1
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Li Y, Wang Z, Lu Y, Li H, Weng Z, Sun J, Zhang Y, Zhang T, Wang XS. Thermal Gradient-Driven Heterogeneous Actuation of Liquid Crystal Elastomers for a Crawling Robot. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9992-10003. [PMID: 39885638 DOI: 10.1021/acsami.5c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Emerging soft robots based on liquid crystal elastomers (LCEs) exhibit remarkable capabilities for large reversible shape morphing, enabling them to adapt to complex environments and perform diverse tasks such as locomotion and camouflage. Despite extensive studies, current methods for locally controlled actuation of LCE-based soft robots often involve intricate structural design, complex programming of LCEs, incorporation of multiple materials, or complex actuation methods. Here, we present a simple and efficient approach to achieve multiple deformation modes within a simply programmed LCE structure by harnessing Joule heating-induced thermal gradients across the LCE volume. Oxidized liquid metal (LM) thin films, which exhibit increased resistance, enhanced viscosity, high thermal conductivity, and large deformability, are employed for Joule heating in this study. Using an LCE strip programmed via uniaxial stretching as an example, we perform systematic studies on the effect of essential parameters, including the actuation voltage, LCE dimensions, and the LM-to-LCE thickness ratio, on the deformation behaviors of LCEs induced by three-dimensional thermal gradients across the LCE volume. In addition, concurrently actuating two adjacent surfaces of the LCE strip yields previously inaccessible coupled bending behaviors. Finally, we demonstrate a crawling robot constructed from LM-coated LCE strips with adjustable bending capabilities, which enable multimode locomotion, including forward movement and turns, enhancing biomimetic functionality akin to leg movements observed in living organisms like reptiles. The reported strategy, which is both straightforward and versatile, promises scalability and holds potential for various applications in multifunctional intelligent systems including soft robotics and biomedical devices.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zizheng Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yongyu Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiahan Sun
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Xueju Sophie Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Damoc M, Ursu C, Tiron V, Bulai G, Stoica AC, Macsim AM, Varganici CD, Bele A, Dascalu M, Cazacu M. Thermal Actuators Relying on Elastomer-Dispersed Liquid Crystals: From Imines with Supramolecular Chirality and Ferroelectricity to Soft Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4185-4198. [PMID: 39761059 DOI: 10.1021/acsami.4c18088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli. An example is the combination of liquid crystals (LCs) with elastomers that afford materials with reversible and programmable shape morphing upon heat treatment. This strategy is supposed to involve mainly liquid crystalline elastomers or liquid crystalline networks, but low molecular weight LCs were disregarded. Unlike the previous routes, we utilized a new type of thermal actuator, i.e., elastomer-dispersed LCs (EDLCs), where the LCs rely on small organic molecules, i.e., salicylaldimines with 1,3,4-thiadiazole core and silane or siloxane as mobility units. The individual components of EDLC are not chemically bound and have the advantage of retaining their intrinsic properties. By combining their particularities, herein we highlighted: rare molecules with supramolecular chirality and piezo-/ferroelectricity, new thermal actuators with >340% strain actuation, programmable twisting actuation through helical patterning of elastomers with cholesteric LCs, and crawler and walker soft robots, which show bidirectional gait with high speeds up to 2 mm s-1.
Collapse
Affiliation(s)
- Madalin Damoc
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Cristian Ursu
- Department of Physics of Polymers and Polymeric Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Vasile Tiron
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Blvd. Carol no. 11, 700506 Iasi, Romania
| | - Georgiana Bulai
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Blvd. Carol no. 11, 700506 Iasi, Romania
| | - Alexandru-Constantin Stoica
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Ana-Maria Macsim
- NMR Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Cristian Dragos Varganici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Adrian Bele
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Maria Cazacu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
4
|
McCracken JM, Bauman GE, Williams G, Santos M, Smith L, MacCurdy R, White TJ. Cuboidal Deformation of Multimaterial Composites Prepared by 3-D Printing of Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69851-69857. [PMID: 39630564 DOI: 10.1021/acsami.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Multimaterial 3-D printing (3DP) of isotropic (IsoE) and liquid crystalline elastomers (LCE) yields spatially programmed elements that undergo a cuboidal shape transformation upon heating. The thermomechanical deformation of 3DP elements is determined by the geometry and extent of the isotropic and anisotropic regions. The synthesis and experimental characterization of the 3DP elements are complemented by finite element analysis (FEA). Calculations emphasize that the cuboidal deformation of the myriad 3DP elements is a manifestation of local stress gradients imparted by local control of the material composition and anisotropy. Varying the rectilinear spatial distribution of the multimaterial elastomer composites produces complex, multistable states that provide insights into how stress gradients drive multimaterial elastomer actuation. The thermomechanical stimuli response of the multimaterial elements is explored as a tactile element.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Graham Williams
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Misael Santos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lawrence Smith
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert MacCurdy
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Pereira AC, Nayak VV, Coelho PG, Witek L. Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers (Basel) 2024; 16:2686. [PMID: 39408397 PMCID: PMC11479055 DOI: 10.3390/polym16192686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on advancements in polymer science as it relates to three-dimensional (3D) and four-dimensional (4D) printing technologies, with a specific emphasis on applications in the biomedical field. While acknowledging the breadth of 3D and 4D printing applications, this paper concentrates on the use of polymers in creating biomedical devices and the challenges associated with their implementation. It explores integrative modeling and experimental insights driving innovations in these fields, focusing on sustainable manufacturing with biodegradable polymers, a comparative analysis of 3D and 4D printing techniques, and applications in biomedical devices. Additionally, the review examines the materials used in both 3D and 4D printing, offering a detailed comparison of their properties and applications. By highlighting the transformative potential of these technologies in various industrial and medical applications, the paper underscores the importance of continued research and development. The scope of this review also includes an overview of future research directions to address current challenges, enhance material capabilities, and explore practical applications.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA;
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
6
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Chen M, Hou Y, An R, Qi HJ, Zhou K. 4D Printing of Reprogrammable Liquid Crystal Elastomers with Synergistic Photochromism and Photoactuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303969. [PMID: 37432879 DOI: 10.1002/adma.202303969] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanbei Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ran An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Maurin V, Chang Y, Ze Q, Leanza S, Wang J, Zhao RR. Liquid Crystal Elastomer-Liquid Metal Composite: Ultrafast, Untethered, and Programmable Actuation by Induction Heating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302765. [PMID: 37656872 DOI: 10.1002/adma.202302765] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of stimuli-responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer-liquid metal (LCE-LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high-frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE-LM composite is further exploited for multimodal deformation of a pop-up structure, on-ground omnidirectional robotic motion, and in-water targeted object manipulation and crawling.
