1
|
Xiong Q, Xiong C, Zhou Q, Shen M, Song J, Zhao M, Zhang Y, An M, Ni Y. A Dual Effect Additive Modified Electrolyte Strategy to Improve the Electrochemical Performance of Zinc-Based Prussian Blue Analogs Energy Storage Device. SMALL METHODS 2025; 9:e2401254. [PMID: 39487630 DOI: 10.1002/smtd.202401254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Prussian blue analogs (PBA) exhibit excellent potential for energy storage due to their unique three-dimensional open framework and abundant redox active sites. However, the dissolution of transition metal ions in water can compromise the structural integrity of PBAs, leading to significant issues such as low cycle life and capacity decay. To address these challenges, we proposed a dual-effect additive-modified electrolyte method to alleviate such issues, introducing sodium ferrocyanide (Na4Fe(CN)6) into aqueous alkaline electrolytes. It could not only capture Zn2+ dissolved on the surface of Na1.86Zn1.46[Fe(CN)6]0.87 (ZnHCF) electrode material during the cycling process but also conduct redox reactions on the electrode surface to provide additional capacitance. Through experiments and molecular simulation calculations, it showed that Na4Fe(CN)6 can restrict the movement of Zn dissolution into the electrolyte on the electrode surface. Based on this, an asymmetric supercapacitor based on ZnHCF//activated carbon was assembled with a modified electrolyte. The assembled supercapacitor displayed a specific capacitance of 1,329.65 mF cm-2, a power density of 2,900 mW cm-2, and an energy density of 388.28 mW h cm-2. This study provides a new idea for the design and construction of stable and efficient PBA energy storage materials by inhibiting the leaching of transition metals in PBA.
Collapse
Affiliation(s)
- Qing Xiong
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qiusheng Zhou
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jiangnan Song
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengjie Zhao
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongkang Zhang
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yonghao Ni
- Department of Chemical and biomedical Engineering, The University of Maine, Orono, Maine, 04469, USA
- University of New Brunswick, Limerick Pulp & Paper Ctr, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
2
|
Sada K, Greene SM, Kmiec S, Siegel DJ, Manthiram A. Unveiling the Influence of Water Molecules on the Structural Dynamics of Prussian Blue Analogues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406853. [PMID: 39344163 DOI: 10.1002/smll.202406853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
3D-framework Prussian blue analogues (PBAs) are appealing as a cost-effective, sustainable cathodes for Na-ion batteries. However, the aqueous-based synthesis of PBAs inherently introduces three different forms of water molecules (surface, interstitial and crystal) into the structure. Removal of water molecules causes phase transformation from monoclinic (M) to rhombohedral (R). This work presents the effects of water molecules on the structure before the phase transformation temperature, employing two promising PBA cathodes, Na2Fe[Fe(CN)6]·1.69H2O and Na2Mn[Fe(CN)6]·1.76H2O. Specifically, the water molecules impact the molecular interactions at the local structure and the electrochemical properties. This work has performed calculations on low-vacancy Na2M[Fe(CN)6] PBAs (where M = Mn, Fe, Co, Ni and Cu) to understand the dehydration energy. Employing in situ high-temperature X-ray diffraction and Raman spectroscopy, this work observes that water removal induces negative thermal expansion and stronger interactions between C≡N and Na ions, resulting in biphasic reactions with sluggish kinetics. Additionally, water molecules play a role in maintaining the open 3D tunnels and facilitating a solid-solution like insertion of Na ions. Calculated phonon-Raman spectra provide insights into cyanide group deformations, revealing the interactions between water molecules, alkali-ions, and transition-metal ions. This study enhances the understanding of the relationship among electronic, vibrational, and electrochemical properties.
