1
|
Sultana R, Wang S, Abbasi MS, Shah KA, Mubeen M, Yang L, Zhang Q, Li Z, Han Y. Enhancing sensitivity, selectivity, and intelligence of gas detection based on field-effect transistors: Principle, process, and materials. J Environ Sci (China) 2025; 154:174-199. [PMID: 40049866 DOI: 10.1016/j.jes.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 05/13/2025]
Abstract
A sensor, serving as a transducer, produces a quantifiable output in response to a predetermined input stimulus, which may be of a chemical or physical nature. The field of gas detection has experienced a substantial surge in research activity, attributable to the diverse functionalities and enhanced accessibility of advanced active materials. In this work, recent advances in gas sensors, specifically those utilizing Field Effect Transistors (FETs), are summarized, including device configurations, response characteristics, sensor materials, and application domains. In pursuing high-performance artificial olfactory systems, the evolution of FET gas sensors necessitates their synchronization with material advancements. These materials should have large surface areas to enhance gas adsorption, efficient conversion of gas input to detectable signals, and strong mechanical qualities. The exploration of gas-sensitive materials has covered diverse categories, such as organic semiconductor polymers, conductive organic compounds and polymers, metal oxides, metal-organic frameworks, and low-dimensional materials. The application of gas sensing technology holds significant promise in domains such as industrial safety, environmental monitoring, and medical diagnostics. This comprehensive review thoroughly examines recent progress, identifies prevailing technical challenges, and outlines prospects for gas detection technology utilizing field effect transistors. The primary aim is to provide a valuable reference for driving the development of the next generation of gas-sensitive monitoring and detection systems characterized by improved sensitivity, selectivity, and intelligence.
Collapse
Affiliation(s)
- Rabia Sultana
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Song Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Misbah Sehar Abbasi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kamran Ahmad Shah
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Mubeen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Luxi Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiyu Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zepeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yinghui Han
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Ballinas-Indilí R, Sánchez Vergara ME, Rosales-Amezcua SC, Hernández Méndez JA, López-Mayorga B, Miranda-Ruvalcaba R, Álvarez-Toledano C. Synthesis of New Ruthenium Complexes and Their Exploratory Study as Polymer Hybrid Composites in Organic Electronics. Polymers (Basel) 2024; 16:1338. [PMID: 38794531 PMCID: PMC11125087 DOI: 10.3390/polym16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73-2.24 eV, while the Tauc band gap was in the range of 1.68-2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics.
Collapse
Affiliation(s)
- Ricardo Ballinas-Indilí
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Saulo C. Rosales-Amezcua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| | - Joaquín André Hernández Méndez
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Byron López-Mayorga
- Escuela de Química, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, 11 avenida, Ciudad de Guatemala 01012, Guatemala;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| |
Collapse
|
3
|
Cheng S, Wang Y, Zhang R, Wang H, Sun C, Wang T. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. SENSORS (BASEL, SWITZERLAND) 2023; 23:8309. [PMID: 37837139 PMCID: PMC10575277 DOI: 10.3390/s23198309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
In recent decades, the rapid development of the global economy has led to a substantial increase in energy consumption, subsequently resulting in the emission of a significant quantity of toxic gases into the environment. So far, gas sensors based on polymer field-effect transistors (PFETs), a highly practical and cost-efficient strategy, have garnered considerable attention, primarily attributed to their inherent advantages of offering a plethora of material choices, robust flexibility, and cost-effectiveness. Notably, the development of functional organic semiconductors (OSCs), such as poly(3-hexylthiophene-2,5-diyl) (P3HT), has been the subject of extensive scholarly investigation in recent years due to its widespread availability and remarkable sensing characteristics. This paper provides an exhaustive overview encompassing the production, functionalization strategies, and practical applications of gas sensors incorporating P3HT as the OSC layer. The exceptional sensing attributes and wide-ranging utility of P3HT position it as a promising candidate for improving PFET-based gas sensors.
Collapse
Affiliation(s)
| | | | | | | | - Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
4
|
Shen Z, Huang W, Li L, Li H, Huang J, Cheng J, Fu Y. Research Progress of Organic Field-Effect Transistor Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302406. [PMID: 37271887 DOI: 10.1002/smll.202302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.