Collapse
Affiliation(s)
- Victor Maurin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yilong Chang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiji Ze
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jing Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Zang T, Fu S, Cheng J, Zhang C, Lu X, Hu J, Xia H, Zhao Y. 4D Printing of Shape-Morphing Liquid Crystal Elastomers. CHEM & BIO ENGINEERING 2024; 1:488-515. [PMID: 39974607 PMCID: PMC11835177 DOI: 10.1021/cbe.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 02/21/2025]
Abstract
In nature, biological systems can sense environmental changes and alter their performance parameters in real time to adapt to environmental changes. Inspired by these, scientists have developed a range of novel shape-morphing materials. Shape-morphing materials are a kind of "intelligent" materials that exhibit responses to external stimuli in a predetermined way and then display a preset function. Liquid crystal elastomer (LCE) is a typical representative example of shape-morphing materials. The emergence of 4D printing technology can effectively simplify the preparation process of shape-morphing LCEs, by changing the printing material compositions and printing conditions, enabling precise control and macroscopic design of the shape-morphing modes. At the same time, the layer-by-layer stacking method can also endow the shape-morphing LCEs with complex, hierarchical orientation structures, which gives researchers a great degree of design freedom. 4D printing has greatly expanded the application scope of shape-morphing LCEs as soft intelligent materials. This review systematically reports the recent progress of 3D/4D printing of shape-morphing LCEs, discusses various 4D printing technologies, synthesis methods and actuation modes of 3D/4D printed LCEs, and summarizes the opportunities and challenges of 3D/4D printing technologies in preparing shape-morphing LCEs.
Collapse
Affiliation(s)
- Tongzhi Zang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Shuang Fu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Junpeng Cheng
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Jianshe Hu
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Hesheng Xia
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Yue Zhao
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
10
|
Yue L, Ambergen EPJ, Lugger SJD, Peeketi AR, Annabattula RK, Schenning APHJ, Debije MG. Vacuum Thermoforming of Optically Switchable Liquid Crystalline Elastomer Spherical Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402559. [PMID: 38627932 DOI: 10.1002/adma.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing. The hemispheres display remarkable properties, actuating with strains around 20% and transitioning from opaque and scattering to highly translucent upon heating: both the physical and optical effects are fully reversible. Simulations reveal the LCE experiences biaxial strains during processing, the magnitude varying as a function of location on the hemisphere: the resulting alignment describing the hemisphere actuation well. The thermoplastic LCE hemispheres may be combined to form complete spheres by simply heating the joint. The hemisphere can also be physically deformed into a ball which can then unfold back into the hemisphere again. By doping the hemispheres with photoswitches, fluorescent or photothermal dyes, devices are formed for light collection and redistribution, addressable water containers that may pour at will, and light-responsive surfing devices. This is the first example of an LCE amenable to high-volume industrial vacuum thermoforming which may lead to intricate 3D-shaped actuators with new functional properties.
Collapse
Affiliation(s)
- Lansong Yue
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Erik P J Ambergen
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Sean J D Lugger
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Akhil Reddy Peeketi
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
- Stimuli-Responsive Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ratna Kumar Annabattula
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
- Stimuli-Responsive Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
11
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
12
|
Sartori P, Yadav RS, del Barrio J, DeSimone A, Sánchez‐Somolinos C. Photochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308561. [PMID: 38590131 PMCID: PMC11220691 DOI: 10.1002/advs.202308561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Indexed: 04/10/2024]
Abstract
Underwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape-changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene-containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate-intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four-lapped ephyra-like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate-intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light-fueled robotic LCE free-swimmers.
