1
|
Zhong J, Tong Y, Guo L, Zhang A, Xu Q, Qin Y. Cationic Covalent Organic Framework-Modified Polypropylene Separator for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39371041 DOI: 10.1021/acsami.4c11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As an important component of lithium batteries, the wettability and thermal stability of the separator play a significant role in cell performance. Despite the availability of numerous commercial separators, issues such as low ion selectivity and poor thermal stability continue to limit the efficiency and reliability of the batteries. Herein, two cationic covalent organic frameworks (Br-COF and TFSI-COF) with abundant imidazole cationic groups were designed to modify commercial polypropylene (PP) separators. The strong lithium-ion affinity of the cationic COF enables the effective dissociation of lithium salt ion clusters, simplifying the solvent structure of lithium ions to promote lithium ions transport. Additionally, solvent anions can be anchored to the cationic COF by electrostatic interactions, reducing side reactions on the lithium metal anode surface to form a favorable SEI layer, which can effectively inhibit the growth of lithium dendrites. The rapid dissociation of anions in lithium salts with some organic solvents and cationic COFs was revealed by a molecular dynamics simulation. A LiF-rich SEI layer on the lithium metal anode surface was formed, which can speed up Li+ transport at interfaces, leading to consistent lithium deposition and outstanding battery performance. The ordered porous structure of the cationic COF provides interconnected and continuous channels, improving the wettability between the liquid electrolyte and separators, which is conducive to ion transport. When paired with a LiFePO4 cathode and electrolyte (1.0 M LiTFSI in DEC: EC: DMC = 1:1:1), the LiFePO4/TFSI-COF@PP/Li cell demonstrates a prominent cycling capacity of 148.0 mAh g-1 at 0.5 C with a Coulombic efficiency of 98.0% in the first cycle, and the capacity retention is 82.0% after 100 cycles, showing good cycling stability. Thus, this investigation provides inspiration for the expansion of cationic COF-modified separators for next-generation lithium metal batteries.
Collapse
Affiliation(s)
- Juanqi Zhong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yongfen Tong
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Lin Guo
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aiqing Zhang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qiuhua Xu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuancheng Qin
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
2
|
Liu J, Cao D, Zhang Q, Zhai P, Yao H, Duan J, Sun Y, Liu J. Covalent Organic Framework-Coated Polyimide Ion-Track-Etched Separator with High Thermal Stability for Developing Lithium-Ion Batteries with Long Lifespans. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39367-39378. [PMID: 39037284 DOI: 10.1021/acsami.4c06913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Separators play a crucial role in inhibiting thermal runaway in lithium-ion batteries (LIBs). In this study, the doctor blade coating method and heavy-ion track etching technology were used to prepare a polyimide-based covalent organic framework (PI_COF) separator with excellent thermal stability and a long cycle life. Specifically, COF300 was simply coated on the surface of a polyimide-based track-etched membrane (PI_TEM) with straight through holes, which provided a rigid framework and high-temperature stability at 300 °C. These features were conducive to inhibiting thermal runaway, while porous COF300 with large holes increased the wettability of the electrolyte, facilitating lithium-ion migration and suppression of lithium dendrite growth; consequently, LIBs with an excellent cycling performance and a high rate capacity were obtained. The cell with the PI_COF separator delivered a high capacity of 90.0 mA h g-1 after 1000 cycles. The PI_COF separator with high thermal stability exhibited a long cycle life in LIBs. These features are beneficial for improving the safety characteristics of LIBs as well as for accelerating the practical application process of the PI_COF separator.
