1
|
Sun Y, Jiang H, Zhu X, Xiang Y, Hou S, Li Y, Shawkey MD, Chen G, Xing T. Colorful photothermal photonic crystal cotton fabric based on melanin-like polycaffeic acid nanoparticles. Int J Biol Macromol 2025; 305:141056. [PMID: 39978511 DOI: 10.1016/j.ijbiomac.2025.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Photothermal materials have been extensively researched and utilized owing to their exceptional energy conversion capabilities. However, developing dual-functional materials with both vivid coloration and efficient photothermal performance remains a significant challenge, primarily because most photothermal materials have an undesirable black appearance. Herein, colorful photothermal polycaffeic photonic crystal (PCfA PC) cotton fabric was successfully created by assembling melanin-like polycaffeic acid nanoparticles (PCfA NPs) with adjustable size and high monodispersity. The photothermal performance of the PCfA NPs enabled the developed PCfA PC cotton fabric to reach a temperature increase of 86 °C under laser irradiation at a power density of 0.298 W/cm2, suggesting a high photothermal conversion efficiency of 50.6 %. The PCfA PC fabric also demonstrated adjustable, broad spectrum, and highly saturated structural colors, thanks to the regulation of visible light by the PC nanoparticle array. This innovative colorful photothermal fabric effectively combines the inherent photothermal performance of PCfA NPs with the ability of the PCfA PC to modulate visible light, providing novel materials for photothermal imaging and flexible anti-counterfeiting applications.
Collapse
Affiliation(s)
- Yurong Sun
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Haitao Jiang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaowei Zhu
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yongxuan Xiang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuaijie Hou
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yichen Li
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent 9000, Belgium
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Liu Y, Li B, Yi C, Chen X, Yu X. Application of polydopamine as antibacterial and anti-inflammatory materials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022005. [PMID: 39970533 DOI: 10.1088/2516-1091/adb81d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Polydopamine (PDA), as a material mimicking the adhesive proteins of mussels in nature, has emerged as a strong candidate for developing novel antibacterial and anti-inflammatory materials due to its outstanding biomimetic adhesion, effective photothermal conversion, excellent biocompatibility and antioxidant capabilities. This review discussed in detail the intricate structure and polymerization principles of PDA, elucidated its mechanisms in combating bacterial infections and inflammation, as well as explored the innovative use of PDA-based composite materials for antibacterial and anti-inflammatory applications. By providing an in-depth analysis of PDA's capabilities and future research directions, this review addresses a crucial need for safer, more effective, and controllable antimicrobial and anti-inflammatory strategies, which aim to contribute to the development of advanced materials that can significantly impact public health.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Chuan Yi
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xiaolin Yu
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| |
Collapse
|
3
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
5
|
Chen M, Guo B, Cheng H, Wang W, Jin J, Zhang Y, Deng X, Yang W, Wu C, Gao X, Yu D, Feng W, Chen Y. Genetic Engineering Bacillus thuringiensis Enable Melanin Biosynthesis for Anti-Tumor and Anti-Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308506. [PMID: 38943265 PMCID: PMC11423088 DOI: 10.1002/advs.202308506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Indexed: 07/01/2024]
Abstract
Collaboration between cancer treatment and inflammation management has emerged as an integral facet of comprehensive cancer care. Nevertheless, the development of interventions concurrently targeting both inflammation and cancer has encountered significant challenges stemming from various external factors. Herein, a bioactive agent synthesized by genetically engineering melanin-producing Bacillus thuringiensis (B. thuringiensis) bacteria, simultaneously achieves eco-friendly photothermal agent and efficient reactive oxygen/nitrogen species (RONS) scavenger benefits, perfectly tackling present toughies from inflammation to cancer therapies. The biologically derived melanin exhibits exceptional photothermal-conversion performance, facilitating potent photonic hyperthermia that effectively eradicates tumor cells and tissues, thereby impeding tumor growth. Additionally, the RONS-scavenging properties of melanin produced by B. thuringiensis bacteria contribute to inflammation reduction, augmenting the efficacy of photothermal tumor repression. This study presents a representative paradigm of genetic engineering in B. thuringiensis bacteria to produce functional agents tailored for diverse biomedical applications, encompassing inflammation and cancer therapy.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Bingbing Guo
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Weiyi Wang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Junyi Jin
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yingyi Zhang
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Xiaolian Deng
- School of MedicineShenzhen Campus of SunYat‐Sen UniversityShenzhen518107P. R. China
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Wenjun Yang
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Chenyao Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiang Gao
- Center for Materials Synthetic BiologyCAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Dehong Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Feng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health) Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| |
Collapse
|
6
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
7
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
8
|
Yang Z, Liu H, Zhao J, Wang C, Li H, Wang X, Yang Y, Wu H, Gu Z, Li Y. UV absorption enhanced polydopamine coating. MATERIALS HORIZONS 2024; 11:2438-2448. [PMID: 38441227 DOI: 10.1039/d4mh00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Mussel-inspired polydopamine (PDA) coatings have gained significant attention in various fields, including biomedicine, energy, detection, and UV protection, owing to their versatile and promising properties. Among these properties, UV shielding stands out as a key feature of PDA coatings. Nevertheless, the current methods for tuning the UV-shielding properties of PDA coatings are quite limited, and only rely on thickness adjustment, which might involve additional issues like color and visible light transmittance to the coating layer. In this study, we propose a facile and modular approach to enhance the UV absorption of PDA coatings by incorporating thiol-heterocycle (TH) derivatives. Both pre- and post-modification strategies can effectively impede the formation of conjugated structures within PDA, leading to enhanced UV absorption within the PDA layers. More importantly, these strategies can improve the UV absorption of PDA coatings while reducing the visible light absorption. Furthermore, this method enabled efficient regulation of the UV absorption of PDA coatings by altering the ring type (benzene ring or pyridine ring) and substituent on the ring (methoxyl group or hydrogen atom). These PDA coatings with enhanced UV absorption demonstrate great promise for applications in UV protection, antibacterial activity, wound healing and dye degradation.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Radiology, Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huijie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Junyi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haoxing Wu
- Department of Radiology, Huaxi MR Research Center, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Wang X, Zhang J, Li H, Zhang R, Yang X, Li W, Li Z, Gu Z, Li Y. Quaternary Ammonium Assisted Synthesis of Melanin-like Poly(l-DOPA) Nanoparticles with a Boosted Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22493-22503. [PMID: 38647220 DOI: 10.1021/acsami.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.