Collapse
Affiliation(s)
- Paolo Sartori
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Física de la Materia CondensadaZaragoza50009Spain
| | - Rahul Singh Yadav
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Química OrgánicaZaragoza50009Spain
| | - Jesús del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Química OrgánicaZaragoza50009Spain
| | - Antonio DeSimone
- The BioRobotics InstituteScuola Superiore Sant'AnnaPisa56127Italy
- SISSA‐Scuola Internazionale Superiore di Studi AvanzatiTrieste34136Italy
| | - Carlos Sánchez‐Somolinos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC‐Universidad de ZaragozaDepartamento de Física de la Materia CondensadaZaragoza50009Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y NanomedicinaInstituto de Salud Carlos IIIZaragoza50018Spain
| |
Collapse
|
13
|
Long G, Deng Y, Zhao W, Zhou G, Broer DJ, Feringa BL, Chen J. Photoresponsive Biomimetic Functions by Light-Driven Molecular Motors in Three Dimensionally Printed Liquid Crystal Elastomers. J Am Chem Soc 2024; 146:13894-13902. [PMID: 38728606 PMCID: PMC11117400 DOI: 10.1021/jacs.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.
Collapse
Affiliation(s)
- Guiying Long
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Yanping Deng
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Dirk J. Broer
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jiawen Chen
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
14
|
Lyu P, Broer DJ, Liu D. Advancing interactive systems with liquid crystal network-based adaptive electronics. Nat Commun 2024; 15:4191. [PMID: 38760356 PMCID: PMC11101476 DOI: 10.1038/s41467-024-48353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Achieving adaptive behavior in artificial systems, analogous to living organisms, has been a long-standing goal in electronics and materials science. Efforts to integrate adaptive capabilities into synthetic electronics traditionally involved a typical architecture comprising of sensors, an external controller, and actuators constructed from multiple materials. However, challenges arise when attempting to unite these three components into a single entity capable of independently coping with dynamic environments. Here, we unveil an adaptive electronic unit based on a liquid crystal polymer that seamlessly incorporates sensing, signal processing, and actuating functionalities. The polymer forms a film that undergoes anisotropic deformations when exposed to a minor heat pulse generated by human touch. We integrate this property into an electric circuit to facilitate switching. We showcase the concept by creating an interactive system that features distributed information processing including feedback loops and enabling cascading signal transmission across multiple adaptive units. This system responds progressively, in a multi-layered cascade to a dynamic change in its environment. The incorporation of adaptive capabilities into a single piece of responsive material holds immense potential for expediting progress in next-generation flexible electronics, soft robotics, and swarm intelligence.
Collapse
Affiliation(s)
- Pengrong Lyu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Dirk J Broer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Danqing Liu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Rešetič A. Shape programming of liquid crystal elastomers. Commun Chem 2024; 7:56. [PMID: 38485773 PMCID: PMC10940691 DOI: 10.1038/s42004-024-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid crystal elastomers (LCEs) are shape-morphing materials that demonstrate reversible actuation when exposed to external stimuli, such as light or heat. The actuation's complexity depends heavily on the instilled liquid crystal alignment, programmed into the material using various shape-programming processes. As an unavoidable part of LCE synthesis, these also introduce geometrical and output restrictions that dictate the final applicability. Considering LCE's future implementation in real-life applications, it is reasonable to explore these limiting factors. This review offers a brief overview of current shape-programming methods in relation to the challenges of employing LCEs as soft, shape-memory components in future devices.
Collapse
Affiliation(s)
- Andraž Rešetič
- Jožef Stefan Institute, Solid State Physics Department, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Xu Y, Zhang X, Song Z, Chen X, Huang Y, Wang J, Li B, Huang S, Li Q. In situ Light-Writable Orientation Control in Liquid Crystal Elastomer Film Enabled by Chalcones. Angew Chem Int Ed Engl 2024; 63:e202319698. [PMID: 38190301 DOI: 10.1002/anie.202319698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Liquid crystal elastomers (LCEs) are stimulus-responsive materials with intrinsic anisotropy. However, it is still challenging to in situ program the mesogen alignment to realize three-dimensional (3D) deformations with high-resolution patterned structures. This work presents a feasible strategy to program the anisotropy of LCEs by using chalcone mesogens that can undergo a photoinduced cycloaddition reaction under linear polarized light. It is shown that by controlling the polarization director and the irradiation region, patterned alignment distribution in a freestanding LCE film can be created, which leads to complex and reversible 3D shape-morphing behaviors. The work demonstrates an in situ light-writing method to achieve sophisticated topography changes in LCEs, which has potential applications in encryption, sensors, and beyond.
Collapse
Affiliation(s)
- Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| | - Zhenpeng Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinyu Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingxiang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| |
Collapse
|
17
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
19
|
Liu Y, Yang B, Song C, Zhao Q, Xie T, Fang Z, Wu J. Multishape Programming of Shape Memory Polymer Assemblies Fabricated by Vat Photopolymerization-Based 3D Printing and Interfacial Welding. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037349 DOI: 10.1021/acsami.3c14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The combination of three-dimensional (3D) printing and shape memory polymers (SMP) enables programmable shape morphing of complex 3D structures, which is commonly termed four-dimensional (4D) printing. The process requirements of vat photopolymerization-based 3D printing impose limitations on the molecular structure design of SMPs, making it challenging to achieve triple- or multiple-shaped memory effects. Herein, we printed SMPs with different Tg values and obtained an SMP assembly through interfacial welding. The welding process is facilitated by the dynamic exchange of hindered urethane bonds at the interface. The resulting SMP assembly exhibits a quadruple shape memory effect, enabling programmable sequential deformation. The advantage of this approach is that the molecular design and the corresponding thermodynamic properties of different welding SMP components can be independently adjusted, enabling a greater range of shape and functional variations in the final 3D SMP assembly.