Collapse
Affiliation(s)
- Jiande Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Dianliang Cao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qizhong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Pengfei Zhai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jinglai Duan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Youmei Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Huang X, Cheng S, Huang C, Han J, Li M, Liu S, Zhang J, Zhang P, You Y, Chen W. Superspreading-Based Fabrication of Thermostable Nanoporous Polyimide Membranes for High Safety Separators of Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311219. [PMID: 38263800 DOI: 10.1002/smll.202311219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The development of thermally stable separators is a promising approach to address the safety issues of lithium-ion batteries (LIBs) owing to the serious shrinkage of commercial polyolefin separators at elevated temperatures. However, achieving controlled nanopores with a uniform size distribution in thermostable polymeric separators and high electrochemical performance is still a great challenge. In this study, nanoporous polyimide (PI) membranes with excellent thermal stability as high-safety separators is developed for LIBs using a superspreading strategy. The superspreading of polyamic acid solutions enables the generation of thin and uniform liquid layers, facilitating the formation of thin PI membranes with controllable and uniform nanopores with narrow size distribution ranging from 121 ± 5 nm to 86 ± 6 nm. Such nanoporous PI membranes display excellent structural stability at elevated temperatures up to 300 °C for at least 1 h. LIBs assembled with nanoporous PI membranes as separators show high specific capacity and Coulombic efficiency and can work normally after transient treatment at a high temperature (150 °C for 20 min) and high ambient temperature, indicating their promising application as high-safety separators for rechargeable batteries.
Collapse
Affiliation(s)
- Xinxu Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Sha Cheng
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng Huang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jin Han
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Mengying Li
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaopeng Liu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jisong Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
| | - Ya You
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China
| | - Wen Chen
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, China
| |
Collapse
|
4
|
Zhou K, Wang Y, Mei J, Zhang X, Xue T, Fan W, Zhang L, Liu T, Xie Y. Scalable Preparation of Polyimide Sandwiched Separator for Durable High-Rate Lithium-Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305596. [PMID: 37775944 DOI: 10.1002/smll.202305596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The ever-growing demands for efficient energy storage accelerate the development of high-rate lithium-metal battery (LMB) with desirable energy density, power density, and cycling stability. Nevertheless, the practical application of LMB is critically impeded by internal temperature rise and lithium dendrite growth, especially at high charge/discharge rates. It is highly desired but remains challenging to develop high-performance thermotolerant separators that can provide favorable channels to enable fast Li+ transport for high-rate operation and simultaneously homogenize the lithium deposition for dendrite inhibition. Polyimide-based separators with superior thermal properties are promising candidate alternatives to the commercial polyolefin-based separators, but previous strategies of designing either nanoporous or microporous channels in polyimide-based separators often meet a dilemma. Here, a facile and scalable approach is reported to develop a polyimide fiber/aerogel (denoted as PIFA) separator with the microporous polyimide fiber membrane sandwiched between two nanoporous polyimide aerogel layers, which can enable LMBs with remarkable capacity retention of 97.2% after 1500 cycles at 10 C. The experimental and theoretical studies unravel that the sandwiched structure of PIFA can appreciably enhance the electrolyte adsorption and ionic conductivity; while, the aerogel coating can effectively inhibit dendrite growth to realize durable high-rate LMBs.
Collapse
Affiliation(s)
- Kangjie Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiabing Mei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tiantian Xue
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Nimkar A, Bergman G, Ballas E, Tubul N, Levi N, Malchik F, Kukurayeve I, Chae MS, Sharon D, Levi M, Shpigel N, Wang G, Aurbach D. Polyimide Compounds For Post-Lithium Energy Storage Applications. Angew Chem Int Ed Engl 2023; 62:e202306904. [PMID: 37650332 DOI: 10.1002/anie.202306904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.