Collapse
Affiliation(s)
- Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Shinde VR, Thanekar AM, Khatun S, Buddhiraju HS, Bhattacharjee B, Rengan AK. Melanin-Ce6-loaded polydopamine nanoparticles-based enhanced phototherapy for B16 melanoma cancer cells. NANOTECHNOLOGY 2024; 35:295101. [PMID: 38593752 DOI: 10.1088/1361-6528/ad3c4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Melanoma is one of the most aggressive and lethal types of cancer owing to its metastatic propensity and chemoresistance property. An alternative therapeutic option is photodynamic and photothermal therapies (PDT/PTT), which employ near-infrared (NIR) light to generate heat and reactive oxygen species (ROS). As per previous reports, Melanin (Mel), and its synthetic analogs (i.e. polydopamine nanoparticles) can induce NIR light-mediated heat energy, thereby selectively targeting and ameliorating cancer cells. Similarly, chlorin e6 (Ce6) also has high ROS generation ability and antitumor activity against various types of cancer. Based on this tenet, In the current study, we have encapsulated Mel-Ce6 in a polydopamine (PDA) nanocarrier (MCP NPs) synthesized by the oxidation polymerization method. The hydrodynamic diameter of the synthesized spherical MCP NPs was 139 ± 10 nm. The MCP NPs, upon irradiation with NIR 690 nm laser for 6 min, showed photothermal efficacy of more than 50 °C. Moreover, the red fluorescence in the MCP NPs due to Ce6 can be leveraged for diagnostic purposes. Further, the MCP NPs exhibited considerable biocompatibility with the L929 cell line and exerted nearly 70% ROS-mediated cytotoxicity on the B16 melanoma cell line after the laser irradiation. Thus, the prepared MCP NPs could be a promising theranostic agent for treating the B16 melanoma cancer.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| | - Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India
| |
Collapse
|
11
|
Wang X, Zhang J, Yang L, Wang T, Duan G, Gu Z, Li Y. Eumelanin-like Poly(levodopa) Nanoscavengers for Inflammation Disease Therapy. Biomacromolecules 2024; 25:2563-2573. [PMID: 38485470 DOI: 10.1021/acs.biomac.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.
Collapse
Affiliation(s)
- Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Jia Q, Fu Z, Li Y, Kang Z, Wu Y, Ru Z, Peng Y, Huang Y, Luo Y, Li W, Hu Y, Sun X, Wang J, Deng Z, Wu C, Wang Y, Yang X. Hydrogel Loaded with Peptide-Containing Nanocomplexes: Symphonic Cooperation of Photothermal Antimicrobial Nanoparticles and Prohealing Peptides for the Treatment of Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13422-13438. [PMID: 38442213 DOI: 10.1021/acsami.3c16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Current treatment for chronic infectious wounds is limited due to severe drug resistance in certain bacteria. Therefore, the development of new composite hydrogels with nonantibiotic antibacterial and pro-wound repair is important. Here, we present a photothermal antibacterial composite hydrogel fabricated with a coating of Fe2+ cross-linked carboxymethyl chitosan (FeCMCS) following the incorporation of melanin nanoparticles (MNPs) and the CyRL-QN15 peptide. Various physical and photothermal properties of the hydrogel were characterized. Cell proliferation, migration, cycle, and free-radical scavenging activity were assessed, and the antimicrobial properties of the hydrogel were probed by photothermal therapy. The effects of the hydrogel were validated in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection with full-thickness injury. This effect was further confirmed by changes in cytokines associated with inflammation, re-epithelialization, and angiogenesis on the seventh day after wound formation. The MNPs demonstrated robust photothermal conversion capabilities. The composite hydrogel (MNPs/CyRL-QN15/FeCMCS) promoted keratinocyte and fibroblast proliferation and migration while exhibiting high antibacterial efficacy, effectively killing more than 95% of Gram-positive and Gram-negative bacteria. In vivo study using an MRSA-infected full-thickness injury model demonstrated good therapeutic efficacy of the hydrogel in promoting regeneration and remodeling of chronically infected wounds by alleviating inflammatory response and accelerating re-epithelialization and collagen deposition. The MNPs/CyRL-QN15/FeCMCS hydrogel showed excellent antibacterial and prohealing effects on infected wounds, indicating potential as a promising candidate for wound healing promotion.
Collapse
Affiliation(s)
- Qiuye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yubin Huang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yonglu Luo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Wanghongyu Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yiran Hu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| |
Collapse
|
13
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Ramon J, Engelen Y, De Keersmaecker H, Goemaere I, Punj D, Mejía Morales J, Bonte C, Berx G, Hoste E, Stremersch S, Lentacker I, De Smedt SC, Raemdonck K, Braeckmans K. Laser-induced vapor nanobubbles for B16-F10 melanoma cell killing and intracellular delivery of chemotherapeutics. J Control Release 2024; 365:1019-1036. [PMID: 38065413 DOI: 10.1016/j.jconrel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.
Collapse
Affiliation(s)
- Jana Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| | - Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Light Microscopy Core Facility, Ghent University, 9000 Ghent, Belgium.
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Julián Mejía Morales
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Cédric Bonte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Esther Hoste
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
16
|
He Y, Li Z, Su H, Sun Y, Shi W, Yi Y, Ge D, Fan Z. Pyrrole-Doped Polydopamine-Pyrrole (PDA-nPY) Nanoparticles with Tunable Size and Improved NIR Absorption for Photothermal Therapy. Pharmaceuticals (Basel) 2023; 16:1642. [PMID: 38139769 PMCID: PMC10747104 DOI: 10.3390/ph16121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with controllable size and improved performance is valuable and desirable. Herein, we reported a facile way to synthesize pyrrole-doped polydopamine-pyrrole nanoparticles (PDA-nPY NPs) with tunable size and enhanced near-infrared (NIR) absorption capacity through self-oxidative polymerization of DA with PY in an alkaline ethanol/H2O/NH4OH solution. The PDA-nPY NPs maintain excellent biocompatibility and surface reactivity as PDA. By regulating the volume of added PY, PDA-150PY NPs with a smaller size (<100 nm) and four-fold higher absorption intensity at 808 nm than that of PDA can be successfully fabricated. In vitro and in vivo experiments effectively further demonstrate that PDA-150PY NPs can effectively inhibit tumor growth and completely thermally ablate a tumor. It is believed that these PY doped PDA-nPY NPs can be a potential photothermal (PT) agent in biomedical application.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363005, China;
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ziyang Li
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China; (Z.L.); (H.S.); (Y.S.); (W.S.)
| | - Huiling Su
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China; (Z.L.); (H.S.); (Y.S.); (W.S.)