Collapse
Affiliation(s)
- Yongqi Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biru Yang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuhan Song
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zizheng Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733, Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, China
| | - Jingjun Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Qiu W, He X, Fang Z, Wang Y, Dong K, Zhang G, Xu X, Ge Q, Xiong Y. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47509-47519. [PMID: 37769329 DOI: 10.1021/acsami.3c10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.
Collapse
Affiliation(s)
- Wanglin Qiu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zeming Fang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ke Dong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guoquan Zhang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuguang Xu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
21
|
Zhang Z, Yang X, Zhao Y, Ye F, Shang L. Liquid Crystal Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300220. [PMID: 37235719 DOI: 10.1002/adma.202300220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/04/2023] [Indexed: 05/28/2023]
Abstract
Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness. In this review, the latest achievements of liquid crystal materials applied in biomedical fields are summarized. The start is made by introducing the basic concepts of liquid crystals, and then shifting to the components of liquid crystals as well as functional materials derived therefrom. After that, the ongoing and foreseeable applications of liquid crystal materials in the biomedical field with emphasis put on several cutting-edge aspects, including drug delivery, bioimaging, tissue engineering, implantable devices, biosensing, and wearable devices are discussed. It is hoped that this review will stimulate ingenious ideas for the future generation of liquid crystal-based drug development, artificial implants, disease diagnosis, health status monitoring, and beyond.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
22
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Li S, Song Z, Fan Y, Wei D, Liu Y. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior. Biomimetics (Basel) 2023; 8:biomimetics8020196. [PMID: 37218782 DOI: 10.3390/biomimetics8020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are polymer networks that exhibit anisotropic liquid crystalline properties while maintaining the properties of elastomers, presenting reversible high-speed and large-scale actuation in response to external stimuli. Herein, we formulated a non-toxic, low-temperature liquid crystal (LC) ink for temperature-controlled direct ink writing 3D printing. The rheological properties of the LC ink were verified under different temperatures given the phase transition temperature of 63 °C measured by the DSC test. Afterwards, the effects of printing speed, printing temperature, and actuation temperature on the actuation strain of printed LCEs structures were investigated within adjustable ranges. In addition, it was demonstrated that the printing direction can modulate the LCEs to exhibit different actuation behaviors. Finally, by sequentially conforming structures and programming the printing parameters, it showed the deformation behavior of a variety of complex structures. By integrating with 4D printing and digital device architectures, this unique reversible deformation property will help LCEs presented here apply to mechanical actuators, smart surfaces, micro-robots, etc.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhengyi Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| |
Collapse
|
24
|
Zhao L, Tian H, Liu H, Zhang W, Zhao F, Song X, Shao J. Bio-Inspired Soft-Rigid Hybrid Smart Artificial Muscle Based on Liquid Crystal Elastomer and Helical Metal Wire. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206342. [PMID: 36653937 DOI: 10.1002/smll.202206342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Artificial muscles are of significant value in robotic applications. Rigid artificial muscles possess a strong load-bearing capacity, while their deformation is small; soft artificial muscles can be shifted to a large degree; however, their load-bearing capacity is weak. Furthermore, artificial muscles are generally controlled in an open loop due to a lack of deformation-related feedback. Human arms include muscles, bones, and nerves, which ingeniously coordinate the actuation, load-bearing, and sensory systems. Inspired by this, a soft-rigid hybrid smart artificial muscle (SRH-SAM) based on liquid crystal elastomer (LCE) and helical metal wire is proposed. The thermotropic responsiveness of the LCE is adopted for large reversible deformation, and the helical metal wire is used to fulfill high bearing capacity and electric heating function requirements. During actuation, the helical metal wire's resistance changes with the LCE's electrothermal deformation, thereby achieving deformation-sensing characteristics. Based on the proposed SRH-SAM, a reconfigurable blazed grating plane and the effective switch between attachment and detachment in bionic dry adhesion are accomplished. The SRH-SAM opens a new avenue for designing smart artificial muscles and can promote the development of artificial muscle-based devices.
