1
|
Liu M, Li H, Ma H, Yao C, Zhao F, Han S, Zhang Z, Wang N, Yin X. Triarylboron-Based Dual Thermally Activated Delayed Fluorescence Emitter for Single Molecule White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21509-21520. [PMID: 40136050 DOI: 10.1021/acsami.4c20583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Single-molecule emitters with dual thermally activated delayed fluorescence (TADF) characteristics are very promising for application in organic light-emitting diodes (OLEDs). Rarely reported, organic dual-TADF materials, especially mechanochromic materials, are in demand. We present two donor-acceptor emitters, Mes*BA-Ac and FXylBA-Ac, which exhibit dual-TADF in the solid state due to the separation of HOMO and LUMO and strong intermolecular interactions. Their phase transition from amorphous to crystalline under stimuli leads to switchable TADF emissions. By blending Mes*BA-Ac with poly(methyl methacrylate), we achieve pure white light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.32). Furthermore, single-molecule white organic light-emitting diodes (SM-WOLEDs) using Mes*BA-Ac have been fabricated, reaching a maximum external quantum efficiency (EQEmax) of 1.65% with CIE coordinates of (0.30, 0.31). More importantly, the dual-TADF emission mechanism enables the devices to maintain stable white-light emission across a relatively wide voltage range, providing valuable insights for the advancement of pure organic SM-WOLEDs.
Collapse
Affiliation(s)
- Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hongbo Li
- Institute of Organic Luminescent Materials (IOLM), College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hongwei Ma
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Chunxia Yao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Shuai Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Ziqian Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
2
|
Ji MJ, Zhao WL, Li M, Chen CF. Circularly polarized luminescence with high dissymmetry factors for achiral organic molecules in solutions. Nat Commun 2025; 16:2940. [PMID: 40133332 PMCID: PMC11937319 DOI: 10.1038/s41467-025-58355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Circularly polarized luminescence (CPL) in solution offers several advantages. However, it remains challenging for organic molecules to achieve circularly polarized luminescence with high dissymmetry factor (glum) in solution. Herein, a general strategy is developed by placing chiral nematic liquid crystals (N*-LCs) behind the solution of achiral organic molecules. The selective reflection-transmission mechanism of solution-N*-LC composite system enables the generation of full-color and white circularly polarized light with |glum| even reaching 2.0. This strategy demonstrates versatility, being applicable to both aqueous and organic solutions, and effectively achieving the circularly polarized luminescence of multiple molecules with high glum values. Additionally, CPL switching and logic gate applications are successfully realized by leveraging the selective reflection-transmission mechanism of N*-LCs and the reversible acid-base responsiveness of the solution systems. This work provides a general and robust strategy for achiral organic molecules to achieve circularly polarized luminescence with high |glum| values in solutions.
Collapse
Affiliation(s)
- Ming-Jun Ji
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Ranjan Panda S, Kavyashree P, Sahoo D, Lal Koner A. Drug-Assisted White Light Generation Via Self-Assembly. Chem Asian J 2025; 20:e202401324. [PMID: 39865356 DOI: 10.1002/asia.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
White-light (WL) generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on WL generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system. A detailed spectroscopic investigation allows us to understand the premicellar aggregation process of different types of surfactants with varying charges using the SC dye. Encapsulation of SC and NHM emitters inside the micellar system offers an improved fluorescent behavior, resulting in WL emission due to complementary wavelength overlap. The generated WL is highly photostable and thermally reversible in the self-assembled system. This investigation highlights the significance of the co-assembly of SC dye and NHM drug for the generation of a highly stable WL.