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China; (Z.L.); (H.S.); (Y.S.); (W.S.)
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China; (Z.L.); (H.S.); (Y.S.); (W.S.)
| | - Yunfeng Yi
- Department of Cardiothoracic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou 363005, China;
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China; (Z.L.); (H.S.); (Y.S.); (W.S.)
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
17
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Alinezhad V, Esmaeilzadeh K, Bagheri H, Zeighami H, Kalantari-Hesari A, Jafari R, Makvandi P, Xu Y, Mohammadi H, Shahbazi MA, Maleki A. Engineering a platelet-rich plasma-based multifunctional injectable hydrogel with photothermal, antibacterial, and antioxidant properties for skin regeneration. Biomater Sci 2023; 11:5872-5892. [PMID: 37482933 DOI: 10.1039/d3bm00881a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wound healing remains a significant challenge worldwide, necessitating the development of new wound dressings to aid in the healing process. This study presents a novel photothermally active hydrogel that contains platelet-rich plasma (PRP) for infected wound healing. The hydrogel was formed in a one pot synthesis approach by mixing alginate (Alg), gelatin (GT), polydopamine (PDA), and PRP, followed by the addition of CaCl2 as a cross-linker to prepare a multifunctional hydrogel (AGC-PRP-PDA). The hydrogel exhibited improved strength and good swelling properties. PDA nanoparticles (NPs) within the hydrogel endowed them with high photothermal properties and excellent antibacterial and antioxidant activities. Moreover, the hydrogels sustained the release of growth factors due to their ability to protect PRP. The hydrogels also exhibited good hemocompatibility and cytocompatibility, as well as high hemostatic properties. In animal experiments, the injectable hydrogels effectively filled irregular wounds and promoted infected wound healing by accelerating re-epithelialization, facilitating collagen deposition, and enhancing angiogenesis. The study also indicated that near-infrared light improved the healing process. Overall, these hydrogels with antibacterial, antioxidant, and hemostatic properties, as well as sustained growth factor release, show significant potential for skin regeneration in full-thickness, bacteria-infected wounds.
Collapse
Affiliation(s)
- Vajihe Alinezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Bagheri
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Habib Zeighami
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan 6516738695, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Yi Xu
- Department of Science & Technology, Department of Urology, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| |
Collapse
|
19
|
Ha D, Lee JH, Jeon H, Kang YJ, Jeon J, Lee TH, Hong S, Kim YK, Kang K. Amyloid Fibers Increase Free Radicals of Synthetic Melanin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38335-38345. [PMID: 37539960 DOI: 10.1021/acsami.3c07909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.
Collapse
Affiliation(s)
- Daehong Ha
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Joo Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Hyeri Jeon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Jin Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Junmo Jeon
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University, 30 Pildong-ro, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
20
|
Liu W, Yu Y, Cheng W, Wang X, Zhou M, Xu B, Wang P, Wang Q. D-A Structured High-Performance Photothermal/Photodynamic Thionin-Synthetic Melanin Nanoparticles for Rapid Bactericidal and Wound Healing Effects. Adv Healthc Mater 2023; 12:e2203303. [PMID: 37023477 DOI: 10.1002/adhm.202203303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 04/08/2023]
Abstract
Synthesized melanin nanoparticles (SMNPs) are used as advanced photothermal materials. However, their internal structures are complex and disordered, and tuning the photothermal performance of nanoparticles is still a hot spot of concern. This article presents thionin (Th)-doped SMNPs, namely Th-SMNPs, which are the first SMNPs formed using the one-pot polymerization of Th with Levodopa. Th can undergo Michael addition and Schiff base reaction between indole dihydroxy/indolequinone and their oligomers to form donor-acceptor pairs in the structure to modulate the photothermal performance of SMNPs. Structural and spectroscopic analyses and density functional theory simulations further confirm the existence of the donor-acceptor structure. Th-SMNPs exhibit excellent total photothermal efficiency (34.49%) in the near-infrared region (808 nm), which is a 60% improvement compared to SMNPs. This allows Th-SMNPs to exhibit excellent photothermal performance at low power 808 nm laser irradiation. Meanwhile, Th not only enhances the photothermal properties of SMNPs, but also imparts photodynamic effects to SMNPs. Th-SMNPs can produce 1 O2 under 660 nm laser irradiation. A dual-function photothermal and photodynamic textile named Th-SMNPs@cotton is constructed based on Th-SMNPs, which can act as a rapid photothermal/photodynamic sterilization and is promising for wound healing treatment of bacterial infections under low-power dual laser irradiation.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
21
|
Zhu H, Huang C, Di J, Chang Z, Li K, Zhang S, Li X, Wu D. Doxorubicin-Fe(III)-Gossypol Infinite Coordination Polymer@PDA:CuO 2 Composite Nanoparticles for Cost-Effective Programmed Photothermal-Chemodynamic-Coordinated Dual Drug Chemotherapy Trimodal Synergistic Tumor Therapy. ACS NANO 2023. [PMID: 37354436 DOI: 10.1021/acsnano.3c02401] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
To achieve the maximum therapeutic effects and minimize adverse effects of trimodal synergistic tumor therapies, a cost-effective programmed photothermal (PTT)-chemodynamic (CDT)-coordinated dual drug chemotherapy (CT) trimodal synergistic therapy strategy in chronological order is proposed. According to the status or volumes of the tumors, the intensity and time of each therapeutic modality are optimized, and three modalities are combined programmatically and work in chronological order. The optimal synergistic therapy begins with high-intensity PTT for 10 min to ablate larger tumors, followed by medium-intensity CDT for several hours to eliminate medium-sized tumors, and then low-intensity coordinated dual drugs CT lasts over 48 h to clear smaller residual tumors. Composite nanoparticles, made of Fe-coordinated polydopamine mixed with copper peroxide as the cores and their surface dotted with lots of doxorubicin-Fe(III)-gossypol infinite coordination polymers (ICPs), have been developed to implement the strategy. These composite nanoparticles show excellent synergistic effects with the minimum dose of therapeutic agents and result in nearly 100% tumor inhibition for mice bearing PC-3 tumors and no observed recurrence within 60 days of treatment. The ratios of the different therapeutic agents in the composite nanoparticles can be adjusted to accommodate different types of tumors with this cost-effective programmed trimodal therapy strategy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zepu Chang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xueping Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
22
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
23
|
Liu S, Zhang C, Zhou Y, Zhang F, Duan X, Liu Y, Zhao X, Liu J, Shuai X, Wang J, Cao Z. MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy. Biomaterials 2023; 295:122030. [PMID: 36758340 DOI: 10.1016/j.biomaterials.2023.122030] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Since the progression of osteoarthritis (OA) is closely associated with synovitis and cartilage destruction, the inhibition of inflammatory responses in synovial macrophages and reactive oxygen species (ROS) induced apoptosis in chondrocytes is crucial for OA amelioration. However, most of the current anti-inflammatory and antioxidant drugs are small molecules apt to be eliminated in vivo. Herein, mesoporous polydopamine nanoparticles (DAMM NPs) doped with arginine and manganese (Mn) ions were prepared to load dexamethasone (DEX) for OA intervention. A series of in vitro studies showed that the sustained release of DEX from DAMM NPs suppressed synovial inflammation and simultaneously inhibited toll-like receptor 3 (TLR-3) production in chondrocytes, contributing to prevention of chondrocyte apoptosis through the inflammatory factor-dependent TLR-3/NF-κB signaling pathway via modulation of macrophage-chondrocyte crosstalk. In addition, DAMM NPs exerted a predominant role in removal of ROS generated in chondrocytes. Therefore, the DEX-loaded DAMM NPs significantly attenuated OA development in mice model. Importantly, the T1-T2 magnetic contrast capabilities of DAMM NPs allowed an MRI-trackable delivery, manifesting a distinct feature widely regarded to boost the potential of nanomedicines for clinical applications. Together, our developed antioxidant-enhanced DAMM NPs with MRI-visible signals may serve as a novel multifunctional nanocarriers for prevention of OA progression.