Collapse
Affiliation(s)
- Amey Nimkar
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Gil Bergman
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Elad Ballas
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Nophar Tubul
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Noam Levi
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Fyodor Malchik
- Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, Almaty, 050012, Kazakhstan
| | - Idan Kukurayeve
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Munseok S Chae
- Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Daniel Sharon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mikhael Levi
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Netanel Shpigel
- Department of Chemical Sciences, Ariel University, Kiryat Hamada 3, 44837, Ariel, Israel
| | - Guoxiu Wang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Doron Aurbach
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
6
|
Li Z, Sun L, Zhai L, Oh KS, Seo JM, Li C, Han D, Baek JB, Lee SY. Olefin-Linked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes. Angew Chem Int Ed Engl 2023; 62:e202307459. [PMID: 37488979 DOI: 10.1002/anie.202307459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Despite the enormous interest in Li metal as an ideal anode material, the uncontrollable Li dendrite growth and unstable solid electrolyte interphase have plagued its practical application. These limitations can be attributed to the sluggish and uneven Li+ migration towards Li metal surface. Here, we report olefin-linked covalent organic frameworks (COFs) with electronegative channels for facilitating selective Li+ transport. The triazine rings and fluorinated groups of the COFs are introduced as electron-rich sites capable of enhancing salt dissociation and guiding uniform Li+ flux within the channels, resulting in a high Li+ transference number (0.85) and high ionic conductivity (1.78 mS cm-1 ). The COFs are mixed with a polymeric binder to form mixed matrix membranes. These membranes enable reliable Li plating/stripping cyclability over 700 h in Li/Li symmetric cells and stable capacity retention in Li/LiFePO4 cells, demonstrating its potential as a viable cationic highway for accelerating Li+ conduction.
Collapse
Affiliation(s)
- Zhongping Li
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Kyeong-Seok Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Changqing Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Li L, Duan Y. Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators. Polymers (Basel) 2023; 15:3690. [PMID: 37765543 PMCID: PMC10534950 DOI: 10.3390/polym15183690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have gained widespread attention as an energy storage solution. With the global demand for clean and sustainable energy, the social, economic, and environmental significance of LIBs is becoming more widely recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous membrane material, warrants significant research attention. Researchers have thus endeavored to develop innovative systems that enhance separator performance, fortify security measures, and address prevailing limitations. Herein, this review aims to furnish researchers with comprehensive content on battery separator membranes, encompassing performance requirements, functional parameters, manufacturing protocols, scientific progress, and overall performance evaluations. Specifically, it investigates the latest breakthroughs in porous membrane design, fabrication, modification, and optimization that employ various commonly used or emerging polymeric materials. Furthermore, the article offers insights into the future trajectory of polymer-based composite membranes for LIB applications and prospective challenges awaiting scientific exploration. The robust and durable membranes developed have shown superior efficacy across diverse applications. Consequently, these proposed concepts pave the way for a circular economy that curtails waste materials, lowers process costs, and mitigates the environmental footprint.
Collapse
Affiliation(s)
- Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Huang H, Zhou Z, Qian C, Liu S, Chi Z, Xu J, Yue M, Zhang Y. Grafting Polyethyleneimine-Poly(ethylene glycol) Gel onto a Heat-Resistant Polyimide Nanofiber Separator for Improving Lithium-Ion Transporting Ability in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335981 DOI: 10.1021/acsami.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
To improve the lithium-ion transporting ability in lithium-ion batteries, a high-performance polyimide-based lithium-ion battery separator (PI-mod) was prepared by chemically grafting poly(ethylene glycol) (PEG) onto the surface of a heat-resistant polyimide nanofiber matrix with the assistance of amino-rich polyethyleneimine (PEI). The resulted PEI-PEG polymer coating exhibited unique gel-like properties with an electrolyte uptake rate of 168%, an area resistance as low as 2.60 Ω·cm2, and an ionic conductivity up to 2.33 mS·cm-1, which are 3.5, 0.10, and 12.3 times that of the commercial separator Celgard 2320, respectively. Meanwhile, the heat-resistant polyimide skeleton can effectively avoid thermal shrinkage of the modified separator even after 200 °C treatment for 0.5 h, which ensures the safety of the battery working under extreme conditions. The modified PI separator possessed a high electrochemical stability window of 4.5 V. Compared with the batteries from the commercial separator Celgard 2320 and the pure polyimide matrix, the assembled coin cell with the PI-mod separator showed much better rate capabilities and capacity retention due to the high electrolyte affinity of the PEI-PEG polymer coating. The developed strategy of using the electrolyte-swollen polymer to modify the thermal-resistant separator network provides an efficient way for establishing high-power lithium-ion batteries with good safety performance.