Collapse
Affiliation(s)
- Soumya Ranjan Panda
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Bhopal, Madhya Pradesh, India
| | - Kavyashree P
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Bhopal, Madhya Pradesh, India
| | - Dhananjaya Sahoo
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Bhopal, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
5
|
Zhao P, Guo WC, Li M, Lu HY, Chen CF. Single-Molecule White Circularly Polarized Photoluminescence and Electroluminescence from Dual-Emission Enantiomers. Angew Chem Int Ed Engl 2024; 63:e202409020. [PMID: 38899789 DOI: 10.1002/anie.202409020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The strategy of integrating conformational isomerization donors and chiral acceptors in a single molecule was proposed to construct white circularly polarized luminescence (WCPL) materials in this work. Consequently, a pair of dual-emission enantiomers, namely (R/S)-DO-PTZ, were designed and synthesized, which displayed white emission with blue and yellow dual-emission bands in solution and solid films with Commission Internationale de l'Eclairage (CIE) coordinates of (0.30, 0.33) and (0.33, 0.35), respectively. Meanwhile, (R/S)-DO-PTZ exhibited a high PLQY of up to 67 % in doped films and clear mirror-image WCPL signals with a |glum| value of 3.0×10-3. Moreover, white circularly polarized electroluminescence (WCPEL) based on organic light-emitting diodes (OLEDs) with (R/S)-DO-PTZ as emitters were also achieved with CIE coordinates of (0.32, 0.37) and EQEmax of 4.7 %, representing the state-of-the-art level of white OLEDs based on single-molecule purely organic emitters. By optimizing the device structure, warm WCPEL devices were further obtained with a |gEL| value of 2.8×10-3, CIE coordinates of (0.37, 0.48) and EQEmax of up to 15.6 %. To our knowledge, this is the first report of CP-WOLEDs based on single-molecule purely organic emitters.
Collapse
Affiliation(s)
- Pei Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of, Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Huang W, Zhu Y, Xie X, Tang G, Zhou K, Song L, He Z. Utilizing weakly donor-acceptor ternary π-conjugated architecture to achieve single-component white luminescence and stimulus-responsive room-temperature phosphorescence. Chem Sci 2024; 15:12316-12325. [PMID: 39118604 PMCID: PMC11304527 DOI: 10.1039/d4sc02525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Purely organic room-temperature phosphorescence (RTP) has garnered substantial attention for its delayed emission, environmental sensitivity, and potential diverse applications. However, the quest for high-performance RTP materials has always been a challenge. In this study, we introduce novel weakly donor-acceptor (D-A) ternary π-conjugated architecture to construct an efficient RTP system. The strategy utilizes synergistic effects of the analogous El-Sayed rule, halogen-free heavy-atom effect, reduction of the singlet-triplet energy gap, and manipulation of flexible molecular conformation. A remarkable enhancement in the phosphorescence-to-fluorescence ratio was achieved, elevating from 0.4 in carbazole to 35.2 in DBTDBTCZ. Furthermore, the RTP system demonstrates single-component white luminescence, yielding warm and cool white colors. Intriguingly, we unveil the novel position-dependent heavy-atom effects, discerningly promoting intersystem crossing or phosphorescence decay. Benefiting from efficient RTP, multifunctional applications of real-time humidity monitoring, oxygen sensing, anti-counterfeiting labeling, and white lighting are demonstrated.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| | - Xinwei Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| | - Guanqun Tang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic University Shenzhen Guangdong 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen Shenzhen Guangdong 518055 China
| |
Collapse
|
7
|
Zhang J, Sun T, Wang K, Hu R, Zhou C, Ge H, Li B. Rh(iii)-catalyzed building up of used heterocyclic cations: facile access to white-light-emitting materials. Chem Sci 2024; 15:12270-12276. [PMID: 39118641 PMCID: PMC11304525 DOI: 10.1039/d4sc02188f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
The first example of rhodium-catalyzed nondirected C-H activation/annulation reactions for the construction of fused heterocyclic cations is reported herein with excellent regioselectivity. Deuterium-labeling experiments indicated that the C(sp3)-H bond cleavage of the N-methyl group might be the rate-limiting step during the reaction process. This protocol provides an opportunity to rapidly access highly π-conjugated fused heterocyclic cations, which opens up a new avenue for efficient screening of single-molecular white-light-emitting materials, pure red-light-emitting materials, and π-conjugated radical materials. Importantly, novel white-light-emitting materials exhibited distinct anti-Kasha dual-emission and could rapidly be fabricated into robust organic and low-cost white light-emitting diodes.