Collapse
Affiliation(s)
- Zhengqi Shen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Li Li
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Huang
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Liu L, Zhang Y, Yan Y. Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. NANOSCALE HORIZONS 2023; 8:1301-1312. [PMID: 37529878 DOI: 10.1039/d3nh00115f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sensing and computing are two important ways in which humans attempt to perceive and understand the analog world through digital devices. Analog-to-digital converters (ADCs) discretize analog signals while the data bus transmits digital data between the components of a computer. With the increase in sensor nodes and the application of deep neural networks, the energy and time consumption limit the increment of data throughput. In-sensor computing is a computing paradigm that integrates sensing, storage, and processing in one device without ADCs and data transfer. According to the integration degree, herein, we summarize four levels of in-sensor computing in the field of artificial olfactory. In the first level, we show that different functions are conducted by using discrete components. Next, the data conversion and transfer are exempt within the in-memory computing architecture with necessary data encoding. Subsequently, in-sensor computing is integrated into a single device. Finally, multi-modal in-sensor computing is proposed to improve the quality and reliability of the classification results. At the end of this minireview, we provide an outlook on the use of metal nanoparticle devices to achieve such in-sensor computing for bionic olfaction.
Collapse
Affiliation(s)
- Lin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchun Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Tran VV, Jeong G, Wi E, Lee D, Chang M. Design and Fabrication of Ultrathin Nanoporous Donor-Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21270-21283. [PMID: 37092808 DOI: 10.1021/acsami.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of organic field-effect transistor (OFET) chemical sensors with high sensing performance and good air stability has remained a persistent challenge, thereby hindering their practical application. Herein, an OFET sensor based on a donor-acceptor copolymer is shown to provide high responsivity, sensitivity, and selectivity toward polar volatile organic compounds, as well as good air stability. In detail, a polymer blend of N-alkyl-diketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene (DPP-DTT) and polystyrene is coated onto an FET substrate via shearing-assisted phase separation (SAPS) combined with selective solvent etching to fabricate the DPP-DTT-based OFET device having an ultrathin nanoporous structure suitable for gas sensing applications. This is achieved via optimization of the film morphology by varying the shear rate to adjust the dynamic balance between the shear and capillary forces to obtain an ultrathin thickness (∼8 nm) and nanopore size (80 nm) that are favorable for the efficient diffusion and interaction of analytes with the active layer. In particular, the sensor presents high responsivities toward methanol (∼70%), acetone (∼51.3%), ethanol (∼39%), and isopropyl alcohol (IPA) (∼29.8%), along with fast response and recovery times of ∼80 and 234 s, respectively. Moreover, the average sensitivity was determined to be 5.75%/ppm from the linear plot of the responsivity against the methanol concentration in the range of 1-100 ppm. Importantly, the device also exhibits excellent long-term (30-day) air and thermal storage stability, thereby demonstrating its high potential for practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | - Ganghoon Jeong
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | - Mincheol Chang
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
7
|
Hahm YE, Kweon S, Park MB, Park YD. Highly Sensitive and Selective Organic Gas Sensors Based on Nitrided ZSM-5 Zeolite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7196-7203. [PMID: 36695727 DOI: 10.1021/acsami.2c18498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For next-generation gas sensors, conductive polymers have strong potential for overcoming the existing deficiencies of conventional inorganic sensors based on metallic oxides. However, the signal of organic gas sensors is inferior to that of inorganic metal oxide gas sensors because of organic gas sensors' poor charge carrier transport. Herein, the combination of an organic transistor-type gas sensor and a zeolite with strong gas-adsorbing properties is proposed and experimentally demonstrated. Among the various investigated zeolites, ZSM-5 with ∼5.5 Å pore openings enhanced the adsorption for small gas molecules when combined with a polymer active layer, where it provided a pathway for gas molecules to penetrate the zeolite channels. Moreover, nitrided ZSM-5 (N-ZSM-5) enhanced the sensing performance of NO2 molecules selectively because N in the N-ZSM-5 framework strongly interacted with NO2 molecules. These results open the possibility for zeolite-modified organic gas sensors that selectively adsorb target gas molecules via heteroatoms substituted into the zeolite framework.
Collapse
Affiliation(s)
- Yea Eun Hahm
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungjoon Kweon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Min Bum Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
8
|
Jeong G, Shin SY, Kyokunzire P, Cheon HJ, Wi E, Woo M, Chang M. High-Performance Nitric Oxide Gas Sensors Based on an Ultrathin Nanoporous Poly(3-hexylthiophene) Film. BIOSENSORS 2023; 13:132. [PMID: 36671967 PMCID: PMC9856169 DOI: 10.3390/bios13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Conjugated polymer (CP)-based organic field-effect transistors (OFETs) have been considered a potential sensor platform for detecting gas molecules because they can amplify sensing signals by controlling the gate voltage. However, these sensors exhibit significantly poorer oxidizing gas sensing performance than their inorganic counterparts. This paper presents a high-performance nitric oxide (NO) OFET sensor consisting of a poly(3-hexylthiophene) (P3HT) film with an ultrathin nanoporous structure. The ultrathin nonporous structure of the P3HT film was created via deposition through the shear-coating-assisted phase separation of polymer blends and selective solvent etching. The ultrathin nonporous structure of the P3HT film enhanced NO gas diffusion, adsorption, and desorption, resulting in the ultrathin nanoporous P3HT-film-based OFET gas sensor exhibiting significantly better sensing performance than pristine P3HT-film-based OFET sensors. Additionally, upon exposure to 10 ppm NO at room temperature, the nanoporous P3HT-film-based OFET gas sensor exhibited significantly better sensing performance (i.e., responsivity ≈ 42%, sensitivity ≈ 4.7% ppm-1, limit of detection ≈ 0.5 ppm, and response/recovery times ≈ 6.6/8.0 min) than the pristine P3HT-film-based OFET sensors.