Collapse
Affiliation(s)
- Limeng Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haoran Liu
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weitian Zhang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fabo Zhao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Song
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
25
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
27
|
Rogóż M, Dziekan Z, Dradrach K, Zmyślony M, Nałęcz-Jawecki P, Grabowski P, Fabjanowicz B, Podgórska M, Kudzia A, Wasylczyk P. From Light-Powered Motors, to Micro-Grippers, to Crawling Caterpillars, Snails and Beyond-Light-Responsive Oriented Polymers in Action. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8214. [PMID: 36431699 PMCID: PMC9698796 DOI: 10.3390/ma15228214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
"How would you build a robot, the size of a bacteria, powered by light, that would swim towards the light source, escape from it, or could be controlled by means of different light colors, intensities or polarizations?" This was the question that Professor Diederik Wiersma asked PW on a sunny spring day in 2012, when they first met at LENS-the European Laboratory of Nonlinear Spectroscopy-in Sesto Fiorentino, just outside Florence in northern Italy. It was not just a vague question, as Prof. Wiersma, then the LENS director and leader of one of its research groups, already had an idea (and an ERC grant) about how to actually make such micro-robots, using a class of light-responsive oriented polymers, liquid crystal elastomers (LCEs), combined with the most advanced fabrication technique-two-photon 3D laser photolithography. Indeed, over the next few years, the LCE technology, successfully married with the so-called direct laser writing at LENS, resulted in a 60 micrometer long walker developed in Prof. Wiersma's group (as, surprisingly, walking at that stage proved to be easier than swimming). After completing his post-doc at LENS, PW returned to his home Faculty of Physics at the University of Warsaw, and started experimenting with LCE, both in micrometer and millimeter scales, in his newly established Photonic Nanostructure Facility. This paper is a review of how the ideas of using light-powered soft actuators in micromechanics and micro-robotics have been evolving in Warsaw over the last decade and what the outcomes have been so far.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Piotr Wasylczyk
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
28
|
Peng X, Wu S, Sun X, Yue L, Montgomery SM, Demoly F, Zhou K, Zhao RR, Qi HJ. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204890. [PMID: 35962737 DOI: 10.1002/adma.202204890] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
Collapse
Affiliation(s)
- Xirui Peng
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Univ. Bourgogne Franche-Comté, UTBM, Belfort, 90010, France
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Song X, Zhang W, Liu H, Zhao L, Chen Q, Tian H. 3D printing of liquid crystal elastomers-based actuator for an inchworm-inspired crawling soft robot. Front Robot AI 2022; 9:889848. [PMID: 36035870 PMCID: PMC9399622 DOI: 10.3389/frobt.2022.889848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Liquid crystal elastomers (LCEs) have shown great potential as soft actuating materials in soft robots, with large actuation strain and fast response speed. However, to achieve the unique features of actuation, the liquid crystal mesogens should be well aligned and permanently fixed by polymer networks, limiting their practical applications. The recent progress in the 3D printing technologies of LCEs overcame the shortcomings in conventional processing techniques. In this study, the relationship between the 3D printing parameters and the actuation performance of LCEs is studied in detail. Furthermore, a type of inchworm-inspired crawling soft robot based on a liquid crystal elastomeric actuator is demonstrated, coupled with tilted fish-scale-like microstructures with anisotropic friction as the foot for moving forwards. In addition, the anisotropic friction of inclined scales with different angles is measured to demonstrate the performance of anisotropic friction. Lastly, the kinematic performance of the inchworm-inspired robot is tested on different surfaces.
Collapse
|
30
|
Lugger SJD, Verbroekken RMC, Mulder DJ, Schenning APHJ. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Lett 2022; 11:935-940. [PMID: 35802869 PMCID: PMC9301911 DOI: 10.1021/acsmacrolett.2c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Direct ink writing (DIW) of liquid crystal elastomers
(LCEs) has
rapidly paved its way into the field of soft actuators and other stimuli-responsive
devices. However, currently used LCE systems for DIW require postprinting
(photo)polymerization, thereby forming a covalent network, making
the process time-consuming and the material nonrecyclable. In this
work, a DIW approach is developed for printing a supramolecular poly(thio)urethane
LCE to overcome these drawbacks of permanent cross-linking. The thermo-reversible
nature of the supramolecular cross-links enables the interplay between
melt-processable behavior required for extrusion and formation of
the network to fix the alignment. After printing, the actuators demonstrated
a reversible contraction of 12.7% or bending and curling motions when
printed on a passive substrate. The thermoplastic ink enables recyclability,
as shown by cutting and printing the actuators five times. However,
the actuation performance diminishes. This work highlights the potential
of supramolecular LCE inks for DIW soft circular actuators and other
devices.
Collapse
Affiliation(s)
- Sean J D Lugger
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth M C Verbroekken
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dirk J Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology (TU/e), P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
31
|
Xiao YY, Jiang ZC, Hou JB, Chen XS, Zhao Y. Electrically driven liquid crystal network actuators. SOFT MATTER 2022; 18:4850-4867. [PMID: 35730498 DOI: 10.1039/d2sm00544a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft actuators based on liquid crystal networks (LCNs) have aroused great scientific interest for use as stimuli-controlled shape-changing and moving components for robotic devices due to their fast, large, programmable and solvent-free actuation responses. Recently, various LCN actuators have been implemented in soft robotics using stimulus sources such as heat, light, humidity and chemical reactions. Among them, electrically driven LCN actuators allow easy modulation and programming of the input electrical signals (amplitude, phase, and frequency) as well as stimulation throughout the volume, rendering them promising actuators for practical applications. Herein, the progress of electrically driven LCN actuators regarding their construction, actuation mechanisms, actuation performance, actuation programmability and the design strategies for intelligent systems is elucidated. We also discuss new robotic functions and advanced actuation control. Finally, an outlook is provided, highlighting the research challenges faced with this type of actuator.
Collapse
Affiliation(s)
- Yao-Yu Xiao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Zhi-Chao Jiang
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jun-Bo Hou
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Xin-Shi Chen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
32
|
Guan Z, Wang L, Bae J. Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. MATERIALS HORIZONS 2022; 9:1825-1849. [PMID: 35504034 DOI: 10.1039/d2mh00232a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.