Collapse
Affiliation(s)
- Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Tao Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Chunlin Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061 USA
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
8
|
Yu SC, Li X, Cheng L, Liu L. Constrution of Quinazoline-Linked Covalent Organic Frameworks via a Multicomponent Reaction for Photocatalysis. Chemistry 2024; 30:e202400668. [PMID: 38822692 DOI: 10.1002/chem.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Quinazoline (Qz)-linked covalent organic frameworks (COFs) have been constructed via a three-component reaction of ortho-acylanilines, benzaldehydes and NH4OAc. The structure of Qz-COFs has been confirmed by solid-state nuclear magnetic resonance spectroscopy, Fourier transform infrared and powder X-ray diffraction patterns. The Qz-COFs possess high chemical stability, showing good endurance to strong acid, strong base, oxidant, reductant and other conditions. Particularly, Qz-COF-3 can catalyze the aerobic photooxidation of toluene and other compounds containing C(sp3)-H bonds.
Collapse
Affiliation(s)
- Song-Chen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohu Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
9
|
Līpiņš DD, Jeminejs A, Ušacka U, Mishnev A, Turks M, Novosjolova I. Regioselective quinazoline C2 modifications through the azide-tetrazole tautomeric equilibrium. Beilstein J Org Chem 2024; 20:675-683. [PMID: 38590535 PMCID: PMC10999978 DOI: 10.3762/bjoc.20.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
2-Chloro-4-sulfonylquinazolines undergo functional group swap when treated with an azide nucleophile: 1) the azide replaces the sulfonyl group at the C4 position; 2) the intrinsic azide-tetrazole tautomeric equilibrium directs the nucleofugal sulfinate from the first step to replace chloride at the C2 position. This transformation is effective with quinazolines bearing electron-rich substituents. Therefore, the title transformations are demonstrated on the 6,7-dimethoxyquinazoline core, which is present in pharmaceutically active substances. The methodology application is showcased by transforming the obtained 4-azido-6,7-dimethoxy-2-sulfonylquinazolines into the α1-adrenoceptor blockers terazosin and prazosin by further C2-selective SNAr reaction and azide reduction.
Collapse
Affiliation(s)
- Dāgs Dāvis Līpiņš
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Andris Jeminejs
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Una Ušacka
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
- Ķekava Secondary School, Gaismas Str. 9, Ķekava, Ķekava Parish, Ķekava Municipality, LV-2123, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Māris Turks
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Irina Novosjolova
- Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| |
Collapse
|
10
|
Behera KC, Ravikanth M. A white light emitting single halochromic hydrazine bridged bis(3-pyrrolyl BODIPY) fluorophore. Phys Chem Chem Phys 2023; 25:32584-32593. [PMID: 37999923 DOI: 10.1039/d3cp04234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In search of white light emitting fluorophores, a hydrazine bridged Schiff base compound, bis(3-pyrrolyl BODIPY), was synthesized by condensing readily available α-formyl 3-pyrrolyl BODIPY with hydrazine hydrate in CH3OH under reflux for 5 h followed by recrystallization. Bis(3-pyrrolyl BODIPY) was thoroughly characterized by HR-MS, 1D and 2D NMR, and X-ray crystallography. The X-ray structure revealed that the 3-pyrrolyl BODIPY units in the dyad were arranged trans to each other with respect to the hydrazine moiety. Bis(3-pyrrolyl BODIPY) showed absorption bands in the region of 390-705 nm and exhibited multiple fluorescence bands in the region of 395-720 nm at different excitation wavelengths. The protonated derivative of bis(3-pyrrolyl BODIPY) generated by the addition of TFA to its CH2Cl2 solution showed significant changes in the optical properties and generated white fluorescence under UV light with specific emission bands observed in blue, green, and red regions, indicating that bis(3-pyrrolyl)BODIPY is a single white light emitting halochromic fluorophore under acidic conditions. DFT and TD-DFT studies justify the structural and electronic properties of the protonated derivative of bis(3-pyrrolyl BODIPY) exhibiting white light emission.
