1
|
Hu T, Zhang D, He N, Wei S, Kang X, Zhang W, Cai Y, Ye Y, Li P, Liang C. Laser Ultrafast Confined Alloying of Sub-5 nm RuM (M = Cu, Rh, and Pd) Particles on Carbon Nanotubes for Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415065. [PMID: 39981759 PMCID: PMC12097106 DOI: 10.1002/advs.202415065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Thermodynamic immiscibility is a challenge for intermetallic alloying of sub-5 nm Ru-based alloys, which are excellent electrochemical catalysts for water splitting. In this study, nanosecond laser ultrafast confined alloying (LUCA) is proposed to break the immiscible-to-miscible transition limit in the synthesis of carbon nanotubes (CNTs) supported sub-5 nm bimetallic RuM (M = Cu, Rh, and Pd) alloy nanoparticles (NPs). The alloying of non-noble metal Cu with varying atomic ratios of RuCu alloys is appealing owing to the low price of Cu and cost-effective synthesis for large-scale practical applications. Benefiting from the synergistic alloying effect and resultant H/OH binding energy alteration, the Ru95Cu5/CNTs catalysts display excellent electrocatalytic alkaline hydrogen evolution reaction (HER) activity with an overpotential of 17 mV and Tafel slope of 28.4 mV dec-1 at 10 mA cm-2, and high robustness over long-term 5000 cyclic voltammetry cycles. The performance is much better than LUCA-synthesized CNTs-supported Ru86Rh14, Ru89Pd11, Ru, and Cu NPs catalysts, commercial benchmark 20% Pt/C, and other mainstream Ru-based catalysts including wet chemistry-synthesized RuRh particles (overpotential of 25 mV, Tafel slope of 47.5 mVdec-1) and RuCu/CNTs (overpotential of 39 mV) synthesized using the flash Joule heating method, indicating the great potential of LUCA for screening new classes of HER catalysts.
Collapse
Affiliation(s)
- Taiping Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Dongshi Zhang
- Shanghai Key Laboratory of Materials Laser Processing and ModificationSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Wei Zhang
- Institute for Energy ResearchJiangsu UniversityZhenjiang212013P. R. China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
- Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
- Lu'an BranchAnhui Institute of Innovation for Industrial TechnologyLu'an237100P. R. China
| |
Collapse
|
2
|
Xu LH, Wang Q, Hu L, Shen D, Chu S, Zhang H. Engineering Asymmetric Bimetallic CoM (M = Ni, Fe, Mn, Cu) Nanoparticles Encapsulated in Freestanding Wood-Derived Carbon Electrodes for Enhanced ORR Kinetics in Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410290. [PMID: 39659083 DOI: 10.1002/smll.202410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The electrochemical reduction of oxygen is pivotal for advancing emerging energy technologies. Precise control over morphology and electronic structure is essential for enhancing catalytic activity and stability in the oxygen reduction reaction (ORR). In this study, a freestanding carbon electrode is developed by in-situ growth of carbon nanotube (CNT)-encapsulated bimetallic CoM (M = Ni, Fe, Mn, Cu) nanoparticles (NPs) within a hierarchical carbonized wood matrix (CoM@NWCC). The hierarchically porous architecture of the electrode promotes efficient mass transfer during the ORR. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analyses revealed that incorporating metals such as Ni, Fe, Mn, and Cu modulates the electronic structure of Co, specifically adjusting the distance between the d-band center (Ed) and the Fermi level (EF), thus optimizing ORR kinetics. Among these, CoNi@NWCC, with its asymmetric electronic configuration, achieves an optimal balance between OH* and OOH* adsorption, significantly enhancing catalytic performance. This study demonstrates the potential of band structure engineering to precisely tailor catalyst properties, offering a cost-effective and high-performance solution for zinc-air batteries (ZABs) suitable for large-scale deployment.