Collapse
Affiliation(s)
- Sitong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chen Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuanyuan Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fang Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaohui Duan
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Yang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xibang Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
24
|
Kim KJ, Yun YH, Je JY, Kim DH, Hwang HS, Yoon SD. Photothermally controlled drug release of naproxen-incorporated mungbean starch/PVA biomaterials adding melanin nanoparticles. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Surface-facilitated formation of polydopamine and its implications in melanogenesis. Colloids Surf B Biointerfaces 2023; 222:113068. [PMID: 36481509 DOI: 10.1016/j.colsurfb.2022.113068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
This manuscript examines influences of differently functionalized surfaces on the formation of solution-dispersed polydopamine (pDA). Glass vials functionalized with different functional groups provided a set of conditions with which the relationship between the area of active surface and the rate of pDA formation could be systematically studied. The results suggest that charged and polar surfaces accelerate pDA formation in solution, with the effect of -NH2 surfaces being exceptionally strong. In the vials, pDA formed as both forms of dispersions in solution and films at solid-liquid interface. Further analyses confirmed that both forms of pDA formed with -NH2 surfaces were chemically similar to conventional pDA synthesized without help of functional surfaces. Among short peptide-based amyloid fibers with defined surface functional groups, and those displaying lysines (-NH2) greatly accelerated the formation of pDA, consistent with the results of -NH2-functionalized vials. The results suggest that pDA formation may be facilitated by surface functional groups of solid-liquid interfaces, and have implications for the overlooked roles of amyloid fibers in biological melanogenesis.
Collapse
|
26
|
Yang Y, Yang L, Yang F, Bai W, Zhang X, Li H, Duan G, Xu Y, Li Y. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation. MATERIALS HORIZONS 2023; 10:268-276. [PMID: 36411995 DOI: 10.1039/d2mh01151d] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Solar-driven steam generation has been considered as a prevalent and sustainable approach to obtain clean fresh water. However, the presence of microorganisms in seawater may cause the biofouling and degradation of polymeric photothermal materials and clog the channels for water transportation, leading to a decrease in solar evaporation efficiency during long-term usage. Herein, we have reported a facile strategy to construct a robust cellulose membrane device coated by tobramycin-doped polydopamine nanoparticles (PDA/TOB@CA). The PDA/TOB@CA membrane not only exhibited synergistic antibacterial behaviors with long-term and sustained antibiotic release profiles, but also achieved a high water evaporation rate of 1.61 kg m-2 h-1 as well as an evaporation efficiency of >90%. More importantly, the high antibacterial activity endowed the PDA/TOB@CA membrane with superb durability for stable reuse over 20 cycles, even in microbe-rich environments. Therefore, we envision that this study could pave a new pathway towards the design and fabrication of robust antibacterial and photothermal materials for long-term and stable clean water production.
Collapse
Affiliation(s)
- Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Fengying Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources International Innovation Centre for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forest University, Nanjing 210037, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
27
|
Huang C, Wang X, Yang P, Shi S, Duan G, Liu X, Li Y. Size Regulation of Polydopamine Nanoparticles by Boronic Acid and Lewis Base. Macromol Rapid Commun 2023; 44:e2100916. [PMID: 35080287 DOI: 10.1002/marc.202100916] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Indexed: 01/11/2023]
Abstract
Size regulation of polydopamine nanoparticles (PDA NPs) is vital to melanin-inspired materials. The general strategy usually focuses on tuning of the reaction parameters which could affect the dopamine (DA) monomer polymerization process, such as pH, temperature, monomer concentration, etc. The reaction between boronic acids and catechols to form boronic esters has been widely applied in many fields, but little attention has been paid in the size regulation of PDA NPs. Here, it is speculated that the fine size regulation of PDA NPs can be directly achieved by using boronic acids and Lewis base molecules. It is found that these issues could indeed significantly affect the stability of the boronic esters formed by boronic acids and DA, which may further inhibit the monomer polymerization kinetics and tune the particle size of the resulting PDA NPs. It is also found that the several intrinsic properties of PDA NPs such as the free radical scavenging ability, UV spectral absorption, photothermal behavior, and structural color all change with the particle size. It is believed that this work can provide new opportunities for fabricating melanin-inspired PDA NPs with well controlled size and properties.