Collapse
Affiliation(s)
- Kanhu Charan Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Debnath P, Ahmed R, Manna AK. Molecular-Scale Design of Azulene-Based Triplet Photosensitizers: Insights from Time-Dependent Optimally Tuned Range-Separated Hybrid. J Phys Chem B 2023; 127:10016-10024. [PMID: 37950697 DOI: 10.1021/acs.jpcb.3c05688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Metal-free triplet photosensitizers are ubiquitous in photocatalysis, photodynamic therapy, photovoltaics, and so forth. Their photosensitization efficiency strongly depends on the ability of the low-lying excited spin-triplet to be populated through intersystem crossing. Small singlet-triplet gaps and considerable spin-orbit coupling between the excited spin-singlet and spin-triplet facilitate efficient intersystem crossing. Azulene (Az), a classic example of Anti-Kasha's blue emitter with considerable fluorescence quantum yield, holds great promise because of its chemical stability, rich electronic properties, and high structural rigidity. Here, we provide computationally modeled Az-derived photosensitizers, namely, Az-CHO and Az-CHS, implementing polarization consistent time-dependent optimally tuned range-separated hybrid. Calculations reveal energetic reordering of low-lying ππ* and nπ* singlet states between Az-CHO and Az-CHS and, thereby, rendering the latter to a nonfluorescent one. Importantly, a small singlet-triplet gap and large spin-orbit coupling for Az-CHX with X = O and S produce remarkably high intersystem crossing rates. Furthermore, strong nonadiabatic coupling between the S1(nπ*) and S2(ππ*) in Az-CHS due to substantially smaller energy gap causes enhanced S1 population via fast internal conversion. These research findings provide new insights into the development of functional Az and or related heavy-atom-free small organic molecule-based triplet photosensitizers.
Collapse
Affiliation(s)
- Prantic Debnath
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P517619 ,India
| | - Raka Ahmed
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P517619 ,India
| | - Arun K Manna
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, A.P517619 ,India
| |
Collapse
|
12
|
Cheng Y, Wu M, Du Z, Chen Y, Zhao L, Zhu Z, Yu X, Yang Y, Zeng C. Tetra-Nuclear Cluster-Based Lanthanide Metal-Organic Frameworks as White Phosphor, Information Encryption, Self-Calibrating Thermometers, and Fe 2+ Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24570-24582. [PMID: 37167419 DOI: 10.1021/acsami.3c02644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The application of one kind of metal-organic framework (MOF) material used in multiple fields is one of the most interesting research topics. In this work, four new tetra-nuclear cluster-based lanthanide metal-organic frameworks (LnMOFs) [Ln2(BTDB)3(DMA)(phen)]n (Ln = Tb TbMOF, Eu EuMOF, Gd GdMOF, Tb1.830Eu0.170 Tb,EuMOF, 3,5-bis(trifluoromethyl)-4',4″-dicarboxytriphenylamine = H2BTDB, 1,10-phenanthroline = phen) are obtained based on the ligand of H2BTDB that is synthesized in our laboratory, and the precise single-crystal structure of H2BTDB is obtained for the first time. The white phosphor was obtained by facilely hybridizing two components of the orange-yellow emission phosphor of Tb,EuMOF and the blue luminescence material of triphenylamine according to the trichromatic theory. At the same time, TbMOF, EuMOF, Tb,EuMOF, and the white phosphor can be used for information encryption, demonstrating their potential application in the field of anti-counterfeiting. Tb,EuMOF is also a multi-mode and self-calibrating thermometer within a broad temperature range of 110-300 K. Further studies show that EuMOF is a rapid response sensor for Fe2+, with a very low limit of detection of 2.0 nM, which is much lower than the national standards for Fe2+ (GB 5749-2005, 5.357 μM). It can achieve strong anti-interference detection of Fe2+ in actual samples of tap water and lake water. In addition, EuMOF can also be made into an easy-to-use sensing device of test paper for real-time and visual sensing of Fe2+.
