1
|
Hu Y, Chen Y, Wang X, Zhou P, He L, Chen L, Zhang M. Adjusting Ion Diffusion Kinetics of Li Deposition Enabled by an Elastic Porous Melamine Sponge Host for Stable Lithium Metal Anodes. NANO LETTERS 2024. [PMID: 39017609 DOI: 10.1021/acs.nanolett.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lithium (Li) dendritic growth and huge volume expansion seriously hamper Li-metal anode development. Herein, we design a lightweight 3D Li-ion-affinity host enabled by silver (Ag) nanoparticles fully decorating a porous melamine sponge (Ag@PMS) for dendrite-free and high-areal-capacity Li anodes. The compact Ag nanoparticles provide abundant preferred nucleation sites and give the host strong conductivity. Moreover, the high specific surface area and polar groups of the elastic, porous melamine sponge enhance the Li-ion diffusion kinetics, prompting homogeneity of Li deposition and stripping. As expected, the integrated 3D Ag@PMS-Li anode delivered a remarkable electrochemical performance, with a Coulombic efficiency (CE) of 97.14% after 450 cycles at 1 mA cm-2. The symmetric cell showed an ultralong lifespan of 3400 h at 1 mA cm-2 for 1 mAh cm-2. This study provides a facile and cost-effective strategy to design an advanced 3D framework for the preparation of a stable dendrite-free Li metal anode.
Collapse
Affiliation(s)
- Yueli Hu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yuejiao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Xiaodong Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Peng Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Lirong He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Mingyu Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
- National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, PR China
| |
Collapse
|
2
|
Shi Y, Liu Y, Ma T, Hu X, Liu X, Jiang Y, Li W, Zhang J, Zhao B. In-situ cross-linked multifunctional polymer electrolyte buffer layers for high-performance garnet solid-state lithium metal batteries. J Colloid Interface Sci 2023; 641:470-478. [PMID: 36948102 DOI: 10.1016/j.jcis.2023.03.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The garnet Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is one of the most promising electrolytes for commercial application since of its high ionic conductivity and good stability to Li. Nevertheless, the poor electrolyte/electrode interface contact enlarges the interface impedance of all-solid-state battery (ASSB). Herein, a multifunctional polymer electrolyte (MPE) interface buffer layers are formed on both sides of LLZTO surface through an in-situ crosslinking strategy to improve the interface contact with electrodes, which can facilitate uniform Li+ deposition/exfoliation and inhibit the growth of lithium dendrites as evidenced by the reduced interface impedance (103.4 Ω cm2), the increased critical current density (CDD, 1.2 mA cm-2) and 950 h stable cycle of Li symmetric cells at 0.7 mA cm-2, 0.7 mA h cm-2. Besides, the MPE layer can reduce the magnitude of electric field at the interface and widen the electrochemical window (0∼5.2 V). The stable interface of the LLZTO@MPE/cathode enables the full cells matching with the LiFePO4 (LFP) and LiNi0.5Co0.2Mn0.3O2 (NCM523) cathodes to deliver superior electrochemical performances. Specifically, the Li/MPE@LLZTO@MPE/LFP delivers a capacity retention rate of 87% after 200 cycles at 1 C. When it's matched with the NCM523 cathode, a capacity retention rate of 98% is retained after 100 cycles at 1 C. This work provides an effective and simple way to build good-interface-contact and long-lifespan garnet solid-state lithium metal batteries (SSLMBs).
Collapse
Affiliation(s)
- Yaru Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yiqian Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Tengzhou Ma
- Shanghai Customs Industrial Products and Raw Materials Testing Technology Center, Shanghai 200135, China
| | - Xiongtao Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Wenrong Li
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Zhou L, Zhao M, Chen X, Zhou J, Wu M, Wu N. A hydrophobic artificial solid-interphase-protective layer with fast self-healable capability for stable lithium metal anodes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1323-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Jin T, Liu M, Su K, Lu Y, Cheng G, Liu Y, Li NW, Yu L. Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57489-57496. [PMID: 34839656 DOI: 10.1021/acsami.1c19479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium (Li) metal batteries are promising future rechargeable batteries with high-energy density as the Li metal anode (LMA) possesses a high specific capacity and the lowest potential. However, the commercial application of the LMA has been hindered by a low Coulombic efficiency and dendrite growth, which are related to the unstable interphase with poor Li+ ion transport. Herein, we report novel polymer zwitterion-based artificial interphase layers (AILs) with improved Li+ ion transport and high stability for long-life LMAs. Benefitting from the unique zwitterion effect within the polymer zwitterion-based AILs, a high Li+ ion transference number (0.81) and a good ionic conductivity (0.75 × 10-4 S cm-1) can be realized simultaneously at the interface. By regulating the weight ratio of the sulfonate group and the phosphate group in polymer zwitterion-based AILs, the modified LMA enables long-term Li plating/stripping for 1400 h at 1 mA cm-2 and stable cycling in a full cell. This interfacial engineering concept could shed light on the development of safe LMAs.