Collapse
Affiliation(s)
- Lian-Hua Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qichang Wang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liangdong Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
4
|
Hu T, Liu J, Yuan H, Zhang L, Wang Y. Interface Charge Distribution Engineering of Pd-CeO 2 /C for Efficient Carbohydrazide Oxidation Reaction. CHEMSUSCHEM 2024; 17:e202301078. [PMID: 37723645 DOI: 10.1002/cssc.202301078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Carbohydrazide electrooxidation reaction (COR) is a potential alternative to oxygen evolution reaction in water splitting process. However, the sluggish kinetics process impels to develop efficient catalysts with the aim of the widespread use of such catalytic system. Since COR concerns the adsorption/desorption of reactive species on catalysts, the electronic structure of electrocatalyst can affect the catalytic activity. Interface charge distribution engineering can be considered to be an efficient strategy for improving catalytic performance, which facilitates the cleavage of chemical bond. Herein, highly dispersed Pd nanoparticles on CeO2 /C catalyst are prepared and the COR catalytic performance is investigated. The self-driven charge transfer between Pd and CeO2 can form the local nucleophilic and electrophilic region, promoting to the adsorption of electron-withdrawing and electron-donating group in carbohydrazide molecule, which facilitates the cleavage of C-N bond and the carbohydrazide oxidation. Due to the local charge distribution, the Pd-CeO2 /C exhibits superior COR catalytic activity with a potential of 0.27 V to attain 10 mA cm-2 . When this catalyst is used for energy-efficient electrolytic hydrogen production, the carbohydrazide electrolysis configuration exhibits a low cell voltage (0.6 V at 10 mA cm-2 ). This interface charge distribution engineering can provide a novel strategy for improving COR catalytic activity.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Jiali Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Hongjie Yuan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Limin Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| | - Ying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, 339 Taiyu Road, TaiYuan, 030032, China
| |
Collapse
|
5
|
Cui Z, Jiao W, Huang Z, Chen G, Zhang B, Han Y, Huang W. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301465. [PMID: 37186069 DOI: 10.1002/smll.202301465] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Hydrogen energy is regarded as the ultimate energy source for future human society, and the preparation of hydrogen from water electrolysis is recognized as the most ideal way. One of the key factors to achieve large-scale hydrogen production by water splitting is the availability of highly active and stable electrocatalysts. Although non-precious metal electrocatalysts have made great strides in recent years, the best hydrogen evolution reaction (HER) electrocatalysts are still based on noble metals. Therefore, it is particularly important to improve the overall activity of the electrocatalysts while reducing the noble metals load. Alloying strategies can shoulder the burden of optimizing electrocatalysts cost and improving electrocatalysts performance. With this in mind, recent work on the application of noble metal-based alloy electrocatalysts in the field of hydrogen production from water electrolysis is summarized. In this review, first, the mechanism of HER is described; then, the current development of synthesis methods for alloy electrocatalysts is presented; finally, an example analysis of practical application studies on alloy electrocatalysts in hydrogen production is presented. In addition, at the end of this review, the prospects, opportunities, and challenges facing noble metal-based alloy electrocatalysts are tried to discuss.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - ZeYi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Biao Zhang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South 9th Avenue, Gao Xin, Shenzhen, Guangdong, 518057, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
6
|
Fu S, Chu K, Guo M, Wu Z, Wang Y, Yang J, Lai F, Liu T. Ultrasonic-assisted hydrothermal synthesis of RhCu alloy nanospheres for electrocatalytic urea production. Chem Commun (Camb) 2023; 59:4344-4347. [PMID: 36946147 DOI: 10.1039/d3cc00102d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Herein, the electronic structure of RhCu nanospheres was optimized and the size of the nanoparticles was reduced by an ultrasonic-assisted hydrothermal method. The performance of electrocatalytic urea synthesis was improved with an enhanced faradaic efficiency and urea yield rate of 34.82 ± 2.47% and 26.81 ± 0.62 mmol g-1 h-1, respectively. This work opens a novel insight into synthesizing an electrocatalyst by ultrasonic treatment for urea production.