Collapse
Affiliation(s)
- Yuanhong Cheng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Mingjian Wu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Ziyi Du
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yun Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Lingyi Zhao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Zhiwei Zhu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
13
|
Wu H, Shi YZ, Wang K, Yu J, Zhang XH. Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Phys Chem Chem Phys 2023; 25:2729-2741. [PMID: 36633179 DOI: 10.1039/d2cp05119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thermally activated delayed fluorescence (TADF) materials have received enormous attention and the mechanism behind them has been investigated in depth. It has been found that some donor-acceptor (D-A) type TADF emitters could obviously exhibit dual stable conformations in the ground states and their distributions significantly affect the physical properties and device performances. Therefore, professional analysis and a summary of the relationship between molecular structures and performances are very important. In this review, we first summarize the mechanism and properties of TADF emitters with conformational isomerism. We also classify their recent progress according to their different applications, and provide an outlook on their perspectives.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
14
|
Čubiňák M, Varma N, Oeser P, Pokluda A, Pavlovska T, Cibulka R, Sikorski M, Tobrman T. Tuning the Photophysical Properties of Flavins by Attaching an Aryl Moiety via Direct C-C Bond Coupling. J Org Chem 2023; 88:218-229. [PMID: 36525315 DOI: 10.1021/acs.joc.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium-catalyzed Suzuki reactions of brominated flavin derivatives (5-deazaflavins, alloxazines, and isoalloxazines) with boronic acids or boronic acid esters that occur readily under mild conditions were shown to be an effective tool for the synthesis of a broad range of 7/8-arylflavins. In general, the introduction of an aryl/heteroaryl group by means of a direct C-C bond has been shown to be a promising approach to tuning the photophysical properties of flavin derivatives. The aryl substituents caused a bathochromic shift in the absorption spectra of up to 52 nm and prolonged the fluorescence lifetime by up to 1 order of magnitude. Moreover, arylation of flavin derivatives decreased their ability to generate singlet oxygen.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Petr Oeser
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Tetiana Pavlovska
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
15
|
Nabihah Mohd Yusof Chan N, Idris A, Hazrin Zainal Abidin Z, Anuar Tajuddin H. White light emission from coumarin and rhodamine derivatives based on RGB multicomponent system. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Combined experimental and TD-DFT/DMOl 3 investigations, optical properties, and photoluminescence behavior of a thiazolopyrimidine derivative. Sci Rep 2022; 12:15674. [PMID: 36123356 PMCID: PMC9485139 DOI: 10.1038/s41598-022-19840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
We present here the FT-IR, DFT computation, XRD, optical, and photophysical characterization of a heterocyclic compound with thienopyrimidine and pyran moieties. TD-DFT/DMOl3 and TD-DFT/CASTEP computations were used to study the geometry of isolated and dimer molecules and their optical behavior. The indirect (3.93 eV) and direct (3.29 eV) optical energy bandgaps, HOMO-LUMO energy gap (3.02 eV), and wavelength of maximum absorption (353 nm) were determined in the gas phase with M062X/6-31+G (d, p). A thin film of the studied molecule was studied using XRD, FT-IR, and UV-Vis spectroscopy. The average crystallite size was found as 74.95 nm. Also, the photoluminescence spectroscopy revealed that the compound exhibited different emission bands at the visible range with different intensities depending on the degree of molecular aggregation. For instance, solutions with different concentrations emitted blue, cyan, and green light. On the other hand, the solid-state material produced a dual emission with comparable intensities at λmax = 455, 505, and 621 nm to cover the entire visible range and produce white emission from a single material with CIE coordinates of (0.34, 0.32) that are very similar to the ideal pure white light. Consequently, these findings could lead to the development of more attractive new luminous materials.
Collapse
|
17
|
Moshkina TN, Nosova EV, Kopotilova AE, Savchuk MI, Nikonov IL, Kopchuk DS, Slepukhin PA, Kim GA, Lipunova GN, Charushin VN. Synthesis and photophysical properties of pyridyl- and quinolinyl-substituted 4-(4-aminophenyl)quinazolines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Paul P, Karar M, Mondal B, Roy UK, Ghosh A, Majumdar T, Mallick A. Controlled tuning of radiative-nonradiative transition via solvent perturbation: Franck-Condon emission vs. aggregation caused quenching. Phys Chem Chem Phys 2022; 24:18245-18254. [PMID: 35876115 DOI: 10.1039/d2cp02305a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic molecules with tunable fluorescence quantum yield are attractive for opto-electronic applications. A fluorophore with tunable fluorescence quantum yield should be a better choice for a variety of applications that demand fluorophores with different quantum yields. Here organic emitters with a continuous bell-shaped fluorescence yield profile would be promising in view of sustainability and reusability; however, fluorophores with these properties are rarely reported. A bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), was synthesised and found to undergo a unique 'rise-and-fall' profile in fluorescence yield with a compositional change of the 1,4-dioxane (DiOx)-H2O solvent system. A predominant interplay of two contrasting factors, (a) polarity and proticity induced emission enhancement and (b) aggregation caused fluorescence quenching, on either side of a crossover solvent composition (∼50% fW), resulted in a continuous bell-patterned fluorescence yield profile. Interestingly, these two factors could be observed individually or simultaneously by adjusting the H2O fraction. Detailed spectroscopic, electron microscopic and computational studies have been performed to substantiate the photophysics behind the solvent regulated modulation of fluorescence quantum yield.
