1
|
Chen Q, Xu X, Bo Z. Application of n-Type or p-Type Dopants in Organic Photovoltaics. CHEMSUSCHEM 2025; 18:e202402525. [PMID: 40059284 DOI: 10.1002/cssc.202402525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Compared to inorganic semiconductors, organic semiconductors (OSCs) exhibit lower permittivity and carrier mobility. This is primarily attributed to their weaker van der Waals forces and the significant structural and energetic disorder, ultimately impeding the commercial application of organic photovoltaics (OPVs). However, the introduction of n-type or p-type dopants offers a solution. These dopants effectively eliminate intrinsic traps in OSCs through trap-filling techniques, elevating carrier concentration and mobility, and consequently enhancing overall performance. This article delves into the systematic exploration of n-type and p-type dopant applications in OPVs. It encompasses doping mechanisms, commonly used n-type and p-type dopants, doping methodologies, the strategic distribution of dopants and the effect of doping on device performance. Ultimately, this concept strives to offer invaluable insights and guidance for advancing OPV performance via doping techniques.
Collapse
Affiliation(s)
- Qiaoling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
3
|
Fan Q, Xiao Q, Zhang H, Heng J, Xie M, Wei Z, Jia X, Liu X, Kang Z, Li CZ, Li S, Zhang T, Zhou Y, Huang J, Li Z. Highly Efficient and Stable ITO-Free Organic Solar Cells Based on Squaraine N-Doped Quaternary Bulk Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307920. [PMID: 37823840 DOI: 10.1002/adma.202307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Simultaneously achieving high efficiency and robust device stability remains a significant challenge for organic solar cells (OSCs). Solving this challenge is highly dependent on the film morphology of the bulk heterojunction (BHJ) photoactive blends; however, there is a lack of rational control strategy. Herein, it is shown that the molecular crystallinity and nanomorphology of nonfullerene-based BHJ can be effectively controlled by a squaraine-based doping strategy, leading to an increase in device efficiency from 17.26% to 18.5% when doping 2 wt% squaraine into the PBDB-TF:BTP-eC9:PC71 BM ternary BHJ. The efficiency is further improved to 19.11% (certified 19.06%) using an indium-tin-oxide-free column-patterned microcavity (CPM) architecture. Combined with interfacial modification, CPM quaternary OSC excitingly shows an extrapolated lifetime of ≈23 years based on accelerated aging test, with the mechanism behind enhanced stability well studied. Furthermore, a flexible OSC module with a high and stable efficiency of 15.2% and an overall area of 5 cm2 is successfully fabricated, exhibiting a high average output power for wearable electronics. This work demonstrates that OSCs with new design of BHJ and device architecture are highly promising to be practical relevance with excellent performance and stability.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qi Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hanqing Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jinzi Heng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Meiling Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zihao Wei
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaowei Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhangli Kang
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610021, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jiang Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Guangdong, 523808, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Fan B, Zhong W, Gao W, Fu H, Lin FR, Wong RWY, Liu M, Zhu C, Wang C, Yip HL, Liu F, Jen AKY. Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302861. [PMID: 37164341 DOI: 10.1002/adma.202302861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Sequentially deposited organic solar cells (SD-OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase-separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD-OSCs is still quite challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD-OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π-π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p-dibromobenzene shows a stronger interaction with the donor while 2-chloronaphthalene (2-CN) interacts more preferably with acceptor. Combining the depth-dependent morphological study aided by multiple X-ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger-interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2-CN-treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Huiting Fu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Reese W-Y Wong
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Ming Liu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hin-Lap Yip
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Guo L, Liu K, Tan X, Wang X, Huang J, Wei Z, Chen G. B ← N Coordination Enables Efficient p-Doping in a Pyrazine-Based Polymer Donor Toward Enhanced Photovoltaic Performance. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Kaikai Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Institute of Luminescent Materials and Information Displays, Huaqiao University, Xiamen 361021, P. R. China
| | - Xueyan Tan
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiaoling Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhanhua Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Institute of Luminescent Materials and Information Displays, Huaqiao University, Xiamen 361021, P. R. China
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
6
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Arefinia Z, Samajdar DP. Novel semi-analytical optoelectronic modeling based on homogenization theory for realistic plasmonic polymer solar cells. Sci Rep 2021; 11:3261. [PMID: 33547355 PMCID: PMC7864904 DOI: 10.1038/s41598-021-82525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
Numerical-based simulations of plasmonic polymer solar cells (PSCs) incorporating a disordered array of non-uniform sized plasmonic nanoparticles (NPs) impose a prohibitively long-time and complex computational demand. To surmount this limitation, we present a novel semi-analytical modeling, which dramatically reduces computational time and resource consumption and yet is acceptably accurate. For this purpose, the optical modeling of active layer-incorporated plasmonic metal NPs, which is described by a homogenization theory based on a modified Maxwell-Garnett-Mie theory, is inputted in the electrical modeling based on the coupled equations of Poisson, continuity, and drift-diffusion. Besides, our modeling considers the effects of absorption in the non-active layers, interference induced by electrodes, and scattered light escaping from the PSC. The modeling results satisfactorily reproduce a series of experimental data for photovoltaic parameters of plasmonic PSCs, demonstrating the validity of our modeling approach. According to this, we implement the semi-analytical modeling to propose a new high-efficiency plasmonic PSC based on the PM6:Y6 PSC, having the highest reported power conversion efficiency (PCE) to date. The results show that the incorporation of plasmonic NPs into PM6:Y6 active layer leads to the PCE over 18%.
Collapse
Affiliation(s)
- Zahra Arefinia
- Department of Photonics, Faculty of Physics, University of Tabriz, 51666-14766, Tabriz, Iran.
| | - Dip Prakash Samajdar
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, Madhya Pradesh, 482005, India
| |
Collapse
|
8
|
Chen Z, Tang Y, Lin B, Zhao H, Li T, Min T, Yan H, Ma W. Probe and Control of the Tiny Amounts of Dopants in BHJ Film Enable Higher Performance of Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25115-25124. [PMID: 32378400 DOI: 10.1021/acsami.0c06127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To achieve efficient doping in polymer solar cells (PSCs), the dopant needs to be selectively located in the binary components of a bulk heterojunction (BHJ) film according to its polarity. The rarely studied n-type dopant is thoroughly examined in a simplified planar heterojunction (PHJ) device to address its favored location in the active layer. Results show that the n-dopant distribution in the acceptor layer or at the donor/acceptor interface produces enhanced device performance, whereas it harms the device when located in the donor layer. Based on the results, the benefit of n-type doping is then transferred to the highly efficient BHJ devices via a sequential coating procedure. The performance improvement is closely linked to the variations in the dopant's location in the BHJ film, which is carefully examined by the synchrotron techniques with delicate chemical sensitivity. More interestingly, the sequential coating procedure can be easily extended to the p-doped device only by changing the dopant's polarity in the middle layer. These findings pave the way for ambipolar doping in PSCs and enable performance improvement by molecular doping within the expectations.
Collapse
Affiliation(s)
- Zhenyu Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yabing Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hanzhang Zhao
- Center of Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tao Li
- Center of Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tai Min
- Center of Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Han Yan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|