Collapse
Affiliation(s)
- Krishnakanth Sada
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Samuel M Greene
- Oden Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas, 78712-1591, USA
| | - Steven Kmiec
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Donald J Siegel
- Oden Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas, 78712-1591, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712-1591, USA
| | - Arumugam Manthiram
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas, 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712-1591, USA
| |
Collapse
|
3
|
Yimtrakarn T, Lo YA, Kongcharoenkitkul J, Lee JC, Kaveevivitchai W. High Capacity and Fast Kinetics Enabled by Metal-Doping in Prussian Blue Analogue Cathodes for Sodium-Ion Batteries. Chem Asian J 2024; 19:e202301145. [PMID: 38703395 DOI: 10.1002/asia.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Prussian blue analogues (PBAs) have gained tremendous attention as promising low-cost electrochemically-tunable electrode materials, which can accommodate large Na+ ions with attractive specific capacity and charge-discharge kinetics. However, poor cycling stability caused by lattice strain and volume change remains to be improved. Herein, metal-doping strategy has been demonstrated in FeNiHCF, Na1.40Fe0.90Ni0.10[Fe(CN)6]0.85 ⋅ 1.3H2O, delivering a capacity as high as 148 mAh g-1 at 10 mA g-1. At an exceptionally high rate of 25.6 A g-1, a reversible capacity of ~55 mAh g-1 still can be obtained with a very small capacity decay rate of 0.02 % per cycle for 1000 cycles, considered one of the best among all metal-doped PBAs. This exhibits the stabilizing effect of Ni doping which enhances structural stability and long-term cyclability. In situ synchrotron X-ray diffraction reveals an extremely small (~1 %) change in unit cell parameters. The Ni substitution is found to increase the electronic conductivity and redox activity, especially at the low-spin (LS) Fe center due to inductive effect. This larger capacity contribution from LS Fe2+C6/Fe3+C6 redox couple is responsible for stable high-rate capability of FeNiHCF. The insight gained in this work may pave the way for the design of other high-performance electrode materials for sustainable sodium-ion batteries.
Collapse
Affiliation(s)
- Trakarn Yimtrakarn
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yi-An Lo
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Jakkraphat Kongcharoenkitkul
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Jui-Chin Lee
- Core Facility Center, National Cheng Kung University, Tainan, City, 70101, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
4
|
Ge L, Song Y, Niu P, Li B, Zhou L, Feng W, Ma C, Li X, Kong D, Yan Z, Xue Q, Cui Y, Xing W. Elaborating the Crystal Water of Prussian Blue for Outstanding Performance of Sodium Ion Batteries. ACS NANO 2024; 18:3542-3552. [PMID: 38215406 DOI: 10.1021/acsnano.3c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Prussian blue (PB) is one of the main cathode materials with industrial prospects for the sodium ion battery. The structural stability of PB materials is directly associated with the presence of crystal water within the open 3D framework. However, there remains a lack of consensus regarding whether all forms of crystal water have detrimental effects on the structural stability of the PB materials. Currently, it is widely accepted that interstitial water is the stability troublemaker, whereas the role of coordination water remains elusive. In this work, the dynamic evolution of PB structures is investigated during the crystal water (in all forms) removal process through a variety of online monitoring techniques. It can be inferred that the PB-130 °C retains trace coordination water (1.3%) and original structural integrity, whereas PB-180 °C eliminates almost all of crystal water (∼12.1%, including both interstitial and coordinated water), but inevitably suffers from structural collapse. This is mainly because the coordinated water within the PB material plays a crucial role in maintaining structural stability via forming the -N≡C-FeLS-C≡N- conjugate bridge. Consequently, PB-130 °C with trace coordination water delivers superior reversible capacity (113.6 mAh g-1), high rate capability (charge to >80% capacity in 3 min), and long cycling stability (only 0.012% fading per cycle), demonstrating its promising prospect in practical applications.
Collapse
Affiliation(s)
- Lina Ge
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Yijun Song
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Pengchao Niu
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Bingyu Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Li Zhou
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Wenting Feng
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Chunxiang Ma
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xuejin Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Debin Kong
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Zifeng Yan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Qingzhong Xue
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Yongpeng Cui
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Wei Xing
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| |
Collapse
|
5
|
Wei Z, Zhao W, Hu J, Deng T, Zhang N. Engineering a defect-rich Prussian blue analog composite for enhanced Cs + removal performance. Chem Commun (Camb) 2024; 60:396-399. [PMID: 38079190 DOI: 10.1039/d3cc05170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Using a novel, irregular honeycombed N-doped porous carbon (NPC) as a support and defect inducer, defect-rich Zn-PBA was formed in situ and evenly anchored on the surface of NPC to obtain a defect-rich Zn-PBA/NPC composite. This composite demonstrated an ultrafast Cs+ adsorption rate that reached equilibrium within 60 s as well as excellent adsorption capacity, stability and reusability. The adsorption mechanism indicated that Cs+ was quickly adsorbed via the defect sites close to the Zn-PBA crystal face accompanied by K(OH2)+ elimination.