Collapse
Affiliation(s)
- Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Bibhas Mondal
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
19
|
Shi Y, Wang K, Zhang S, Fan X, Tsuchiya Y, Lee Y, Dai G, Chen J, Zheng C, Xiong S, Ou X, Yu J, Jie J, Lee C, Adachi C, Zhang X. Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a “Self‐Doping” Organic Light‐Emitting Diode. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Shao‐Li Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi‐Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Gao‐Le Dai
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Cai‐Jun Zheng
- School of Optoelectronic Information University of Electronic Science and Technology of China (UESTC) Chengdu Sichuan 610054 P. R. China
| | - Shi‐Yun Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Xue‐Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Jian‐Sheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka Center for Organic Photonics and Electronics Research (OPERA) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu PR China
| |
Collapse
|
20
|
Shi YZ, Wang K, Zhang SL, Fan XC, Tsuchiya Y, Lee YT, Dai GL, Chen JX, Zheng CJ, Xiong SY, Ou XM, Yu J, Jie JS, Lee CS, Adachi C, Zhang XH. Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Self-Doping" Organic Light-Emitting Diode. Angew Chem Int Ed Engl 2021; 60:25878-25883. [PMID: 34585471 DOI: 10.1002/anie.202108943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/05/2022]
Abstract
The conformational distribution and mutual interconversion of thermally activated delayed fluorescence (TADF) emitters significantly affect the exciton utilization. However, their influence on the photophysics in amorphous film states is still not known due to the lack of a suitable quantitative analysis method. Herein, we used temperature-dependent time-resolved photoluminescence spectroscopy to quantitatively measure the relative populations of the conformations of a TADF emitter for the first time. We further propose a new concept of "self-doping" for realizing high-efficiency nondoped OLEDs. Interestingly, this "compositionally" pure film actually behaves as a film with a dopant (quasi-equatorial form) in a matrix (quasi-axial form). The concentration-induced quenching that may occur at high concentrations is thus expected to be effectively relieved. The "self-doping" OLED prepared with the newly developed TADF emitter TP2P-PXZ as a neat emitting layer realizes a high maximum external quantum efficiency of 25.4 % and neglectable efficiency roll-off.
Collapse
Affiliation(s)
- Yi-Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.,Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Shao-Li Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Gao-Le Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Jia-Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.,Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Cai-Jun Zheng
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 610054, P. R. China
| | - Shi-Yun Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Xue-Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Jian-Sheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,JST, ERATO Adachi Molecular Exciton Engineering Project, Fukuoka Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China
| |
Collapse
|
21
|
Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane‐Bridged D–A–D Triad Composed of Phenothiazine and Thienopyrazine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toyotaka Nakae
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masaki Nishio
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tsukasa Usuki
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Minako Ikeya
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Chika Nishimoto
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Suguru Ito
- Department of Chemistry and Life Science Graduate School of Engineering Science Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama Kanagawa 240-8501 Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Mineyuki Hattori
- National Institute of Advanced Industrial Science and Technology AIST Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Shigenobu Hayashi
- National Institute of Advanced Industrial Science and Technology AIST Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Teppei Yamada
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshinori Yamanoi
- Department of Chemistry School of Science The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
22
|
Nakae T, Nishio M, Usuki T, Ikeya M, Nishimoto C, Ito S, Nishihara H, Hattori M, Hayashi S, Yamada T, Yamanoi Y. Luminescent Behavior Elucidation of a Disilane-Bridged D-A-D Triad Composed of Phenothiazine and Thienopyrazine. Angew Chem Int Ed Engl 2021; 60:22871-22878. [PMID: 34427025 DOI: 10.1002/anie.202108089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/28/2022]
Abstract
A σ-π extended aryldisilane, comprising a thienopyrazine group as an acceptor fragment and phenothiazine groups as the donor moiety, has been prepared through the introduction of two Si-Si bridges (compound 1). X-ray diffraction analysis determined the crystal structure of 1, and experimental and theoretical approaches investigated its optical properties. Solvatochromic studies revealed the dual emission of 1 in all solvents tested. Compound 1 also exhibited fluorescence in the solid state upon excitation with a hand-held UV lamp, as well as mechanochromic luminescent properties. The packing mode in the crystal structure, variation of phenothiazine conformation, morphological changes between crystalline and amorphous phases are the major factors showing reversible fluorescence under external stimuli. A theoretical conformer study found that 1 exists in distinct conformational groups differing in Gibbs free energy by less than 3 kcal mol-1 . The conformer in the crystalline state of 1 can promote the complete separation of the HOMO and LUMO between the phenothiazine donor and the thienopyrazine acceptor, linked by the disilane linker. HOMO-LUMO energy transition in the crystalline state is forbidden due to the lack of frontier orbital overlap. Crystalline state emission showed LUMO → HOMO-1 transition (locally excited (LE) state). In the amorphous state, the partial presence of quasi-axial conformers allows intramolecular charge-transfer type emission via energy transfer from dominant quasi-equatorial conformers. The strategy proposed in this work provides important guidance for developing stimuli-responsive materials with controlled excited states.