Collapse
Affiliation(s)
- Chuhao Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
28
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
29
|
Yu Z, Gong H, Xue F, Zeng Y, Liu X, Tang D. Flexible and High-Throughput Photothermal Biosensors for Rapid Screening of Acute Myocardial Infarction Using Thermochromic Paper-Based Image Analysis. Anal Chem 2022; 94:13233-13242. [PMID: 36099057 DOI: 10.1021/acs.analchem.2c02957] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we developed a flexible, low-cost thermosensitive fiber paper for the visual display in photothermal biosensing systems for early acute myocardial infarction. The thermal signal visualization device was encapsulated with rewritable thermal fibers, which exhibited excellent stability and reversibility. The mechanism of color change in thermal paper was based on a temperature-driven reversible transformation of the structure of the dye molecule (crystalline violet lactone, CVL). It exhibits a gradation from blue to colorless at higher temperatures and gradually returns to blue when the temperature drops. Immobilization and cascade enzymatic reactions of target molecules occurred in an integrated 3D-printed detection device, a photothermal conversion process occurred under near-infrared light excitation, and the colorimetric change values of the encapsulated thermal paper were recorded and evaluated for possible pathogenicity using a smartphone. It was worth noting that the effect of the thermogenic ring-opening behavior of CVL on the macroscopic phenomenon of color change was obtained by density functional theory calculations. Under optimized conditions, the naked-eye-recognizable range of the thermal paper-based photothermal immunoassay sensor was 0.2-20 ng mL-1, This work creatively presents theoretical studies of promising thermal paper-based photothermal biosensors and provides new insights for the development of low-cost, instrument-free portable photothermal biosensors.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexiang Gong
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
30
|
Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids Surf B Biointerfaces 2022; 220:112879. [DOI: 10.1016/j.colsurfb.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
31
|
Argenziano R, Della Greca M, Panzella L, Napolitano A. A Straightforward Access to New Amides of the Melanin Precursor 5,6-Dihydroxyindole-2-carboxylic Acid and Characterization of the Properties of the Pigments Thereof. Molecules 2022; 27:4816. [PMID: 35956765 PMCID: PMC9369804 DOI: 10.3390/molecules27154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
We report herein an optimized procedure for preparation of carboxamides of 5,6-dihydroxyindole-2-carboxylic acid (DHICA), the main biosynthetic precursor of the skin photoprotective agents melanins, to get access to pigments with more favorable solubility properties with respect to the natural ones. The developed procedure was based on the use of a coupling agent (HATU/DIPEA) and required protection of the catechol function by easily removable acetyl groups. The O-acetylated compounds could be safely stored and taken to the reactive o-diphenol form just before use. Satisfactorily high yields (>85%) were obtained for all amides. The oxidative polymerization of the synthesized amides carried out in air in aqueous buffer at pH 9 afforded melanin-like pigmented materials that showed chromophores resembling those of DHICA-derived pigments, with a good covering of the UVA and the visible region, and additionally exhibited a good solubility in alcoholic solvents, a feature of great interest for the exploitation of these materials as ingredients of dermocosmetic formulations.
Collapse
Affiliation(s)
| | | | | | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (R.A.); (M.D.G.); (L.P.)
| |
Collapse
|
32
|
Kim HS, Lee CM, Yun YH, Kim YS, Yoon SD. Synthesis and drug release properties of melanin added functional allopurinol incorporated starch-based biomaterials. Int J Biol Macromol 2022; 209:1477-1485. [PMID: 35469944 DOI: 10.1016/j.ijbiomac.2022.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/27/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
The main objective of this study was to prepare functional allopurinol (ALP) incorporated biomaterials using mungbean starch, polyvinyl alcohol, melanin (MEL), and plasticizers. Prepared biomaterials were characterized by FE-SEM and FT-IR analysis. Photothermal conversion efficiencies and ALP release properties of biomaterials were evaluated with NIR laser irradiation. When biomaterials were irradiated with the NIR laser, temperatures increase of MEL-added biomaterials were higher than those of MEL-non-added biomaterials. After NIR laser irradiation, ALP release rates of MEL-added biomaterials were 1.62 times faster than those of MEL-non-added biomaterials. In addition, ALP release using an artificial skin was increased by NIR laser irradiation. ALP release from biomaterials followed Fickian diffusion mechanism, while ALP release using an artificial skin followed a non-Fickian diffusion mechanism. Xanthine oxidase inhibitory (%) for MEL-added biomaterials with/without the addition of GL and XL were 47.5%, 61.7%, and 65.1%, respectively.
Collapse
Affiliation(s)
- Han-Seong Kim
- Department of Biomolecular and Chemical Engineering, Chonnam National University, Jeonnam 59626, South Korea
| | - Chang-Moon Lee
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Jeonnam 59626, Republic of Korea
| | - Yeon-Hum Yun
- Department of Energy & Resources Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youn-Sop Kim
- Department of Biomolecular and Chemical Engineering, Chonnam National University, Jeonnam 59626, South Korea.
| | - Soon-Do Yoon
- Department of Biomolecular and Chemical Engineering, Chonnam National University, Jeonnam 59626, South Korea.
| |
Collapse
|
33
|
Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem Soc Rev 2022; 51:4175-4198. [PMID: 35535743 DOI: 10.1039/d1cs01165k] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.
Collapse
Affiliation(s)
- Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Lei Yang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Rong Tian
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Xiao F, Huang J, Zhao Y, Qu H, Yu H, Wang W. PDA-PEG-Ce6-Mn Multifunctional Nanoparticles for Magnetic Resonance Images-Guided Photo-Dynamic/Photo-Thermal Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the most common brain cancer type is gliomas. Although traditional multi-modal therapy has made some progress, overall poor prognosis and low long-run rate of patient’s survival still persist. Due to its selective, noninvasive and repetitive nature, photo-dynamic/photo-thermal
therapy (PDT/PTT) is considered to enhance therapeutic effect of glioma. We report a new type of polydopamine (PDA) nanoparticle with targeting ability and excellent PDT/PTT synergistic effect. The Mn2+ chelated nanocomposite material exhibited a favorable contrast T1-weighted magnetic
resonance images (MRI). In the U251 tumor-bearing mouse model, near-infrared (NIR) imaging and MRI-guided PDT/PTT achieved significant synergistic therapeutic effects compared to their single treatment methods. Conclusively, PDA-PEG-Ce6-Mn nanoparticle demonstrated high potential in the diagnosis
and treatment of glioma.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Jie Huang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Yi Zhao
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Han Yu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Hanjiang District, Yangzhou, 225000, China
| |
Collapse
|
35
|
Bai W, Yang P, Liu H, Zou Y, Wang X, Yang Y, Gu Z, Li Y. Boosting the Optical Absorption of Melanin-like Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huijie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Xu N, Hu A, Pu X, Li J, Wang X, Wang J, Huang Z, Liao X, Yin G. Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15894-15910. [PMID: 35357136 DOI: 10.1021/acsami.1c24066] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Both the low energy density of near-infrared (NIR) photothermal conversion during treatment and the recurrence and metastasis after local treatment have been the main obstacles and conundrums in polydopamine-mediated tumor photothermal therapy (PTT). Herein, On the basis of the enhancement of NIR absorption by ligand to metal charge transfer (LMCT) in transition-metal complexes and the activation of antitumor immunity by an appropriate concentration of Fe(III) ions, Fe(III)-chelated PDA nanoparticles (Fe-PDA NPs) with high loading and responsive release of iron ions were synthesized through a prechelation-polymerization method. First, Fe(III) chelated with the catechol groups in DA to form a mono-dopa-Fe(III) chelate, and then the polymerization of dopamine was initiated under alkaline conditions. The results revealed that the mono-dopa-Fe(III) chelate was still the main form of the Fe ion existing in Fe-PDA and was able to greatly enhance the light absorption behaviors of PDA in NIR, resulting a superior photothermal conversion ability (η = 55.5%). Moreover, the existence of Fe(III) also gave Fe-PDA a T1-weighted MRI contrast-enhancement performance (r1 = 7.668 mM-1 s-1) and it would enable the accurate ablation of primary tumors in vivo with Fe-PDA under NIR irradiation by means of the guidance of MRI and thermal imaging. Furthermore, Fe-PDA exhibited better H2O2-responsive biodegradability in comparison to PDA and easily released Fe ions in tumors, which could effectively promote the tumor-associated macrophage (TAM) repolarization to the M1 mode. TAM repolarization combined with the immunogenic cell death (ICD) induced by PTT could effectively enhance the efficacy of immunotherapy, preventing tumor recurrence and metastasis. The design of Fe-PDA nanoparticles should provide more inspiration for structural and functional improvements of melanin-based materials in tumor suppression.