Collapse
Affiliation(s)
- Zhenwei Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Weilian Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.
| | - Nan Zhang
- Tianjin Center, China Geological Survey, Tianjin, China.
| |
Collapse
|
6
|
Xie B, Sun B, Gao T, Ma Y, Yin G, Zuo P. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Shen L, Jiang Y, Jiang Y, Ma J, Yang K, Ma H, Liu Q, Zhu N. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24332-24340. [PMID: 35604045 DOI: 10.1021/acsami.2c03290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prussian blue analogs (PBAs) are regarded as promising cathode materials for sodium-ion batteries (SIBs), but most of them suffer from an incompatibility between capacity and structural stability. Herein, an innovative disodium ethylenediaminetetraacetate (Na2EDTA)-assisted hydrothermal method is proposed to synthesize monoclinic Fe-substituted Ni-rich PBA (H-PBA) cathodes for Na-ion storage. The as-designed H-PBA cathode combines the merits of the low strain of a Ni-based PBA framework and the enhanced capacity of N-Fe3+/Fe2+ redox sites. It can achieve superior sodium-storage performance in terms of capacity, rate capability, and cycle stability. Moreover, ex situ measurements reveal that solid solution (2.0-3.0 V) and phase-transition (3.0-4.0 V) reactions occur during the charge/discharge process to allow almost 1.5 Na+ storage in the H-PBA lattice. Meanwhile, the H-PBA//NaTi2(PO4)3@C full cell also delivers remarkable electrochemical properties. Prospectively, this work would promote the practical application of SIBs in grid-scale electric energy storage.
Collapse
Affiliation(s)
- Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yue Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Kai Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108384. [PMID: 34918850 DOI: 10.1002/adma.202108384] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Prussian blue analogues (PBAs) have attracted wide attention for their application in the energy storage and conversion field due to their low cost, facile synthesis, and appreciable electrochemical performance. At the present stage, most research on PBAs is focused on their material-level optimization, whereas their properties in practical battery systems are seldom considered. This review aims to first provide an overview of the history and parameters of PBA materials and analyze the fundamental principles toward rational design of PBAs, and then evaluate the prospects and challenges for PBAs for practical sodium-ion batteries, hoping to bridge the gap between laboratory research and commercial reality.
Collapse
Affiliation(s)
- Jian Peng
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Wang Zhang
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Qiannan Liu
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shulei Chou
- Institute of Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huakun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| |
Collapse
|
9
|
Hu J, Tao H, Chen M, Zhang Z, Cao S, Shen Y, Jiang K, Zhou M. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12234-12242. [PMID: 35234035 DOI: 10.1021/acsami.1c23762] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prussian blue analogues (PBAs) are considered one of the promising cathodes for sodium-ion batteries because of their low cost and tunable structure. As an intrinsic characteristic, the influence of structured water in PBAs on the electrochemical properties is still controversial. Herein, low-vacancy iron hexacyanoferrate with different interstitial water contents is synthesized through the citric acid-assisted single iron source method. Ex situ Fourier transform infrared and X-ray diffraction characterization reveals that the interstitial water can stably exist in the Prussian blue framework during repeated cycling. The long-standing interstitial water can reduce the volume change during the Na+ insertion/extraction process, resulting in improved cycling stability. Thanks to the low Fe(CN)64- vacancies and pillar role of interstitial water in the crystal framework, the HW-PB exhibits a high reversible capacity of 117 mAh g-1 and excellent long cycle performance with a capacity retention of 91% after 1380 cycles. This work broadens the understanding of the relationship between the interstitial water in PBAs and Na-storage performances, providing guidance for the precise synthesis of high-quality PBAs.
Collapse
Affiliation(s)
- Jianwei Hu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Hongwei Tao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Manlin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhuchan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Shengling Cao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Yi Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| |
Collapse
|
10
|
Liu Q, Ma Z, Chen Z, Cui M, Lei H, Wang J, Fei J, He N, Liu Y, Liu Q, Li W, Huang Y. Polyaniline surface-modified Prussian blue analogue cathode for flexible aqueous Zn-ion battery. Chem Commun (Camb) 2022; 58:8226-8229. [DOI: 10.1039/d2cc02724k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous Zn-ion batteries have gained popularity due to their low cost and high safety, but their low energy density limits application scenarios. Although the Prussian blue analogue (PBA) has the...