Collapse
Affiliation(s)
- Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaki Nishio
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukasa Usuki
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Minako Ikeya
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Chika Nishimoto
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Mineyuki Hattori
- National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shigenobu Hayashi
- National Institute of Advanced Industrial Science and Technology, AIST Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Teppei Yamada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
23
|
Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal‐to‐Acoustic Conversion Efficiency for Adaptive Image‐Guided Cancer Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2021; 60:21047-21055. [PMID: 34309160 DOI: 10.1002/anie.202109048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging emerges as a promising technique for biomedical applications. The development of new strategies to boost PA conversion without depressing other properties (e.g., fluorescence) is highly desirable for multifunctional imaging but difficult to realize. Here, we report a new phenomenon that active intramolecular motions could promote PA signal by specifically increasing thermal-to-acoustic conversion efficiency. The compound with intense intramolecular motion exhibits amplified PA signal by elevating thermal-to-acoustic conversion, and the fluorescence also increases due to aggregation-induced emission signature. The simultaneously high PA and fluorescence brightness of TPA-TQ3 NPs enable precise image-guided surgery. The preoperative fluorescence and PA imaging are capable of locating orthotopic breast tumor in a high-contrast manner, and the intraoperative fluorescence imaging delineates tiny residual tumors. This study highlights a new design guideline of intramolecular motion amplifying PA effect.
Collapse
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di Jiao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Motoyama M, Doan TH, Hibner-Kulicka P, Otake R, Lukarska M, Lohier JF, Ozawa K, Nanbu S, Alayrac C, Suzuki Y, Witulski B. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem Asian J 2021; 16:2087-2099. [PMID: 34107175 DOI: 10.1002/asia.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Indexed: 11/12/2022]
Abstract
2-N-aminoquinazolines were prepared by consecutive SN Ar functionalization. X-ray structures display the nitrogen lone pair of the 2-N-morpholino group in conjugation with the electron deficient quinazoline core and thus representing electronic push-pull systems. 2-N-aminoquinazolines show a positive solvatochromism and are fluorescent in solution and in solid state with quantum yields up to 0.73. Increase in electron donor strength of the 2-amino substituent causes a red-shift of the intramolecular charge transfer (ICT) band (300-400 nm); whereas the photoluminescence emission maxima (350-450 nm) is also red-shifted significantly along with an enhancement in photoluminescence efficiency. HOMO-LUMO energies were estimated by a combination of electrochemical and photophysical methods and correlate well to those obtained by computational methods. ICT properties are theoretically attributed to an excitation to Rydberg-MO in SAC-CI method, which can be interpreted as n-π* excitation. 7-Amino-2-N-morpholino-4-methoxyquinazoline responds to acidic conditions with significant increases in photoluminescence intensity revealing a new turn-on/off fluorescence probe.