Collapse
Affiliation(s)
- Na Xu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Ao Hu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Jiangfeng Li
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
37
|
Marcovici I, Coricovac D, Pinzaru I, Macasoi IG, Popescu R, Chioibas R, Zupko I, Dehelean CA. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research-A Review. Cancers (Basel) 2022; 14:1838. [PMID: 35406610 PMCID: PMC8998143 DOI: 10.3390/cancers14071838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Popescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
- Research Center ANAPATMOL, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
38
|
Zou Q, Bao J, Yan X. Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications. SMALL METHODS 2022; 6:e2101359. [PMID: 35142112 DOI: 10.1002/smtd.202101359] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.
Collapse
Affiliation(s)
- Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
39
|
Han M, Li Y, Lu S, Yuan B, Cheng S, Cao C. Amyloid Protein-Biofunctionalized Polydopamine Nanoparticles Demonstrate Minimal Plasma Protein Fouling and Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13743-13757. [PMID: 35263991 DOI: 10.1021/acsami.2c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) shows great application potential in photothermal therapy (PTT) of tumors due to its excellent photothermal performance. However, PDA rich in a large number of catechin structures, with strong adhesion, can readily attach to plasma proteins in blood to form protein corona, which greatly hinders the transfer efficiency to tumors and reduces the bioavailability. In this paper, a simple, rapid phase-transitioned albumin biomimetic nanocorona (TBSA) is used for the surface camouflage of PDA nanoparticles for minimal plasma protein fouling and efficient PTT. TBSA coating is formed by the BSA-derived amyloid through the hydrophobic aggregation near the isoelectric point and the rupture of disulfide bonds by tris(2-carboxyethyl) phosphine. The stable PDA@TBSA complexes are formed by camouflaging TBSA onto the surface of PDA through hydrophobic, electrostatic, and covalent binding between TBSA and PDA, which showed excellent anti-plasma protein adsorption properties profited from the surface charge of PDA@TBSA approaching equilibrium and the surface passivation of BSA. The plasma protein thickness of the PDA@TBSA surface is 6 times lower than that of PDA at adsorption saturation. In vitro and in vivo experiments have revealed that PDA@TBSA has an excellent photothermal antitumor effect compared to PDA. Both PDA and PDA@TBSA treatment plus 808 nm laser irradiation result in more than 70% inhibition on tumor cell proliferation. In addition, PDA@TBSA does not cause a significant inflammatory response and tissue damage. Taken together, the TBSA coating endows PDA with low-fouling functions in blood and improves the residence time of PDA in blood and enrichment in the tumor tissue. This work offers a novel and efficient strategy for the design of functional nanosystems exploiting the speciality of the biomolecular corona formation around nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shun Lu
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
40
|
Strategies for efficient photothermal therapy at mild temperatures: Progresses and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Lozano-Pedraza C, Plaza-Mayoral E, Espinosa A, Sot B, Serrano A, Salas G, Blanco-Andujar C, Cotin G, Felder-Flesch D, Begin-Colin S, Teran FJ. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. NANOSCALE ADVANCES 2021; 3:6490-6502. [PMID: 36133493 PMCID: PMC9417955 DOI: 10.1039/d1na00601k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/26/2021] [Indexed: 05/03/2023]
Abstract
Heating mediated by iron oxide nanoparticles subjected to near infrared irradiation has recently gained lots of interest. The high optical loss values reported in combination with the optical technologies already existing in current clinical practices, have made optical heating mediated by iron oxide nanoparticles an attractive choice for treating internal or skin tumors. However, the identification of the relevant parameters and the influence of methodologies for quantifying the optical losses released by iron oxide nanoparticles are not fully clear. Here, we report on a systematic study of different intrinsic (size, shape, crystallinity, and iron oxidation state) and extrinsic (aggregation, concentration, intracellular environment and irradiation conditions) parameters involved in the photothermal conversion of iron oxide nanoparticles under near infrared irradiation. We have probed the temperature increments to determine the specific loss power of iron oxide nanoparticles with different sizes and shapes dispersed in colloidal suspensions or inside live breast cancer cells. Our results underline the relevance of crystal surface defects, aggregation, concentration, magnetite abundance, excitation wavelength and density power on the modulation of the photothermal conversion. Contrary to plasmonic or magnetic losses, no significant influence of nanoparticle size nor shape was observed on the optical losses released by the studied iron oxide nanoparticles. Interestingly, no significant differences of measured temperature increments and specific loss power values were either observed when nanoparticles were inside live cells or in colloidal dispersion. Our findings highlight the advantages of optical heat losses released by iron oxide nanoparticles for therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ana Espinosa
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Begoña Sot
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Aida Serrano
- Dpto. Electrocerámica, Instituto de Cerámica y Vidrio ICV-CSIC, Kelsen 5 28049 Madrid Spain
| | - Gorka Salas
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| | - Cristina Blanco-Andujar
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Geoffrey Cotin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Delphine Felder-Flesch
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 F-67000 Strasbourg France
| | - Francisco J Teran
- iMdea Nanociencia, Campus Universitaria de Cantoblanco 28049 Madrid Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid Spain
| |
Collapse
|
42
|
Shu Q, Liu J, Chang Q, Liu C, Wang H, Xie Y, Deng X. Enhanced Photothermal Performance by Carbon Dot-Chelated Polydopamine Nanoparticles. ACS Biomater Sci Eng 2021; 7:5497-5505. [PMID: 34739201 DOI: 10.1021/acsbiomaterials.1c01045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polydopamine (PDA) has been widely used in biomedical applications including imaging contrast agents, antioxidants, UV protection, and photothermal therapy due to its biocompatibility, metal-ion chelation, free-radical scavenging, and wideband absorption, but its low photothermal efficiency still needs to be improved. In this study, we chelated near-infrared (NIR) sensitive carbon quantum dots on the surface of polydopamine (PDA-PEI@N,S-CQDs) to increase its near-infrared absorption. Surprisingly, although only 4% (w/w) of carbon quantum dots was conjugated on the PDA surface, it still increased the photothermal efficiency by 30%. Moreover, PDA-PEI@N,S-CQDs could also be used as the drug carrier for loading 60% (w/w) of the DOX and achieved stimuli-responsive drug release under lysosomal pH (pH 5.0) and 808 nm laser illumination. For in vitro therapeutic experiment, PDA-PEI@N,S-CQDs showed the remarkable therapeutic performance under 808 nm laser irradiation for killing 90% of cancer cells compared with 50% by pure PDA nanoparticles, and the efficacy was even higher after loading DOX owing to the synergistic effect by photothermal therapy and chemotherapy. This intelligent and effective therapeutic nanosystem based on PDA-PEI@N,S-CQDs showed enhanced photothermal behavior after chelating carbon dots and promoted the future development of a nanoplatform for stimuli-responsive photothermal/chemo therapy.