Collapse
Affiliation(s)
- Zhecun Guan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Jinhye Bae
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
34
|
Jiang Y, Dong X, Wang Q, Dai S, Li L, Yuan N, Ding J. A High-Fidelity Preparation Method for Liquid Crystal Elastomer Actuators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7190-7197. [PMID: 35635021 DOI: 10.1021/acs.langmuir.2c00490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) structural actuators based on monodomain liquid crystal elastomers (mLCEs) show a wide range of potential applications. A direct ink writing technique has been developed to print LCE structures. It is still a challenge to print high-precision 3D-mLCE actuators. Here, a method of wet 3D printing combined with freeze-drying is proposed. The coagulation bath is designed to restrain the nascent fiber disturbance of the capillary wave and weight by adjusting the ink viscosity and printing speed to control the LC molecular order, enabling uniform (B = 1.02) fibers with a high degree of orientational alignment (S = 0.45) of the mesogens. Furthermore, dynamic disulfide bond formation was used as the cross-linking point, which can allow the LCE network structure to be continuously cured to ensure adjacent layers are effectively bonded and, in combination with freeze-drying, produce the 3D-mLCE actuators of fidelity architecture (98.37 vol %) by printing. The actuators have excellent actuating strain (45.12%), and the dynamic disulfide bond makes them programmable. Finally, a printed bionic starfish and a printed bionic hand can easily grab regular and irregular objects. This work provides a feasible scheme for fabricating complex 3D-mLCEs with reversible changes in shape.
Collapse
Affiliation(s)
- Yaoyao Jiang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xu Dong
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qi Wang
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | | | - Lvzhou Li
- Yangzhou University, Yangzhou 225009, P. R. China
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianning Ding
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
- Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
35
|
Zadan M, Patel DK, Sabelhaus AP, Liao J, Wertz A, Yao L, Majidi C. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200857. [PMID: 35384096 DOI: 10.1002/adma.202200857] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
Collapse
Affiliation(s)
- Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dinesh K Patel
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Andrew P Sabelhaus
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jiahe Liao
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anthony Wertz
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Lining Yao
- Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
36
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
37
|
Bauman GE, Koch JA, White TJ. Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers. SOFT MATTER 2022; 18:3168-3176. [PMID: 35380153 DOI: 10.1039/d2sm00166g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline monomers can be oligomerized and subsequently 3-D printed to prepare liquid crystalline elastomers (LCEs) with spatial variation of the nematic director to create soft materials that undergo complex shape change when subject to stimulus. Here, we detail the correlation of alignment in 3-D printed LCE on the shear history of the oligomeric ink. This coupling is evident both in the polymerization of sheared LCE samples as well as steady-state rheological experiments that quantify the time-dependent flow behaviors of these complex fluids. Under a steady shear flow, oligomeric LC inks transition from a nematic state with unaligned (polydomain) orientation to a uniaxially aligned (monodomain) nematic phase over a large range of applied strain. After cessation of shear flow, the oligomeric LC inks return the polydomain orientation over approximately 30 minutes. The alignment of liquid crystalline segments in the LCE (and the associated stimuli-response of the materials) is ultimately correlated to the degree of strain applied to the ink.
Collapse
Affiliation(s)
- Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| | - Jeremy A Koch
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80309, USA.
| |
Collapse
|
38
|
Müller LAE, Demongeot A, Vaucher J, Leterrier Y, Avaro J, Liebi M, Neels A, Burgert I, Zimmermann T, Nyström G, Siqueira G. Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16703-16717. [PMID: 35377597 DOI: 10.1021/acsami.2c02154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoresponsive soft liquid crystalline elastomers (LCEs) transform light's energy into dynamic shape changes and are considered promising candidates for production of soft robotic or muscle-like devices. 3D printing allows access to elaborated geometries as well as control of the photoactuated movements; however, this development is still in its infancy and only a limited choice of LCE is yet available. Herein, we propose to introduce biocompatible and sustainable cellulose nanocrystals (CNC) into an LCE in order to facilitate the printing process by direct ink writing (DIW) and to benefit from the anisotropic mechanical properties resulting from the extrusion-induced alignment of such nanoparticles. After a first printing step where the rheological influence of CNC allows the production of self-standing structures, a doping process introduces the azobenzene photoswitches in the composite, conferring photomechanical behaviors to the printed material. This approach results in soft composites, with an elastic modulus around 20-30 MPa, that present fully reversible photosoftening of 35% and photomechanical actuation occurring less than 3 s after illumination. The presence of CNC as reinforcement particles allows precise tailoring of mechanical properties, rendering such phototriggered materials suitable candidates for the production of actuators and 3D structures with particular and dynamic load cases.
Collapse
Affiliation(s)
- Luca A E Müller
- Cellulose and Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Wood Materials Science, Institute for Building Materials, ETH-Zürich, 8093 Zürich, Switzerland
| | - Adrien Demongeot
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LPAC, Station 12, CH-1015 Lausanne, Switzerland
| | - Joanne Vaucher
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LPAC, Station 12, CH-1015 Lausanne, Switzerland
| | - Yves Leterrier
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-LPAC, Station 12, CH-1015 Lausanne, Switzerland
| | - Jonathan Avaro
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Marianne Liebi
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH-Zürich, 8093 Zürich, Switzerland
| | - Tanja Zimmermann
- Cellulose and Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Cellulose and Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilberto Siqueira
- Cellulose and Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
39
|
Saed M, Gablier A, Terentjev EM. Exchangeable Liquid Crystalline Elastomers and Their Applications. Chem Rev 2022; 122:4927-4945. [PMID: 33596647 PMCID: PMC8915166 DOI: 10.1021/acs.chemrev.0c01057] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/30/2022]
Abstract
This Review presents and discusses the current state of the art in "exchangeable liquid crystalline elastomers", that is, LCE materials utilizing dynamically cross-linked networks capable of reprocessing, reprogramming, and recycling. The focus here is on the chemistry and the specific reaction mechanisms that enable the dynamic bond exchange, of which there is a variety. We compare and contrast these different chemical mechanisms and the key properties of their resulting elastomers. In the conclusion, we discuss the most promising applications that are enabled by dynamic cross-linking and present a summary table: a library of currently available materials and their main characteristics.
