buildings to go a step forward and could be used for outdoor applications. The investigated architecture is a very promising geometry especially for Dye-Sensitized Solar Cells (DSSCs). It turns their main drawback, the lowering of their efficiency and lifetime when operating at high solar irradiation density, into an asset by increasing the total active area per horizontal unit area for light harvesting, while preserving the active elements from degradation and extending durable lifetime. The investigated architecture is based on a symmetric “U” type geometry, which is constructed by a highly reflective material on the inner surface. Solar irradiation is reflected internally at the bottom of the construction and splits towards two opposite sided solar cells; the two cells form a cavity where the solar light multiplies and is successively absorbed. Consequently, the vertically incoming irradiation is reduced when reaching the vertical internal sides on which the DSSCs are mounted. Thus, the solar cells operate at low light intensities, which provide significant lifetime extension and efficiency enhancement. Interestingly, the electrical energy per effective surface unit, which is produced by the two vertical DSSCs, is at least equal to that of a standalone, vertically irradiated cell. The advantage of the new architecture is that protects DSSCs from their degradation and deterioration, although the entire system operates under high illumination. This makes the cells more efficient outdoors, with a comparable performance to indoor conditions.
Collapse
|
11
|
A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An investigation on the photoelectrochemical and sensitizing properties of two different hybrid organic dyes, anchored as sensitizers on mesoporous TiO2, in Grätzel solar cells, is presented. Firstly, we studied the absorption properties of the C106 sensitizer, a Ru polypyridine complex, and of the Y123, an organic push and pull dye. In this work, we characterized these two dyes, employing two different electrolytes, with similar experimental condition and device parameters. From the J–V curves and IPCE photo action spectra, we performed an inedited bifacial study based on the comparison of their photovoltaic performances, exploiting several backgrounds (black or white). Among the obtained results from this study, we found the best bifaciality factor of 93% for C106 and the best power conversion efficiency of 12.8% for Y123. These results represent, concerning these two dyes and to the best of our knowledge, some of the highest values in literature.
Collapse
|
12
|
Facial Recognition Method Based on Thin-Film Solar Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we developed a new facial recognition system using thin-film solar cells as sensors. When the face of a user is illuminated by LED lights on the left and right sides of the system and the reflected light enters the cells at the corresponding positions, differences in facial skin colors and 3D contours lead to different output voltages and currents of the thin-film solar cells. This is the basis of facial feature identification. We found that the accuracy of thin-film-solar-cell-based facial recognition can be improved by precisely controlling changes in LED light intensity. The facial features of six different users were successfully distinguished by this method, thus verifying that thin-film solar cells can be used for green power generation, as well as for facial recognition.
Collapse
|
13
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Effect of thickness on charge transfer properties of conductive polymer based PEDOT counter electrodes in DSSC. RESULTS IN SURFACES AND INTERFACES 2021. [DOI: 10.1016/j.rsurfi.2021.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
A computational approach on engineering short spacer for carbazole-based dyes for dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Michaels H, Benesperi I, Freitag M. Challenges and prospects of ambient hybrid solar cell applications. Chem Sci 2021; 12:5002-5015. [PMID: 34168767 PMCID: PMC8179625 DOI: 10.1039/d0sc06477g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome. Ambient photovoltaics provide vast universal energy that can be used to realise near-perpetual intelligent IoT devices which can directly transform diffused light energy into computational inferences based on artificial neural networks and machine learning. At the same time, a new architecture and energy model needs to be developed for IoT devices to optimize their ability to sense, interact, and anticipate. We address the state-of-the-art materials for indoor photovoltaics, with a particular focus on dye-sensitized solar cells, and their effect on the architecture of next generation IoT devices and sensor networks.
Collapse
Affiliation(s)
- Hannes Michaels
- Department of Chemistry, Ångström Laboratory, Uppsala University P.O. Box 523 SE-75120 Uppsala Sweden
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Marina Freitag
- Department of Chemistry, Ångström Laboratory, Uppsala University P.O. Box 523 SE-75120 Uppsala Sweden
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| |
Collapse
|
17
|
Mandal S, Kandregula GR, Ramanujam K. Replacing aromatic π-system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Li X, Song P, Zhao D, Li Y. Theoretical Investigation on Photophysical Properties of Triphenylamine and Coumarin Dyes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4834. [PMID: 33137902 PMCID: PMC7663121 DOI: 10.3390/ma13214834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Organic molecules with donor and acceptor configures are widely used in optoelectronic materials. Triphenylamine dyes (TPCTh and TPCRh) are investigated via density functional theory (DFT) and time-dependent DFT. Some microscopic parameters related to light absorption and photoelectric formation are calculated to interpret the experimental performance in dye-sensitized solar cells (DSSCS). Considering that coumarin derivatives (Dye 10 and Dye 11) have good donor and acceptor structures, they also have a COOH group used as an anchoring group to connect with semiconductors. Thus, the two dyes' photophysical and photoelectric properties are analyzed to estimate the performance and application in DSSCs.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Physics, Liaoning University, Shenyang 110036, China;
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, China;
| | - Dongpeng Zhao
- College of Science, Northeast Forestry University, Harbin 150040, China;
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
19
|
Wu C, Li R, Wang Y, Lu S, Lin J, Liu Y, Zhang X. Strong metal-support interactions enable highly transparent Pt-Mo 2C counter electrodes of bifacial dye-sensitized solar cells. Chem Commun (Camb) 2020; 56:10046-10049. [PMID: 32729584 DOI: 10.1039/d0cc03744c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly transparent and active Pt-Mo2C counter electrodes were successfully fabricated by the strong metal-support interaction, with high dispersity of Pt nanoclusters on Mo2C support, which endowed bifacial dye-sensitized solar cells with a rear-to-front efficiency ratio as high as 0.75.
Collapse
Affiliation(s)
- Chunxia Wu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Solar Cells for Indoor Applications: Progress and Development. Polymers (Basel) 2020; 12:polym12061338. [PMID: 32545598 PMCID: PMC7362227 DOI: 10.3390/polym12061338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/05/2022] Open
Abstract
The Internet of things (IoT) has been rapidly growing in the past few years. IoT connects numerous devices, such as wireless sensors, actuators, and wearable devices, to optimize and monitor daily activities. Most of these devices require power in the microwatt range and operate indoors. To this end, a self-sustainable power source, such as a photovoltaic (PV) cell, which can harvest low-intensity indoor light, is appropriate. Recently, the development of highly efficient PV cells for indoor applications has attracted tremendous attention. Therefore, different types of PV materials, such as inorganic, dye-sensitized, organic, and perovskite materials, have been employed for harvesting low-intensity indoor light energy. Although considerable efforts have been made by researchers to develop low-cost, stable, and efficient PV cells for indoor applications, Extensive investigation is necessary to resolve some critical issues concerning PV cells, such as environmental stability, lifetime, large-area fabrication, mechanical flexibility, and production cost. To address these issues, a systematic review of these aspects will be highly useful to the research community. This study discusses the current status of the development of indoor PV cells based on previous reports. First, we have provided relevant background information. Then, we have described the different indoor light sources, and subsequently critically reviewed previous reports regarding indoor solar cells based on different active materials such as inorganic, dye-sensitized, organic, and perovskite. Finally, we have placed an attempt to provide insight into factors needed to further improve the feasibility of PV technology for indoor applications.
Collapse
|