Collapse
Affiliation(s)
- Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
43
|
Zhang C, Wang X, Wang J, Qiu Y, Qi Z, Song D, Wang M. TCPP-Isoliensinine Nanoparticles for Mild-Temperature Photothermal Therapy. Int J Nanomedicine 2021; 16:6797-6806. [PMID: 34675508 PMCID: PMC8502540 DOI: 10.2147/ijn.s317462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Photothermal therapy (PTT) is promising for the treatment of tumors due to its advantages including minimally invasive, easy implementation and selective localized treatment. However, single PTT suffers from several limitations, such as constrained light penetration and low delivery efficiency, typically leading to heterogeneous heating and incomplete elimination of cancer cells. Therefore, combination of PTT with other therapies, eg, chemotherapy is desirable in order to achieve synergistic effects in cancer treatment. Methods Here, we designed a new type of TCPP-Iso combined nanoparticle for synergetic therapy for breast cancer. Specifically, photothermal agent tetra(4-carboxyphenyl) porphine (TCPP) and anti-cancer drug isoliensinine (Iso) were encapsulated in PEG-b-PLGA polymeric nanoparticles through a precipitation process. Results The obtained NPs displayed well-controlled size and high stability over time. Tuning TCPP-Iso/polymer ratio, or total concentration of drug and polymers led to increased hydrodynamic radius of NPs from 65 to 108 nm without disturbing the narrow size distribution. Besides, the formed NPs showed a consequently cumulative release of TCPP and of Iso. The temperature elevation ability of both TCPP NPs and TCPP-Iso NPs was TCPP-concentration dependent. Solutions of TCPP NPs that contained equivalent amount of TCPP with respect to TCPP-Iso NPs, presented the same trend and exhibited non-obvious difference in temperature elevation under certain laser power. The viability of MDA-MB-231 cells treated with TCPP-Iso NPs could be inhibited effectively at a relatively mild temperature (42–43°C) compared to the other groups, which may minimize heat damage to the surrounding healthy tissues. Conclusion The results indicate that the TCPP-Iso combined NPs showed hardly any toxicity to normal tissue cell line, but displayed an efficient synergistic effect for killing cancer cells under laser irradiation. Our study demonstrates that the successful combination of TCPP and Iso realized a synergistic therapy effect at a relatively mild temperature, and the insights obtained here shall be helpful for designing new combined PTT agents for cancer treatment.
Collapse
Affiliation(s)
- Chenglin Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Xinming Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuening Qiu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhiyao Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
44
|
Carrese B, Cavallini C, Sanità G, Armanetti P, Silvestri B, Calì G, Pota G, Luciani G, Menichetti L, Lamberti A. Controlled Release of Doxorubicin for Targeted Chemo-Photothermal Therapy in Breast Cancer HS578T Cells Using Albumin Modified Hybrid Nanocarriers. Int J Mol Sci 2021; 22:ijms222011228. [PMID: 34681890 PMCID: PMC8538307 DOI: 10.3390/ijms222011228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.
Collapse
Affiliation(s)
- Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Chiara Cavallini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Naples, Italy;
| | - Paolo Armanetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Gaetano Calì
- Institute of Endocrinology and Experimental Oncology, National Research Council, 80131 Naples, Italy;
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy; (B.S.); (G.P.); (G.L.)
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (C.C.); (P.A.)
- Correspondence: (L.M.); (A.L.)
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (L.M.); (A.L.)