Collapse
Affiliation(s)
- Mohand
O. Saed
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Alexandra Gablier
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eugene M. Terentjev
- Cavendish Laboratory, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
40
|
Chen J, Liu X, Tian Y, Zhu W, Yan C, Shi Y, Kong LB, Qi HJ, Zhou K. 3D-Printed Anisotropic Polymer Materials for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102877. [PMID: 34699637 DOI: 10.1002/adma.202102877] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Anisotropy is the characteristic of a material to exhibit variations in its mechanical, electrical, thermal, optical properties, etc. along different directions. Anisotropic materials have attracted great research interest because of their wide applications in aerospace, sensing, soft robotics, and tissue engineering. 3D printing provides exceptional advantages in achieving controlled compositions and complex architecture, thereby enabling the manufacture of 3D objects with anisotropic functionalities. Here, a comprehensive review of the recent progress on 3D printing of anisotropic polymer materials based on different techniques including material extrusion, vat photopolymerization, powder bed fusion, and sheet lamination is presented. The state-of-the-art strategies implemented in manipulating anisotropic structures are highlighted with the discussion of material categories, functionalities, and potential applications. This review is concluded with analyzing the current challenges and providing perspectives for further development in this field.
Collapse
Affiliation(s)
- Jiayao Chen
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaojiang Liu
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Zhu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ling Bing Kong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hang Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
41
|
Ge Q, Jian B, Li H. Shaping soft materials via digital light processing-based 3D printing: A review. FORCES IN MECHANICS 2022. [DOI: 10.1016/j.finmec.2022.100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of Liquid Crystals: What's Right for Me? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104390. [PMID: 34716625 DOI: 10.1002/adma.202104390] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Indexed: 05/24/2023]
Abstract
Recent years have seen major advances in the developments of both additive manufacturing concepts and responsive materials. When combined as 4D printing, the process can lead to functional materials and devices for use in health, energy generation, sensing, and soft robots. Among responsive materials, liquid crystals, which can deliver programmed, reversible, rapid responses in both air and underwater, are a prime contender for additive manufacturing, given their ease of use and adaptability to many different applications. In this paper, selected works are compared and analyzed to come to a didactical overview of the liquid crystal-additive manufacturing junction. Reading from front to back gives the reader a comprehensive understanding of the options and challenges in the field, while researchers already experienced in either liquid crystals or additive manufacturing are encouraged to scan through the text to see how they can incorporate additive manufacturing or liquid crystals into their own work. The educational text is closed with proposals for future research in this crossover field.
Collapse
Affiliation(s)
- Marc Del Pozo
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Jeroen A H P Sol
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Albert P H J Schenning
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Laboratory for Stimuli-Responsive Functional Materials & Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
43
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
44
|
Abstract
Smart soft materials are envisioned to be the building blocks of the next generation of advanced devices and digitally augmented technologies. In this context, liquid crystals (LCs) owing to their responsive and adaptive attributes could serve as promising smart soft materials. LCs played a critical role in revolutionizing the information display industry in the 20th century. However, in the turn of the 21st century, numerous beyond-display applications of LCs have been demonstrated, which elegantly exploit their controllable stimuli-responsive and adaptive characteristics. For these applications, new LC materials have been rationally designed and developed. In this Review, we present the recent developments in light driven chiral LCs, i.e., cholesteric and blue phases, LC based smart windows that control the entrance of heat and light from outdoor to the interior of buildings and built environments depending on the weather conditions, LC elastomers for bioinspired, biological, and actuator applications, LC based biosensors for detection of proteins, nucleic acids, and viruses, LC based porous membranes for the separation of ions, molecules, and microbes, living LCs, and LCs under macro- and nanoscopic confinement. The Review concludes with a summary and perspectives on the challenges and opportunities for LCs as smart soft materials. This Review is anticipated to stimulate eclectic ideas toward the implementation of the nature's delicate phase of matter in future generations of smart and augmented devices and beyond.