Collapse
Affiliation(s)
- Ganghoon Jeong
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Young Shin
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Proscovia Kyokunzire
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyeong Jun Cheon
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eunsol Wi
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minhong Woo
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mincheol Chang
- Graduate School, Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
10
|
Ding Y, Zhu Y, Wang H, Wang Y, Gu X, Wang X, Qiu L. Improving Electrical and Mechanical Properties of Blend Films via Optimizing Solution-Processable Techniques and Controlling the Semiconductor Molecular Weight. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yingman Zhu
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Heng Wang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunfei Wang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Intrinsically elastic and self-healing luminescent polyisoprene copolymers formed via covalent bonding and hydrogen bonding design. Polym J 2022. [DOI: 10.1038/s41428-022-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Katz HE. Stabilization and Specification in Polymer Field-Effect Transistor Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15861-15870. [PMID: 35352553 DOI: 10.1021/acsami.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strong and varied chemical interactions between polymer semiconductors and small molecules, and the electronic consequences of these interactions, make polymer organic field-effect transistors (OFETs) attractive as vapor sensing elements. Two hindrances to their wider acceptance and use are their environmental drift and the poor specificity of individual OFETs. Approaches to addressing these two present drawbacks are presented in this Spotlight on Applications. They include the use of semiconducting polymers with greater inherent stability, circuits that add further stability, and arrays that generate patterns that are much more specific to analyte vapors of interest than the individual responses.
Collapse
Affiliation(s)
- Howard E Katz
- Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Tran VV, Jeong G, Kim KS, Kim J, Jung HR, Park B, Park JJ, Chang M. Facile Strategy for Modulating the Nanoporous Structure of Ultrathin π-Conjugated Polymer Films for High-Performance Gas Sensors. ACS Sens 2022; 7:175-185. [PMID: 34967614 DOI: 10.1021/acssensors.1c01942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional conjugated polymer (CP) films based on organic field-effect transistors (OFETs) tend to limit the performance of gas sensors owing to restricted analyte diffusion and limited interactions with the charge carriers that accumulate in the first few monolayers of the CP film in contact with the dielectric layer. Herein, a facile strategy is presented for modulating the morphology and charge-transport properties of nanoporous CP films using shearing-assisted phase separation of polymer blends for fabricating OFET-based chemical sensors. This approach enables the formation of nanoporous films with pore size and thickness in the ranges of 90-550 and 7-27 nm, respectively, which can be controlled simply by varying the shear rate. The resulting OFET sensors exhibit excellent sensing performance when exposed to NH3 gas, demonstrating a high responsivity (≈70.7%) at 10 ppm and good selectivity toward NH3 over various organic solvent vapors. After a comprehensive analysis of the morphology and electrical properties of the CP films, it is concluded that morphological features, such as film thickness and surface area, affect the sensing performance of nanoporous-film-based OFET sensors more significantly compared to the charge-transport characteristics of the films.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Gwanghoon Jeong
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Keun Seong Kim
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Jeongho Kim
- Institute of Research and Development, CNB Inc., Gwangju 61008, South Korea
| | - Hong-Ryun Jung
- Industry-University Cooperation Foundation, Chonnam National University, Gwangju 61186, South Korea
| | - Byoungnam Park
- Department of Materials Science and Engineering, Hongik University, Seoul 121-791, South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, South Korea
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
14
|
Tang L, Watts B, Thomsen L, McNeill CR. Morphology and Charge Transport Properties of P(NDI2OD-T2)/Polystyrene Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linjing Tang
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Benjamin Watts
- Swiss Light Source, Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