| |
Collapse
|
45
|
Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Giordano
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Riccardo Rampado
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
- Texas A&M College of Medicine 8447 Highway 47 Bryan TX 77807 USA
| | - Takashi Hirase
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| | - Mauro G. Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine University of Ferrara Ferrara Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical Oncological and Gastroenterological Sciences, University of Padua Padua 35124 Italy
- Nano‐Inspired Biomedicine Laboratory Institute of Pediatric Research—Città della Speranza Padua Italy
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center Baylor College of Medicine Houston TX 77030 USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration Houston Methodist Academic Institute, Houston Methodist 6670 Bertner Ave Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston Methodist, 6565 Fannin Street Houston TX 77030 USA
| |
Collapse
|
46
|
Hao Y, Mao L, Zhang R, Liao X, Yuan M, Liao W. Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition. ACS APPLIED BIO MATERIALS 2021; 4:7081-7093. [PMID: 35006940 DOI: 10.1021/acsabm.1c00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To date, various Prussian blue analogues (PBAs) have been prepared for biomedical applications due to their unique structural advantages. However, the safety and effectiveness of tumor treatment still need further exploration. This contribution reports a facile synthesis of PBA with superior tumor synergetic therapeutic effects and a detailed mechanistic evaluation of their intrinsic tumor metastasis inhibition activity. The as-synthesized PBA has a uniform cube structure with a diameter of approximately 220 nm and shows high near-infrared light (NIR) photoreactivity, photothermal conversion efficiency (41.44%), and photodynamic effect. Additionally, PBA could lead to a chemodynamic effect, which is caused by the Fenton reaction and ferroptosis. The combined therapy strategy of PBA exhibits notable tumor ablation properties due to photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT) effects without obvious toxicity in vivo. The PBA has also shown potential as a contrast agent for magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. More importantly, careful investigations reveal that PBA displays excellent biodegradation and anti-metastasis properties. Further exploration of the PBA implies that its underlying mechanism of intrinsic tumor metastasis inhibition activity can be attributed to the modulation of epithelial-mesenchymal transition (EMT) expression. The considerable potential exhibited by the as-synthesized PBA makes it an ideal candidate as a synergetic therapeutic agent for tumor treatment.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongjun Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
47
|
Hu P, Hou X, Yu X, Wei X, Li Y, Yang D, Jiang X. Folic Acid-Conjugated Gold Nanostars for Computed Tomography Imaging and Photothermal/Radiation Combined Therapy. ACS APPLIED BIO MATERIALS 2021; 4:4862-4871. [PMID: 35007035 DOI: 10.1021/acsabm.1c00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fabrication of multifunctional nanoprobes, which integrate tumor targeting, imaging, and effective treatment, has been widely explored in nanomedicine. In the present study, we fabricated tumor-targeting polymer folic acid-terminated polyethylene glycol thiol-modified gold nanostars (GNS-FA), which could realize X-ray computed tomography (CT) imaging and PTT/RT synergistic therapy. The synthesized GNS-FA exhibited good biocompatibility. GNS-FA could be used as a CT imaging contrast agent due to the strong X-ray attenuation of Au. GNS-FA exhibited good near-infrared (NIR) light absorption and excellent photothermal conversion performance, making them promising photothermal transduction agents (PTAs). Furthermore, GNS-FA could be used as an RT sensitizer to enhance the radio-mediated cell death due to the high atomic number (high Z) of gold. Hence, GNS-FA were used as the CT imaging agent, PTA, and radiosensitizer in this work. The in vitro antitumor experiments showed that the PTT/RT combined treatment had enhanced anticancer efficacy compared with the monotherapy (PTT or RT). Our results indicated that the bioconjugated GNS could offer an excellent nanoplatform for CT imaging-guided PTT/RT combined cancer therapy in the future.
Collapse
Affiliation(s)
- Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xu Hou
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiaojun Yu
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xuguo Wei
- Department of Radiotherapy, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiaohong Jiang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| |
Collapse
|
48
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen K, Li Q, Zhao X, Zhang J, Ma H, Sun X, Yu Q, Zhang Y, Fang C, Nie L. Biocompatible melanin based theranostic agent for in vivo detection and ablation of orthotopic micro-hepatocellular carcinoma. Biomater Sci 2021; 8:4322-4333. [PMID: 32602480 DOI: 10.1039/d0bm00825g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Early diagnosis and therapy of hepatocellular carcinoma (HCC) is critical to improve the five-year survival rates of patients. Theranostic agents synergized with photothermal ablation are expected to realize the early detection and treatment of orthotopic HCC. However, conventional metallic nanoagents are limited by their potential bio-toxicity to surrounding normal organs. Recently, endogenous biological melanin pigments have been utilized to develop nanoplatforms due to their excellent biocompatibility and degradability. Whereas, the insufficient capability of PEGylated melanin nanoparticles (PEG-MNPs) in photoacoustic (PA) imaging limits their further biomedical applications. Paradoxically, it is difficult to meet these two different requirements. Herein, a multifunctional nanoagent based on melanin (MNPs) conjugating the near-infrared (NIR) dye IR820 was successfully designed and fabricated. Encapsulation by polyethylene glycol (PEG) renders the solubility in water and allows the physical absorption of IR820 for enhanced photoacoustic (PA) performance and photothermal therapy. Besides, PEG coating on the surface of IR820-PEG-MNPs resulted in a reduction in swallowing in the reticuloendothelial system of the liver and spleen, prolonging the circulation time in the blood and increasing the accumulation in the tumor. The IR820-PEG-MNPs displayed satisfactory PA and T1-weighted magnetic resonance imaging (MRI) signals in aqueous solution as well as strong photothermal efficiency. Compared with prior injection, PA/MR signals of the tumor region were enhanced by 4.13- and 1.60-fold, respectively, which could effectively detect lesions smaller than ∼1.8 mm. Furthermore, the high photothermal conversion efficiency (40.2%) endowed the IR820-PEG-MNPs with the capability of selectively ablating tumors in orthotopic HCC mouse models under the guidance of PA/MR imaging. This work broadens the biomedical applications of melanin-based agent, which are promising for the precise diagnosis of orthotopic micro HCC and imaging guided photothermal ablation.
Collapse
Affiliation(s)
- Kang Chen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Qiaolin Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Xingyang Zhao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Jinde Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Haosong Ma
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Xiang Sun
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Qian Yu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Yueming Zhang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China. and Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, PR China
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
50
|
Zhang W, Shan S, Fan J, Yuan F, Lawson T, Kong L, Hu R, Liu Y. A novel Vancomycin-Functionalized-Magnetic Graphene Composite for Use as a Near-Infrared-Induced Synergistic Chemo-Photothermal Antibacterial. Macromol Biosci 2021; 21:e2100082. [PMID: 33984161 DOI: 10.1002/mabi.202100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Antibiotic-resistant bacterial strains are a major cause of disease. They continue to remain a challenge in the clinic particularly in the vision system. For example, infectious endophthalmitis is a major blind-causing disease caused by bacteria. A highly efficient synergistic antibacterial treatment that uses a photothermal antibacterial therapeutic with a chemo-antibacterial therapeutic in a multifunctional nanocomposite is reported. It is prepared by immobilizing vancomycin onto the surface of a magnetic chitosan-graphene (VCM-MCG) composite. An antibacterial effect is achieved when VCM-MCG is applied. This effect is enhanced when the nanocomposites are irradiated with a near-infrared laser. Growth of gram-positive methicillin-resistant Staphylococcus aureus and gram-negative Escherichia coli bacteria are suppressed efficiently. Such a composite can help manage the control of pathogenic bacteria growth in the clinic.
Collapse
Affiliation(s)
- Wenjing Zhang
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Suyan Shan
- Department of Ophthalmology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jinyi Fan
- School & Hospital of Stomatology, Wenzhou Medical University, 373 Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Tom Lawson
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lingdan Kong
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rongdang Hu
- School & Hospital of Stomatology, Wenzhou Medical University, 373 Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|