Collapse
Affiliation(s)
- Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States.,Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
45
|
Affiliation(s)
- Patrick Imrie
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| | - Jianyong Jin
- School of Chemical Sciences The University of Auckland Auckland New Zealand
- Dodd‐Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| |
Collapse
|
46
|
Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1934016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jigar Patdiya
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| |
Collapse
|
47
|
Carlotti M, Tricinci O, den Hoed F, Palagi S, Mattoli V. Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. OPEN RESEARCH EUROPE 2021; 1:129. [PMID: 37645193 PMCID: PMC10445945 DOI: 10.12688/openreseurope.14135.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 08/31/2023]
Abstract
Background: The ability to fabricate components capable of performing actuation in a reliable and controlled manner is one of the main research topics in the field of microelectromechanical systems (MEMS). However, the development of these technologies can be limited in many cases by 2D lithographic techniques employed in the fabrication process. Direct Laser Writing (DLW), a 3D microprinting technique based on two-photon polymerization, can offer novel solutions to prepare, both rapidly and reliably, 3D nano- and microstructures of arbitrary complexity. In addition, the use of functional materials in the printing process can result in the fabrication of smart and responsive devices. Methods: In this study, we present a novel methodology for the printing of 3D actuating microelements comprising Liquid Crystal Elastomers (LCEs) obtained by DLW. The alignment of the mesogens was performed using a static electric field (1.7 V/µm) generated by indium-tin oxide (ITO) electrodes patterned directly on the printing substrates. Results: When exposed to a temperature higher than 50°C, the printed microstructures actuated rapidly and reversibly of about 8% in the direction perpendicular to the director. Conclusions: A novel methodology was developed that allows the printing of directional actuators comprising LCEs via DLW. To impart the necessary alignment of the mesogens, a static electric field was applied before the printing process by making use of flat ITO electrodes present on the printing substrates. The resulting microelements showed a reversible change in shape when heated higher than 50 °C.
Collapse
Affiliation(s)
- Marco Carlotti
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Omar Tricinci
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Frank den Hoed
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, 4747 AG, The Netherlands
| | - Stefano Palagi
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Virgilio Mattoli
- Center for Materials Interfaces (CMI), Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
48
|
Guo Y, Zhang J, Hu W, Khan MTA, Sitti M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat Commun 2021; 12:5936. [PMID: 34642352 PMCID: PMC8511085 DOI: 10.1038/s41467-021-26136-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Liquid crystal elastomers exhibit large reversible strain and programmable shape transformations, enabling various applications in soft robotics, dynamic optics, and programmable origami and kirigami. The morphing modes of these materials depend on both their geometries and director fields. In two dimensions, a pixel-by-pixel design has been accomplished to attain more flexibility over the spatial resolution of the liquid crystal response. Here we generalize this idea in two steps. First, we create independent, cubic light-responsive voxels, each with a predefined director field orientation. Second, these voxels are in turn assembled to form lines, grids, or skeletal structures that would be rather difficult to obtain from an initially connected material sample. In this way, the orientation of the director fields can be made to vary at voxel resolution to allow for programmable optically- or thermally-triggered anisotropic or heterogeneous material responses and morphology changes in three dimensions that would be impossible or hard to implement otherwise.
Collapse
Affiliation(s)
- Yubing Guo
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Engineering Medicine, Beijing Institute of Technology, 100081, Beijing, China
| | - Jiachen Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Muhammad Turab Ali Khan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
49
|
Agarwal T, Hann SY, Chiesa I, Cui H, Celikkin N, Micalizzi S, Barbetta A, Costantini M, Esworthy T, Zhang LG, De Maria C, Maiti TK. 4D printing in biomedical applications: emerging trends and technologies. J Mater Chem B 2021; 9:7608-7632. [PMID: 34586145 DOI: 10.1039/d1tb01335a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nature's material systems during evolution have developed the ability to respond and adapt to environmental stimuli through the generation of complex structures capable of varying their functions across direction, distances and time. 3D printing technologies can recapitulate structural motifs present in natural materials, and efforts are currently being made on the technological side to improve printing resolution, shape fidelity, and printing speed. However, an intrinsic limitation of this technology is that printed objects are static and thus inadequate to dynamically reshape when subjected to external stimuli. In recent years, this issue has been addressed with the design and precise deployment of smart materials that can undergo a programmed morphing in response to a stimulus. The term 4D printing was coined to indicate the combined use of additive manufacturing, smart materials, and careful design of appropriate geometries. In this review, we report the recent progress in the design and development of smart materials that are actuated by different stimuli and their exploitation within additive manufacturing to produce biomimetic structures with important repercussions in different but interrelated biomedical areas.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Irene Chiesa
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Nehar Celikkin
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Simone Micalizzi
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Andrea Barbetta
- Department of Chemistry, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA. .,Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.,Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal - 721302, India.
| |
Collapse
|
50
|
Ren L, Li B, Wei G, Wang K, Song Z, Wei Y, Ren L, Qingping Liu. Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration. iScience 2021; 24:103075. [PMID: 34568796 PMCID: PMC8449090 DOI: 10.1016/j.isci.2021.103075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Organisms in nature grow with senses, nervous, and actuation systems coordinated in ingenious ways to sustain metabolism and other essential life activities. The understanding of biological structures and functions guide the construction of soft robotics with unprecedented performances. However, despite the progress in soft robotics, there still remains a big gap between man-made soft robotics and natural lives in terms of autonomy, adaptability, self-repair, durability, energy efficiency, etc. Here, the actuation and sensing strategies in the natural biological world are summarized along with their man-made counterparts applied in soft robotics. The development trends of bioinspired soft robotics toward closed loop and embodiment are proposed. Challenges for obtaining autonomous soft robotics similar to natural organisms are outlined to provide a perspective in this field.
Collapse
Affiliation(s)
- Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Bingqian Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Guowu Wei
- School of Science, Engineering and Environment, University of Salford, M5 4WT Salford, UK
| | - Kunyang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhengyi Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yuyang Wei
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M13 9PL Manchester, UK
| | - Lei Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China.,School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M13 9PL Manchester, UK
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| |
Collapse
|