Collapse
|
11
|
Andonova S, Akbari SS, Karadaş F, Spassova I, Paneva D, Hadjiivanov K. Structure and properties of KNi–hexacyanoferrate Prussian Blue Analogues for efficient CO2 capture: Host–guest interaction chemistry and dynamics of CO2 adsorption. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Patnaik SG, Pech D. Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium-Ion Microbattery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101615. [PMID: 34028184 DOI: 10.1002/smll.202101615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Small dimension Li-ion microbatteries are of great interest for embedded microsystems and on-chip electronics. However, the deposition of fully crystallized cathode thin film generally requires high temperature synthesis or annealing, incompatible with microfabrication processes of integrated Si devices. In this work, a low temperature deposition process of a porous Prussian blue-based cathode on Si wafers is reported. The active material is electrodeposited under aqueous conditions using a pulsed deposition protocol on a porous dendritic metallic current collector that ensures good electronic conductivity of the composite. The high voltage cathodes exhibit a huge areal capacity of ≈650 μAh cm-2 and are able to withstand more than 2000 cycles at 0.25 mA cm-2 rate. The application of these electrode composites with porous Sn based alloying anodes is also demonstrated for the first time in full cell configuration, with high areal energy of 3.1 J cm-2 and more than 95% reversible capacity. This outstanding performance can be attributed to uniform deposition of Prussian blue materials on conductive matrix, which maintains electronic conductivity while simultaneously providing mechanical integrity to the electrode. This finding opens new horizons in the monolithic integration of energy storage components compatible with the semiconductor industry for self-powered microsystems.
Collapse
Affiliation(s)
- Sai Gourang Patnaik
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, 31400, France
| | - David Pech
- LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, Toulouse, 31400, France
| |
Collapse
|
13
|
Li Y, Dang Q, Chen W, Tang L, Hu M. Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01886-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Lumley MA, Nam DH, Choi KS. Elucidating Structure-Composition-Property Relationships of Ni-Based Prussian Blue Analogues for Electrochemical Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36014-36025. [PMID: 32805788 DOI: 10.1021/acsami.0c08084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nickel hexacyanoferrate (NiHCF), a type of Prussian blue analogue (PBA), has recently emerged as one of the most promising Na-storage electrodes for use in electrochemical desalination. Previous studies have revealed that NiHCF can be prepared with both cubic and rhombohedral symmetries depending on the oxidation state of Fe (FeII vs FeIII) and the related A-site occupancy. However, our understanding of the effects of the lattice-type of the as-prepared samples on their electrochemical performances, structural transitions that occur during sodiation/desodiation, cyclability, and rate capabilities is presently lacking. Additionally, the optimum structural and compositional features required to prepare high-performing NiHCF electrodes have not yet been clearly established. In this work, we report the synthesis of two sets of cubic and rhombohedral NiHCF samples with different particle sizes, crystallinities, and compositions. Using these samples, we systematically elucidated the structure-composition-property relationships of NiHCF to develop rational design principles to prepare high-performing PBAs. Our results show that high crystallinity, a low number of Fe(CN)6 vacancies, and a large unit cell size to allow for consistent structural changes during cycling are critical factors to produce NiHCF with a high capacity, good cycling stability, and good rate capabilities, and these factors are considerably affected by the synthesis conditions. One of the samples prepared in this study with optimum structural features demonstrates the best performance and stability among any PBA electrode tested in neutral saline solutions to date.
Collapse
Affiliation(s)
- Margaret A Lumley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Do-Hwan Nam
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Zou X, Wang Y, Tan Y, Pan J, Niu J, Jia C. Achieved RGBY Four Colors Changeable Electrochromic Pixel by Coelectrodeposition of Iron Hexacyanoferrate and Molybdate Hexacyanoferrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29432-29442. [PMID: 32470285 DOI: 10.1021/acsami.0c03638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although multicolor electrochromic materials and devices have been studied by many researchers, there is still none an inorganic single-layer film that has red, blue, and green three typical color states, while red, green, and blue (RGB) are indispensably for multicolor display. Iron hexacyanoferrate (FeHCF) is a kind of well-studied inorganic electrochromic material with relatively colorful properties and a great family of analogues. In this Research Article, the RGBY film with red, green, blue and yellow four typical color states are obtained successfully by coelectrodeposition of FeHCF and molybdate hexacyanoferrate (MoOHCF). This film contains the electrochromic properties of both components. Moreover, benefiting from its high A+ (alkali cation ions that can insert/extract into/from the framework, such as Li+ and K+) content, the redox process of RGBY film can be fully completed to achieve rich color variation. The absorptivity adjustment range of RGBY film at 730 and 440 nm are 0.81 and 0.43, respectively. The response time of RGBY films varies from 3 to 30 s between states and maintains its optical properties without significant decay during 1000 cycles. Finally, a pixelated electrode and a facile electrochromic device based on RGBY film have been developed to exhibit its high application potential in nonemission display field.
Collapse
Affiliation(s)
- Xinlei Zou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yi Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yang Tan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianbo Pan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Junlong Niu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|