Collapse
Affiliation(s)
- Haitao Huang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuxin Zhou
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Chao Qian
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Siwei Liu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenguo Chi
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Xu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Yue
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Yi Zhang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Zhang M, Wang L, Xu H, Song Y, He X. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. NANO-MICRO LETTERS 2023; 15:135. [PMID: 37221393 PMCID: PMC10205965 DOI: 10.1007/s40820-023-01104-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Lithium-ion batteries (LIBs) have helped revolutionize the modern world and are now advancing the alternative energy field. Several technical challenges are associated with LIBs, such as increasing their energy density, improving their safety, and prolonging their lifespan. Pressed by these issues, researchers are striving to find effective solutions and new materials for next-generation LIBs. Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs. Polyimides (PIs), a special functional polymer, possess unparalleled advantages, such as excellent mechanical strength, extremely high thermal stability, and excellent chemical inertness; they are a promising material for LIBs. Herein, we discuss the current applications of PIs in LIBs, including coatings, separators, binders, solid-state polymer electrolytes, and active storage materials, to improve high-voltage performance, safety, cyclability, flexibility, and sustainability. Existing technical challenges are described, and strategies for solving current issues are proposed. Finally, potential directions for implementing PIs in LIBs are outlined.
Collapse
Affiliation(s)
- Mengyun Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
10
|
Zhang G, Yu H, Li D, Yan Y, Wei D, Ye J, Zhao Y, Zeng W, Duan H. Ultrathin Lithiophilic 3D Arrayed Skeleton Enabling Spatial-Selection Deposition for Dendrite-Free Lithium Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300734. [PMID: 36967553 DOI: 10.1002/smll.202300734] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Lithium metal batteries are promising to become a new generation of energy storage batteries. However, the growth of Li dendrites and the volume expansion of the anode are serious constraints to their commercial implementation. Herein, a controllable strategy is proposed to construct an ultrathin 3D hierarchical host of honeycomb copper micromesh loaded with lithiophilic copper oxide nanowires (CMMC). The uniquely designed 3D hierarchical arrayed skeletons demonstrate a surface-preferred and spatial-selective effect to homogenize local current density and relieve the volume expansion, effectively suppressing the dendrite growth. Employing the constructed CMMC current collector in a half-cell, >400 cycles with 99% coulombic efficiency at 0.5 mA cm-2 is performed. The symmetric battery cycles stably for >2000 h, and the full battery delivers a capacity of 166.6 mAh g-1 . This facile and controllable approach provides an effective strategy for constructing high-performance lithium metal batteries.
Collapse
Affiliation(s)
- Guanhua Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| | - Huihuang Yu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Du Li
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yu Yan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Donghai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jinghua Ye
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanli Zhao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Zeng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huigao Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| |
Collapse
|
11
|
Han C, Cao Y, Zhang S, Bai L, Yang M, Fang S, Gong H, Tang D, Pan F, Jiang Z, Sun J. Separator with Nitrogen-Phosphorus Flame-Retardant for LiNi x Co y Mn 1- x - y O 2 Cathode-Based Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207453. [PMID: 36960488 DOI: 10.1002/smll.202207453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
With the pursuit of high-energy-density for lithium-ion batteries (LIBs), the hidden safety problems of batteries have gradually emerged. LiNix Coy Mn1- x - y O2 (NCM) is considered as an ideal cathode material to meet the urgent needs of high-energy-density batteries. However, the oxygen precipitation reaction of NCM cathode at high temperature brings serious safety concerns. In order to promote high-safety lithium-ion batteries, herein, a new type of flame-retardant separator is prepared using flame-retardant (melamine pyrophosphate, MPP) and thermal stable Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). MPP takes the advantage of nitrogen-phosphorus synergistic effect upon the increased internal temperature of LIBs, including the dilution effect of noncombustible gas and the rapidly suppression of undesirable thermal runaway. The developed flame-retardant separators show negligible shrinkage over 200 °C and it takes only 0.54 s to extinguish the flame in the ignition test, which are much superior to commercial polyolefin separators. Moreover, pouch cells are assembled to demonstrate the application potential of PVDF-HFP/MPP separators and further verify the safety performance. It is anticipated that the separator with nitrogen-phosphorus flame-retardant can be extensively applied to various high-energy-density devices owing to simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Chengyu Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shaojie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liyang Bai