Collapse
Affiliation(s)
- Tong Jin
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ming Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kai Su
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yue Lu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guang Cheng
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Nian Wu Li
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Le Yu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
5
|
Yuan S, Kong T, Zhang Y, Dong P, Zhang Y, Dong X, Wang Y, Xia Y. Advanced Electrolyte Design for High‐Energy‐Density Li‐Metal Batteries under Practical Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shouyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Taoyi Kong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology Key Laboratory of Advanced Battery Materials of Yunnan Province Faculty of Metallurgical and Energy Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| | - Yongyao Xia
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
6
|
Yuan S, Kong T, Zhang Y, Dong P, Zhang Y, Dong X, Wang Y, Xia Y. Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angew Chem Int Ed Engl 2021; 60:25624-25638. [PMID: 34331727 DOI: 10.1002/anie.202108397] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Given the limitations inherent in current intercalation-based Li-ion batteries, much research attention has focused on potential successors to Li-ion batteries such as lithium-sulfur (Li-S) batteries and lithium-oxygen (Li-O2 ) batteries. In order to realize the potential of these batteries, the use of metallic lithium as the anode is essential. However, there are severe safety hazards associated with the growth of Li dendrites, and the formation of "dead Li" during cycles leads to the inevitable loss of active Li, which in the end is undoubtedly detrimental to the actual energy density of Li-metal batteries. For Li-metal batteries under practical conditions, a low negative/positive ratio (N/P ratio), a electrolyte/cathode ratio (E/C ratio) along with a high-voltage cathode is prerequisite. In this Review, we summarize the development of new electrolyte systems for Li-metal batteries under practical conditions, revisit the design criteria of advanced electrolytes for practical Li-metal batteries and provide perspectives on future development of electrolytes for practical Li-metal batteries.
Collapse
Affiliation(s)
- Shouyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China.,National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Taoyi Kong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yongyao Xia
- Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Chen D, Liu P, Zhong L, Wang S, Xiao M, Han D, Huang S, Meng Y. Covalent Organic Frameworks with Low Surface Work Function Enabled Stable Lithium Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101496. [PMID: 34142443 DOI: 10.1002/smll.202101496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Uniform deposition and distribution of lithium ion (Li+ ) on the surface of lithium metal anode is crucial for long-life and high-safety lithium metal batteries. However, the preparation of stable solid-electrolyte interphase (SEI) is mostly based on trial and error in the absence of guideline. Herein, covalent organic framework (COF) with high Young's modulus and low surface work function is in situ synthesized on Li anode to stabilize Li|electrolyte interface. Notably, Young's modulus, mechanical index for Li dendrite resistance, and surface work function, electrical index for Li+ distribution, can be regarded as macroscopically detectable indicators to evaluate the artificial SEI before battery assembly. The COFTpPa modified Li metal anodes delivered stable cycling over 1000 (2000) h at high current density of 5 (2) mA cm-2 in the ether-based electrolyte, and the full cells with commercial LiFePO4 electrode (mass loading of 16.5 mg cm-2 ) demonstrate remarkably enhanced cycling performance with a high reversible capacity of 152.3 mAh g-1 (retention of 96.8%) after 300 cycles.
Collapse
Affiliation(s)
- Dongdong Chen
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Peng Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lei Zhong
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
8
|
Wang X, Lu Y, Geng D, Li L, Zhou D, Ye H, Zhu Y, Wang R. Planar Fully Stretchable Lithium-Ion Batteries Based on a Lamellar Conductive Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53774-53780. [PMID: 33185091 DOI: 10.1021/acsami.0c15305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stretchable lithium-ion batteries (LIBs) have attracted great attention as a promising power source in the emerging field of wearable electronics. Despite the recent advances in stretchable electrodes, separators, and sealing materials, building stretchable full batteries remains a big challenge. Herein, a simple strategy to prepare stretchable electrodes and separators at the full battery scale is reported. Then, electrostatic spraying is used to make the anode and cathode on an elastic current collector. Finally, a polyvinylidene fluoride/thermoplastic polyurethane nanofiber separator is hot-sandwiched between the cathode and anode. The fabricated battery shows stable electrochemical performance during repeatable release-stretch cycles. In particular, a stable capacity of 6 mA•h/cm2 at the current rate of 0.5 C can be achieved for the fully stretchable LIB. More importantly, over 70% of the initial capacity can be maintained after 100 cycles with ∼150% stretch.
Collapse
Affiliation(s)
- Xiaodan Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yao Lu
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - La Li
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Dan Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Bezabh HK, Tsai MC, Hagos TT, Beyene TT, Berhe GB, Hagos TM, Abrha LH, Chiu SF, Su WN, Hwang BJ. Roles of film-forming additives in diluted and concentrated electrolytes for lithium metal batteries: A density functional theory-based approach. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|