| | - Lars Thomsen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Synergistic Effects of Solvent Vapor Assisted Spin-coating and Thermal Annealing on Enhancing the Carrier Mobility of Poly(3-hexylthiophene) Field-effect Transistors. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2577-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yuvaraja S, Bhyranalyar VN, Bhat SA, Surya SG, Yelamaggad CV, Salama KN. A highly selective electron affinity facilitated H 2S sensor: the marriage of tris(keto-hydrazone) and an organic field-effect transistor. MATERIALS HORIZONS 2021; 8:525-537. [PMID: 34821268 DOI: 10.1039/d0mh01420f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conjugated polymers (CPs) are emerging as part of a promising future for gas-sensing applications. However, some of their limitations, such as poor specificity, humidity sensitivity and poor ambient stability, remain persistent. Herein, a novel combination of a polymer-monomer heterostructure, derived from a CP (PDVT-10) and a newly reported monomer [tris(keto-hydrazone)] has been integrated in an organic field-effect transistor (OFET) platform to sense H2S selectively. The hybrid heterostructure shows an unprecedented sensitivity (525% ppm-1) and high selectivity toward H2S gas. In addition, we demonstrated that the PDVT-10/tris(keto-hydrazone) OFET sensor has the lowest limit of detection (1 ppb), excellent ambient stability (∼5% current degradation after 150 days), good response-recovery behavior, and exceptional electrical behavior and gas response reproducibility. This work can help pave the way to incorporate futuristic gas sensors in a multitude of applications.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
17
|
Hou S, Zhuang X, Fan H, Yu J. Grain Boundary Control of Organic Semiconductors via Solvent Vapor Annealing for High-Sensitivity NO 2 Detection. SENSORS 2021; 21:s21010226. [PMID: 33401403 PMCID: PMC7794992 DOI: 10.3390/s21010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
The microstructure of the organic semiconductor (OSC) active layer is one of the crucial topics to improve the sensing performance of gas sensors. Herein, we introduce a simple solvent vapor annealing (SVA) process to control 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) OSC films morphology and thus yields high-sensitivity nitrogen organic thin-film transistor (OTFT)-based nitrogen dioxide (NO2) sensors. Compared to pristine devices, the toluene SVA-treated devices exhibit an order of magnitude responsivity enhancement to 10 ppm NO2, further with a limit of detection of 148 ppb. Systematic studies on the microstructure of the TIPS-pentacene films reveal the large density grain boundaries formed by the SVA process, improving the capability for the adsorption of gas molecules, thus causing high-sensitivity to NO2. This simple SVA processing strategy provides an effective and reliable access for realizing high-sensitivity OTFT NO2 sensors.
Collapse
|
18
|
Liang J, Song Z, Wang S, Zhao X, Tong Y, Ren H, Guo S, Tang Q, Liu Y. Cobweb-like, Ultrathin Porous Polymer Films for Ultrasensitive NO 2 Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52992-53002. [PMID: 33170620 DOI: 10.1021/acsami.0c09821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas sensors based on polymer field-effect transistors (FETs) have drawn much attention owing to the inherent merits of specific selectivity, low cost, and room temperature operation. Ultrathin (<10 nm) and porous polymer semiconductor films offer a golden opportunity for achieving high-performance gas sensors. However, wafer-scale fabrication of such high-quality polymer films is of great challenge and has rarely been realized before. Herein, the first demonstration of 4 in. wafer-scale, cobweb-like, and ultrathin porous polymer films is reported via a one-step phase-inversion process. This approach is extremely simple and universal for constructing various ultrathin porous polymer semiconductor films. Thanks to the abundant pores, ultrathin size, and high charge-transfer efficiency of the prepared polymer films, our gas sensors exhibit many superior advantages, including ultrahigh response (2.46 × 106%), low limit of detection (LOD) (<1 ppm), and excellent selectivity. Thus, the proposed fabrication strategy is exceptionally promising for mass manufacturing of low-cost high-performance polymer FET-based gas sensors.
Collapse
Affiliation(s)
- Jing Liang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhiqi Song
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Shuya Wang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hang Ren
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shanlei Guo
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
19
|
Skin-Like Strain Sensors Enabled by Elastomer Composites for Human–Machine Interfaces. COATINGS 2020. [DOI: 10.3390/coatings10080711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flexible electronics exhibit tremendous potential applications in biosensing and human–machine interfaces for their outstanding mechanical performance and excellent electrical characteristics. In this work, we introduce a soft, skin-integrated strain sensor enabled by a ternary elastomer composite of graphene/carbon nanotube (CNT)/Ecoflex, providing a low-cost skin-like platform for conversion of mechanical motion to electricity and sensing of human activities. The device exhibits high sensitivity (the absolute value of the resistance change rate under a testing strain level, 26) and good mechanical stability (surviving ~hundreds of cycles of repeated stretching). Due to the advanced mechanical design of the metallic electrode, the strain sensor shows excellent mechanical tolerance to pressing, bending, twisting, and stretching. The flexible sensor can be directly mounted onto human skin for detecting mechanical motion, exhibiting its great potential in wearable electronics and human–machine interfaces.
Collapse
|