- Jiewei Power Co. Ltd. , Tianjin, 300112, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Siyu Fang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haochen Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Di Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Anchoring Porous F-TiO2 Particles by Directed-Assembly on PMIA Separators for Enhancing Safety and Electrochemical Performances of Li-ion Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Lin W, Wang F, Wang H, Li H, Fan Y, Chan D, Chen S, Tang Y, Zhang Y. Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations. CHEMSUSCHEM 2022; 15:e202201464. [PMID: 36254787 DOI: 10.1002/cssc.202201464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries (LIBs) are momentous energy storage devices, which have been rapidly developed due to their high energy density, long lifetime, and low self-discharge rate. However, the frequent occurrence of fire accidents in laptops, electric vehicles, and mobile phones caused by thermal runaway of the inside batteries constantly reminds us of the urgency in pursuing high-safety LIBs with high performance. To this end, this Review surveyed the state-of-the-art developments of high-temperature-resistant separators for highly safe LIBs with excellent electrochemical performance. Firstly, the basic properties of separators (e. g., thickness, porosity, pore size, wettability, mechanical strength, and thermal stability) in constructing commercialized LIBs were introduced. Secondly, the working mechanisms of advanced separators with different melting points acting in the thermal runaway stage were discussed in terms of improving battery safety. Thirdly, rational design strategies for constructing high-temperature-resistant separators for LIBs with high safety were summarized and discussed, including graft modification, blend modification, and multilayer composite modification strategies. Finally, the current obstacles and future research directions in the field of high-temperature-resistant separators were highlighted. These design ideas are expected to be applied to other types of high-temperature-resistant energy storage systems working under extreme conditions.
Collapse
Affiliation(s)
- Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Feng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Heng Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - You Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
14
|
Wang Y, Guo M, Fu H, Wu Z, Zhang Y, Chao G, Chen S, Zhang L, Liu T. Thermotolerant separator of cross-linked polyimide fibers with narrowed pore size for lithium-ion batteries. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Pu C, Lin D, Xu H, Liu F, Gao H, Tian G, Qi S, Wu D. Clarifying the effect of chemical structure on high-temperature resistance of polyimides based on DFT and ReaxFF based molecular dynamic simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Cheon J, Park SH, Kim Y, Yim T. Aluminum oxide and ethylene bis(diphenylphosphine)‐incorporated poly(imide) separators for lithium‐ion batteries. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaemun Cheon
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| | - Sang Heon Park
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Youngkwon Kim
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Taeeun Yim
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| |
Collapse
|
17
|
Palanisamy M, Lin KW, Lo CT, Pol VG. In Situ Thermal Safety Aspect of the Electrospun Polyimide-Al 2O 3 Separator Reveals Less Exothermic Heat Energies Than Polypropylene at the Thermal Runaway Event of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28310-28320. [PMID: 35687749 DOI: 10.1021/acsami.2c07780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyimide-Al2O3 membranes are developed as a direct alternative to current polyolefin separators by the electrospinning technique and their chemical structures confirm the carbonyl group with the presence of asymmetric and symmetric stretching and bending vibrations at 1778, 1720, and 720 cm-1 and stretching vibration at 1373 cm-1 for the imide group. Porous nanofiber architecture morphology is realized with a nanofiber thickness of ∼200 nm and shows an ultrasmooth surface and >1 μm pore size in the architecture, built with the chemical constituents of carbon, nitrogen, aluminum, and oxygen elements. The galvanostatic cycling study of the Li/PI-Al2O3/LiFePO4 lithium cell delivers stable charge-discharge capacities of 144/143 mAh g-1 at 0.2 C and 110/100 mAh g-1 at 1 C for 1-100 cycles. The fabricated MCMB/PI-Al2O3/LiFePO4 lithium-ion full-cell reveals less charge transfer resistance of Rct ∼ 25 Ω and yields stable charge-discharge capacities of 125/119 mAh g-1. The thermogravimetric curve for the PI-Al2O3 separator discloses thermal stability up to 525 °C, and the differential scanning calorimetric curve shows a straight line until 300 °C and depicts high thermal stability than the PP separator. In situ multimode calorimetry analysis of the MCMB/PP/LiFePO4 full-cell showed a pronounced exothermic peak at 225 °C with a higher released heat energy of 211 J g-1 at the thermal runaway event, while the MCMB/PI-Al2O3/LiFePO4 full-cell revealed an almost 8-fold less exothermic released heat energy of 25 J g-1 than the Celgard polypropylene separator, which was because the MCMB anode and LiFePO4 cathode can be mechanically isolated without any additional separator's melting and burning reactions, as a fire-suppressant separator for lithium-ion batteries.