Collapse
Affiliation(s)
- Miho Motoyama
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Thu-Hong Doan
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Paulina Hibner-Kulicka
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Ryo Otake
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Malgorzata Lukarska
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Jean-Francois Lohier
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Kota Ozawa
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Shinkoh Nanbu
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Yumiko Suzuki
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| |
Collapse
|
26
|
Roy B, Reddy MC, Jose GP, Niemeyer FC, Voskuhl J, Hazra P. All in One: Stimuli-Responsive, Efficient Mitotracking, and Single Source White Light Emission. J Phys Chem Lett 2021; 12:1162-1168. [PMID: 33480695 DOI: 10.1021/acs.jpclett.0c03489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
"All in one" type luminogens, possessing combined properties related to optical, materials, and biological implications, are of urgent demand today, mainly because of the combined application potential of such probes. To the best of our knowledge, until now, an "all in one" type white light emitter together with stimuli-responsive behavior and highly efficient mitochondrial-tracking ability has not been reported yet. In this contribution, for the first time, we have investigated a pair of luminogens exhibiting white light emission (CIE coordinates: 0.35, 0.35 (DPAEOA) and 0.29, 0.33 (DPAPMI)) with temperature-induced mechanochromic features of a centrosymmetrically packed probe (space group P-1). Most importantly, despite being neutral, our designed probe DPAEOA can specifically illuminate mitochondria with the highest Pearson coefficient value (0.93), which is rare, as almost all the commercially developed mitotrackers are cationic fluorophores. Thus, this study will pave a new avenue for the design of next generation "all in one" type organic luminogens exhibiting potential applications in notable optical, materials, and biological fields.
Collapse
Affiliation(s)
- Bibhisan Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
- Faculty of Chemistry (Organic Chemistry) and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Mallu Chenna Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Gregor P Jose
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Felix C Niemeyer
- Faculty of Chemistry (Organic Chemistry) and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and CENIDE, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| |
Collapse
|
27
|
Hempe M, Harrison AK, Ward JS, Batsanov AS, Fox MA, Dias FB, Bryce MR. Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. J Org Chem 2021; 86:429-445. [PMID: 33251794 DOI: 10.1021/acs.joc.0c02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | | | - Jonathan S Ward
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrei S Batsanov
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Mark A Fox
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Fernando B Dias
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Martin R Bryce
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
28
|
Kukhta NA, Bryce MR. Dual emission in purely organic materials for optoelectronic applications. MATERIALS HORIZONS 2021; 8:33-55. [PMID: 34821289 DOI: 10.1039/d0mh01316a] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Purely organic molecules, which emit light by dual emissive (DE) pathways, have received increased attention in the last decade. These materials are now being utilized in practical optoelectronic, sensing and biomedical applications. In order to further extend the application of the DE emitters, it is crucial to gain a fundamental understanding of the links between the molecular structure and the underlying photophysical processes. This review categorizes the types of DE according to the spin multiplicity and time range of the emission, with emphasis on recent experimental advances. The design rules towards novel DE molecular candidates, the most perspective types of DE and possible future applications are outlined. These exciting developments highlight the opportunities for new materials synthesis and pave the way for accelerated future innovation and developments in this area.
Collapse
Affiliation(s)
- Nadzeya A Kukhta
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
29
|
Liu S, Wang J, Tang F, Wang N, Li L, Yao C, Li L. Aqueous Systems with Tunable Fluorescence Including White-Light Emission for Anti-Counterfeiting Fluorescent Inks and Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55269-55277. [PMID: 33232101 DOI: 10.1021/acsami.0c16815] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
White-light-emitting materials have attracted wide interest for potential applications in information displays and lighting. To date, the majority of reported white-light-emitting materials have been multicomponent systems that are typically processed with organic solvents. These features are associated with complex processing, poor white-light quality, and environmental pollution. Herein, a white-light-emitting aqueous system is realized by encapsulating a fluorophore, which has a vibration-induced emission effect, in Pluronic F127 micelles. Tunable multicolor fluorescence is achieved by changing the temperature, and the use of organic solvents is effectively avoided. Through this process, white-light emission with Commission Internationale de l'Eclairage coordinates of (0.3351, 0.3326) is obtained, which is very close to pure white light, and its color rendering index is as high as 89. The fluorescence color tunability of this system could be performed in a wide temperature range, rendering it a potential material in optical thermometry. Besides, the aqueous system also allows for the application of the material as a fluorescent ink and white-light-emitting hydrogels. Information could be embedded in paper-based materials and hydrogels through the fluorescence quenching effect of iron ions (Fe3+) on the fluorophore. Fluorescence could then be recovered upon removal of Fe3+ by adenosine 5'-triphosphate. Thus, fluorescent patterning and triple-mode anti-counterfeiting could be expected due to the temperature-sensitive emission, fluorescence quenching, and recovering properties.
Collapse
Affiliation(s)
- Shuqi Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jie Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Fu Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Na Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|