1
|
Abstract
Due to their many varieties of excellent optoelectric properties, perovskites have attracted large numbers of researchers in the past few years. For the hybrid perovskites, a long diffusion length, long carrier lifetime, and high μτ product are particularly noticeable. However, some disadvantages, including high toxicity and instability, restrict their further large-scale application. By contrast, all-inorganic perovskites not only have remarkable optoelectric properties but also feature high structure stability due to the lack of organic compositions. Benefiting from these, all-inorganic perovskites have been extensively explored and studied. Compared with the thin film type, all-inorganic perovskite single crystals (PSCs) with fewer grain boundaries and crystalline defects have better optoelectric properties. Nevertheless, it is important to note that only a few reports to date have presented a summary of all-inorganic PSCs. In this review, we firstly make a summary and propose a classification method according to the crystal structure. Then, based on the structure classification, we introduce several representative materials and focus on their corresponding growth methods. Finally, applications for detectors of all-inorganic PSCs are listed and summarized. At the end of the review, based on the current research situation and trends, some perspectives and advice are proposed.
Collapse
|
2
|
Zhang H, Yu T, Wang C, Jia R, Pirzado AAA, Wu D, Zhang X, Zhang X, Jie J. High-Luminance Microsized CH 3NH 3PbBr 3 Single-Crystal-Based Light-Emitting Diodes via a Facile Liquid-Insulator Bridging Route. ACS NANO 2022; 16:6394-6403. [PMID: 35404055 DOI: 10.1021/acsnano.2c00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micro-/nanosized organic-inorganic hybrid perovskite single crystals (SCs) with appropriate thickness and high crystallinity are promising candidates for high-performance electroluminescent (EL) devices. However, their small lateral size poses a great challenge for efficient device construction and performance optimization, causing perovskite SC-based light-emitting diodes (PSC-LEDs) to demonstrate poor EL performance. Here, we develop a facile liquid-insulator bridging (LIB) strategy to fabricate high-luminance PSC-LEDs based on single-crystalline CH3NH3PbBr3 microflakes. By introducing a blade-coated poly(methyl methacrylate) (PMMA) insulating layer to effectively overcome the problems of leakage current and possible short circuits between electrodes, we achieve the reliable fabrication of PSC-LEDs. The LIB method also allows us to systematically boost the device performance through crystal growth regulation and device architecture optimization. Consequently, we realize the best CH3NH3PbBr3 microflake-based PSC-LED with an ultrahigh luminance of 136100 cd m-2 and a half-lifetime of 88.2 min at an initial luminance of ∼1100 cd m-2, which is among the highest for organic-inorganic hybrid perovskite LEDs reported to date. Moreover, we observe the strong polarized edge emission of the microflake-based PSC-LEDs with a high degree of polarization up to 0.69. Our work offers a viable approach for the development of high-performance perovskite SC-based EL devices.
Collapse
Affiliation(s)
- Huanyu Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Tingxiu Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chaoqiang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Azhar Ali Ayaz Pirzado
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Department of Electronic Engineering, Faculty of Engineering and Technology, University of Sindh, Allama I.I. Kazi Campus, Jamshoro, Sindh 76080, Pakistan
| | - Di Wu
- School of Physics and Microelectronics and Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| |
Collapse
|
3
|
Maddalena F, Witkowski ME, Makowski M, Bachiri A, Mahler B, Wong YC, Chua CYE, Lee JX, Drozdowski W, Springham SV, Dujardin C, Birowosuto MD, Dang C. Stable and Bright Commercial CsPbBr 3 Quantum Dot-Resin Layers for Apparent X-ray Imaging Screen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59450-59459. [PMID: 34855346 DOI: 10.1021/acsami.1c16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.
Collapse
Affiliation(s)
- Francesco Maddalena
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| | - Marcin E Witkowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Michal Makowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Abdellah Bachiri
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Benoit Mahler
- Universitéé de Lyon, Université Claude Bernard, Lyon 1, CNRS, Institut Lumière Matière UMR5306, Villeurbanne F-69622, France
| | - Ying-Chieh Wong
- Nanolumi, 22 Boon Lay Way #01-61, Tradehub 21, 609968 Singapore
| | | | - Jia Xing Lee
- Nanolumi, 22 Boon Lay Way #01-61, Tradehub 21, 609968 Singapore
| | - Winicjusz Drozdowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Stuart Victor Springham
- Natural Sciences and Science Education, National Institute of Education, 1 Nanyang Walk, 637616 Singapore
| | - Christophe Dujardin
- Universitéé de Lyon, Université Claude Bernard, Lyon 1, CNRS, Institut Lumière Matière UMR5306, Villeurbanne F-69622, France
| | - Muhammad Danang Birowosuto
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| | - Cuong Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| |
Collapse
|