1
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
2
|
Liu KK, Huang H, Wang JL, Wan SS, Zhou X, Bai HR, Ma W, Zhang ZG, Li Y. Modulating Crystal Packing, Film Morphology, and Photovoltaic Performance of Selenophene-Containing Acceptors through a Combination of Skeleton Isomeric and Regioisomeric Strategies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50163-50175. [PMID: 34664507 DOI: 10.1021/acsami.1c12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report a series of acceptor-donor-acceptor (A-D-A) architecture isomeric acceptors (SeCT-IC, CSeT-IC, and CTSe-IC), which have an identical electron-deficient terminal A-group and three different central D-cores with the selenophene at the innermost, relatively outer, and outermost positions of the central core, respectively. From CSeT-IC to the atom regioisomer of CTSe-IC and to the conjugated skeleton isomer of SeCT-IC, the optical band gap of neat films continuously reduced and highest occupied molecular orbitals (HOMO) gradually upshifted with changing the selenophene from relatively outer position to the outermost position and to the innermost position of the central core. More importantly, the single-crystal structure and the GIWAXS measurements revealed that CTSe-IC presents the closest π-π stacking distance, the largest CCL, and the best molecular order and crystallinity, which led to the highest electron mobility in neat films. Furthermore, the J71:CTSe-IC blend film presents a more ordered film morphology with more proper phase separation domain size, more dominant face-on orientation, and relatively higher and more balanced electron-hole mobilities in comparison with that of J71:SeCT-IC and J71:CSeT-IC. Consequently, the J71:CTSe-IC-based organic solar cell gave a superior power conversion efficiency (PCE) of 11.59%, which was obviously higher than those for J71:SeCT-IC (10.89%) and J71:CSeT-IC (8.52%). Our results demonstrate that the acceptor with selenophene in the outermost position led to significantly enhance the PCE. More importantly, rational modulation of the central fused core in combination with the conjugated skeleton isomeric method and the atom regioisomeric method provides an effective way to understand the structure-crystallinity-photovoltaic property relationship of selenophene-based regioisomers.
Collapse
Affiliation(s)
- Kai-Kai Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - He Huang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Sheng Wan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Rui Bai
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Guo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Zhao J, Xu X, Yu L, Li R, Li Y, Peng Q. Highly Efficient Non-Fused-Ring Electron Acceptors Enabled by the Conformational Lock and Structural Isomerization Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25214-25223. [PMID: 34014088 DOI: 10.1021/acsami.1c06299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two novel nonfused-ring electron acceptors (N-FREAs) namely DTP-out-F and DTP-in-F, containing 2,5-difluorophenylene central core flanked with DTP blocks and end-capped with IC-2F terminals were designed and synthesized. The C-H···F noncovalent interactions between F atom of 2,5-difluorophenylene and H-3 and H-6 from DTP moiety (for DTP-in-F and DTP-out-F, respectively) locked the molecular conformation within a planar geometry. Benefiting from asymmetric nature of DTP block, the two different connection positions (2- or 7-position) of DTP to 2,5-difluorophenylene afforded the structural isomers of DTP-in-F and DTP-out-F, which affected the overall properties of these N-FREAs, especially the molecular packing behaviors. The more preferred J-aggregation and face-on packing of DTP-in-F shifted the absorption to slightly longer wavelength and provided a polymer-like extended crystal transport channels for improving the charge transport. Therefore, the power conversion efficiency (PCE) was significantly improved from 3.97% of DTP-out-F-based devices to 10.66% of DTP-in-F-based devices. These results reveal the great potential of isomerization strategy to develop high-performance N-FREAs.
Collapse
Affiliation(s)
- Jun Zhao
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liyang Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, New York 11973, United States
| | - Ying Li
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qiang Peng
- College of Chemistry and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Guo Q, Liu Y, Liu M, Zhang H, Qian X, Yang J, Wang J, Xue W, Zhao Q, Xu X, Ma W, Tang Z, Li Y, Bo Z. Enhancing the Performance of Organic Solar Cells by Prolonging the Lifetime of Photogenerated Excitons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003164. [PMID: 33164236 DOI: 10.1002/adma.202003164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Exciton lifetime (τ) is crucial for the migration of excitons to donor/acceptor interfaces for subsequent charge separation in organic solar cells (OSCs); however, obvious prolongation of τ has rarely been achieved. Here, by introducing a solid additive 9-fluorenone-1-carboxylic acid (FCA) into the active layer, which comprises a nonfullerene acceptor, 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M), τ is substantially prolonged from 491 to 928 ps, together with obvious increases in fluorescence intensity and quantum yield. Time-resolved transient infrared spectra indicate the presence of an intermolecular vibrational coupling between the electronic excited state of IT-M and the electronic ground state of FCA, which is first observed here and which can suppress the internal conversion process. IT-M-based OSCs display an improved short-circuit current and fill factor after the addition of FCA. Thus, the power conversion efficiency is increased, particularly for devices with a large donor/acceptor ratio of 1:4, whose efficiency is increased by 56%. This study describes a novel method, which is also applicable to other nonfullerene acceptors, for further improving the performance of OSCs without affecting their morphology and light absorption properties.
Collapse
Affiliation(s)
- Qingxin Guo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yahui Liu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ming Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiquan Qian
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinjin Yang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jing Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenyue Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhao
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xinjun Xu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunliang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|