Collapse
Affiliation(s)
- Siyu Fu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| | - Kaibin Chu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Minhao Guo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| | - Zhenzhong Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| | - Jieru Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
7
|
2D RhTe Monolayer: A highly efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:971-980. [DOI: 10.1016/j.jcis.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
|
8
|
Zhou C, Zhao S, Meng H, Han Y, Jiang Q, Wang B, Shi X, Zhang W, Zhang L, Zhang R. RuCoO x Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries and Water Splitting. NANO LETTERS 2021; 21:9633-9641. [PMID: 34761938 DOI: 10.1021/acs.nanolett.1c03407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing high-performance trifunctional electrocatalysts for ORR/OER/HER with outstanding activity and stability for each reaction is quite significant yet challenging for renewable energy technologies. Herein, a highly efficient and durable trifunctional electrocatalyst RuCoOx is prepared by a unique one-pot glucose-blowing approach. Remarkably, RuCoOx catalyst exhibits a small potential difference (ΔE) of 0.65 V and low HER overpotential of 37 mV (10 mA cm-2), as well as a negligible decay of overpotential after 200 000/10 000/10 000 CV cycles for ORR/OER/HER, all of which show overwhelming superiorities among the advanced trifunctional electrocatalysts. When used in liquid rechargeable Zn-air batteries and water splitting electrolyzer, RuCoOx exhibits high efficiency and outstanding durability even at quite large current density. Such excellent performance can be attributed to the rational combination of targeted ORR/OER/HER active sites into one electrocatalyst based on the double-phase coupling strategy, which induces sufficient electronic structure modulation and synergistic effect for enhanced trifunctional properties.
Collapse
Affiliation(s)
- Chenhui Zhou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haibing Meng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaofei Shi
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Qiao B, Yang T, Shi S, Jia N, Chen Y, Chen X, An Z, Chen P. Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006534. [PMID: 33590702 DOI: 10.1002/smll.202006534] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The efficient electrocatalysts toward the ethylene glycol oxidation reaction (EGOR) are highly desirable for direct ethylene glycol fuel cells because of the sluggish kinetics of anodic EGOR. Herein, porous RhCu nanoboxes are successfully prepared through facile galvanic replacement reaction and succedent sodium borohydride reduction strategy. Benefiting from hierarchical pore structure, RhCu nanoboxes display excellent electrocatalytic performance toward the EGOR in alkaline medium with a mass activity of 775.1 A gRh -1 , which is 2.8 times as large as that of commercial Rh nanocrystals. Moreover, the long-term stability of RhCu nanoboxes is better than that of commercial Rh nanocrystals. Furthermore, the theoretical calculations demonstrate that RhCu nanoboxes possess lower adsorption energy of CO and lower reaction barrier (0.27 eV) for the COads oxidation with aid of the adsorbed OHads species, resulting in the outstanding electrocatalytic performance toward the EGOR. This work provides a meaningful reference for developing highly effective electrocatalysts toward the EGOR.
Collapse
Affiliation(s)
- Bin Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ting Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shufeng Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Nan Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
11
|
Hong W, Su L, Wang J, Jiang M, Ma Y, Yang J. Boosting the electrocatalysis of nitrate to nitrogen with iron nanoparticles embedded in carbon microspheres. Chem Commun (Camb) 2020; 56:14685-14688. [PMID: 33165460 DOI: 10.1039/d0cc05669c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human activities have increased the global nitrogen cycle imbalance, leading to serious water pollution. Inexpensive iron nanoparticles with large surface areas are in high demand in the field of environment restoration. Here, we report a hydrothermal method for the preparation of iron-carbon composites (Fe@C) with iron nanoparticles embedded in carbon microspheres. The resulting Fe@C catalyst shows a high nitrate conversion to nitrogen of 75.9% and a nitrogen selectivity of 98%. This study not only provides a simple strategy for the preparation of iron-carbon composites, but also boosts the practical application of Fe@C catalysts for water treatment.
Collapse
Affiliation(s)
- Wen Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | |
Collapse
|