Collapse
Affiliation(s)
- Manikandan Palanisamy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Keng-Wei Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chieh-Tsung Lo
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Vilas G Pol
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Synergistically reinforced poly(ethylene oxide)-based composite electrolyte for high-temperature lithium metal batteries. J Colloid Interface Sci 2022; 622:1029-1036. [PMID: 35567951 DOI: 10.1016/j.jcis.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
Traditional liquid lithium-ion batteries are not applicable for extreme temperatures, due to the shrinkage of separators and volatility of electrolytes. It is necessary to develop advanced electrolytes with desirable characteristics in terms of thermal stability, electrochemical stability and mechanical properties. Solid-state electrolytes, such as polyethylene oxide (PEO), outperform other types and bring the opportunity to realize the high-temperature lithium-ion batteries. However, the softness of PEO at elevated temperatures leads to battery failure. In this work, a three-dimensional fiber-network-reinforced PEO-based composite polymer electrolyte is prepared. The introduced polyimide (PI) framework and trimethyl phosphate (TMP) plasticizer decrease the crystallinity of PEO and increase the ionic conductivity at 30 °C from 8.79 × 10-6 S cm-1 to 4.70 × 10-5 S cm-1. In addition, the PEO bonds tightly with PI fiber network, improving both the mechanical strength and thermal stability of the prepared electrolyte. With the above strategies, the working temperature range of the PEO-based electrolytes is greatly expanded. The LiFePO4/Li cell assembled with the PI-PEO-TMP electrolyte stably performs over 300 cycles at 120 °C. Even at 140 °C, the cell still survives 80 cycles. These excellent performances demonstrate the potential application of the PI-PEO-TMP electrolyte in developing safe and high-temperature lithium batteries.
Collapse
|
19
|
Polyimide-Based Materials for Lithium-Ion Battery Separator Applications: A Bibliometric Study. INT J POLYM SCI 2022. [DOI: 10.1155/2022/6740710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyimide (PI) has excellent thermal stability, high porosity, and better high-temperature resistance. It has the potential to become a more high-end separator material, which has attracted the attention of the majority of researchers. This review is aimed at identifying the research progress and development trends of the PI-based material for separator application. We searched the published papers (2012–2021) from the WOS core collection database for analysis and analyzed their research progress and development trend based on CiteSpace text mining and visualization software. The analysis shows that the PI-based composite separator material is a research hotspot in the future and the combination of nanofiber and cellulose materials with PI is also an important research direction in the future.
Collapse
|
20
|
Crosslinked polyimide asymmetric membranes as thermally-stable separators with self-protective layers and inhibition of lithium dendrite growth for lithium metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
A Flexible, Fireproof, Composite Polymer Electrolyte Reinforced by Electrospun Polyimide for Room-Temperature Solid-State Batteries. Polymers (Basel) 2021; 13:polym13213622. [PMID: 34771178 PMCID: PMC8588480 DOI: 10.3390/polym13213622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Solid-state batteries (SSBs) have attracted considerable attention for high-energy-density and high-safety energy storage devices. Many efforts have focused on the thin solid-state-electrolyte (SSE) films with high room-temperature ionic conductivity, flexibility, and mechanical strength. Here, we report a composite polymer electrolyte (CPE) reinforced by electrospun PI nanofiber film, combining with succinonitrile-based solid composite electrolyte. In situ photo-polymerization method is used for the preparation of the CPE. This CPE, with a thickness around 32.5 μm, shows a high ionic conductivity of 2.64 × 10−4 S cm−1 at room temperature. It is also fireproof and mechanically strong, showing great promise for an SSB device with high energy density and high safety.
Collapse
|
22
|
Wang Q, Yuan B, Lu Y, Shen F, Zhao B, Han X. Robust and high thermal-stable composite polymer electrolyte reinforced by PI nanofiber network. NANOTECHNOLOGY 2021; 32:495401. [PMID: 34428756 DOI: 10.1088/1361-6528/ac2093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
To address the flammable and chemical unstable problems of liquid electrolyte, the solid electrolyte is a promising candidate to replace liquid electrolyte for solid-state batteries. Herein, a composite polymer electrolyte (CPE) of 3D polyimide (PI)-nanofiber membrane-incorporated polyethylene oxide (PEO)/lithium bis (triflu-romethanesulphonyl) imid (LiTFSI) is reported. Three advantages of the PI nanofiber network in the CPE include providing a continuous, rapid transport channel of lithium ions to improve the Li-ion conductivity, improving the mechanical properties and stability, and effectively inhibiting the dendrite growth of Li metal. The PI/PEO/LiTFSI CPE delivers an ionic conductivity of 4.2 × 10-4S cm-1at 60 °C, a wider electrochemical window to 5.4 V, and an excellent thermal stability, which result in the excellent electrochemical performance of LiFePO4full cells assembled with PI/PEO/LiTFSI CPE.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Boheng Yuan
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Yafei Lu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Fei Shen
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Bin Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
| | - Xiaogang Han
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China
- Key Laboratory of Smart Grid of Shanxi Province, Xi'an, Shanxi 710049, People's Republic of China
| |
Collapse
|
23
|
Shi Y, Yuan B, He Y, Duan C, Yan S, Lin Q, Yu H, Chen Z, Han E. Preparation of porous fluorinated polyimide separator for lithium-ion batteries by non-solvent induced phase separation process. HIGH PERFORM POLYM 2021. [DOI: 10.1177/0954008320988156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel porous fluorinated polyimide (FPI) separators containing trifluoromethyl group (–CF3) were prepared by the non-solvent induced phase separation (NIPS) strategy. The prepared FPI separator with 60% molar content (fluorinated dianhydride: non-fluorinated dianhydride: diamine = 60: 40: 100) of fluorinated groups (FPI-60%) could stably exist in the electrolyte as a LIBs separator. The resultant FPI-60% separator possesses high thermal stability with the Tg of 289.4°C and exhibits no shrinkage even at 200°C. The morphologies of the FPI-60% separators were adjusted by introducing small molecular non-solvent additives-ethanol, and the FPI-60% separators present the spongy-like and interconnected structure with different porosity as the amount of ethanol changed from 1 wt% to 10 wt%. The FPI-60% separators display excellent electrolyte uptake with 170%–200% and the ionic conductive could reach 1.17 mS/cm which is four times approximately than that of the PP separator. The lithium-ion batteries (LIBs) using FPI-60% separators with 10 wt% ethanol added show better rate capacities (102.8 mAh/g, 70.8 mAh/g of PI-10 and PP separator at 2 C, respectively) and the capacity retention rate is 93.2% after 50 cycles. The results prove that the porous FPI separator is a promising candidate for high-performance LIBs.
Collapse
Affiliation(s)
- Yake Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Biao Yuan
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Yanzhen He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Shuo Yan
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Quanfan Lin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Haibin Yu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process, CenerTech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin, China
| | - Enshan Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| |
Collapse
|