1
|
Duong HTK, Poerwoprajitno AR, Bongers A, Shanehsazzadeh S, Abdibastami A, Sulway S, Rich A, Gooding JJ, Tilley RD. Understanding the Influence of Gd Deposition on the MPI and MRI Performance of Fe 3O 4 Nanoparticles for Multimodal Imaging Applications. J Phys Chem B 2025; 129:1774-1783. [PMID: 39903918 DOI: 10.1021/acs.jpcb.4c08077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Fe3O4 core Gd shell nanoparticles are interesting candidates as multimodal MRI/MPI contrast agents/tracers that can potentially provide MPI signal from the magnetic iron component while still achieving positive MRI contrast from the Gd shell. However, a current challenge in synthesizing these NPs is controlling the uniformity of the Gd shell while maintaining the particle size. In this study, we show that by using thermal decomposition of mixed metal oleate precursors, the iron oxide nanoparticle core with Gd shell coating can be varied from 7% to 27% while maintaining a high level of control over the particle size, producing highly uniform particles of d = 13.5 nm. Iron oxide nanoparticles with moderate Gd coating have resulted in improved MPI signal and MRI relaxation compared with commercial tracers, indicating that iron oxide core Gd shell nanoparticles are effective materials for both MPI and MRI applications. These results demonstrate the ability to synthetically control both the amount of the Gd shell and the size of the core-shell iron oxide nanoparticles, which can be applied to other magnetic nanomaterials.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Andre Bongers
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Saeed Shanehsazzadeh
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Scott Sulway
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anne Rich
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Sun W, Chai X, Zhang Y, Yu T, Wang Y, Zhao W, Liu Y, Yin D, Zhang C. Combination Using Magnetic Iron Oxide Nanoparticles and Magnetic Field for Cancer Therapy. CHEM REC 2024; 24:e202400179. [PMID: 39607378 DOI: 10.1002/tcr.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Iron oxide nanoparticles (MNPs) demonstrate notable benefits in magnetic induction, attributed to their distinctive physical and chemical attributes. Emerging cancer treatment utilizing magnetic fields have also gathered increasing attention in the biomedical field. However, the defects of difficult dispersion and poor biocompatibility of MNPs seriously hinder their application. In order to overcome its inherent defects and maximize the therapeutic potential of MNPs, various functionalized MNPs have been developed, and numerous combined treatment methods based on MNPs have been widely studied. In this review, we compare and analyze the common nanoparticles based on MNPs with different sizes, shapes, and functional modifications. Additionally, we introduced the therapeutic mechanisms of the strategies, such as magnetically controlled targeting, magnetic hyperthermia, and magneto-mechanical effect, which based on the unique magnetic induction capabilities of MNPs. Finally, main challenges of MNPs as smart nanomaterials were also discussed. This review seeks to offer a thorough overview of MNPs in biomedicine and a new sight for their application in tumor treatment.
Collapse
Affiliation(s)
- Wenjun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Xiaoxia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuhua Wang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Wenzhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yanhua Liu
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China
| |
Collapse
|
3
|
Bakht SM, Pardo A, Gomez‐Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human Tendon-on-Chip: Unveiling the Effect of Core Compartment-T Cell Spatiotemporal Crosstalk at the Onset of Tendon Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401170. [PMID: 39258510 PMCID: PMC11538684 DOI: 10.1002/advs.202401170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Indexed: 09/12/2024]
Abstract
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactive hydrogel matrix with the biophysical cues of magnetic microfibers directly aligned on the microfluidic chip, it is possible to recreate the anisotropic architecture, cell patterns, and phenotype of tendon intrinsic (core) compartment. When incorporated with vascular-like vessels emulating the interface between its intrinsic-extrinsic compartments, crosstalk with endothelial cells are found to drive stromal tenocytes toward a reparative profile. This platform is further used to study adaptive immune cell responses at the onset of tissue inflammation, focusing on interactions between tendon compartment tenocytes and circulating T cells.The proinflammatory signature resulting from this intra/inter-cellular communication induces the recruitment of T cells into the inflamed core compartment and confirms the involvement of this cellular crosstalk in positive feedback loops leading to the amplification of tendon inflammation.Overall, the developed 3D tendon-on-chip provides a powerful new tool enabling mechanistic studies on the pathogenesis of tendinopathy as well as for assessing new therapies.
Collapse
Affiliation(s)
- Syeda M. Bakht
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | | | - David Caballero
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Subhas C. Kundu
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- School of Medicine and Biomedical Sciences (ICBAS), Unit for Multidisciplinary Research in Biomedicine (UMIB)University of PortoRua Jorge Viterbo Ferreira 228Porto4050‐313 PortoPortugal
| |
Collapse
|
4
|
Arellano L, Martínez R, Pardo A, Diez I, Velasco B, Moreda-Piñeiro A, Bermejo-Barrera P, Barbosa S, Taboada P. Assessing the Effect of Surface Coating on the Stability, Degradation, Toxicity and Cell Endocytosis/Exocytosis of Upconverting Nanoparticles. J Colloid Interface Sci 2024; 668:575-586. [PMID: 38691966 DOI: 10.1016/j.jcis.2024.04.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.
Collapse
Affiliation(s)
- Lilia Arellano
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Martínez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Diez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
6
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
7
|
Ulanova M, Gloag L, Kim CK, Bongers A, Kim Duong HT, Gooding JJ, Tilley RD, Sachdev PS, Braidy N. Biocompatibility and proteomic profiling of DMSA-coated iron nanocubes in a human glioblastoma cell line. Nanomedicine (Lond) 2024; 19:303-323. [PMID: 38270934 DOI: 10.2217/nnm-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lucy Gloag
- School of Mathematical & Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
- National Imaging Facility, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Richard D Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
- School of Chemistry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, New South Wales, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
8
|
Sahoo P, Choudhary P, Laha SS, Dixit A, Mefford OT. Recent advances in zinc ferrite (ZnFe 2O 4) based nanostructures for magnetic hyperthermia applications. Chem Commun (Camb) 2023; 59:12065-12090. [PMID: 37740338 DOI: 10.1039/d3cc01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Spinel ferrite-based magnetic nanomaterials have been investigated for numerous biomedical applications, including targeted drug delivery, magnetic hyperthermia therapy (MHT), magnetic resonance imaging (MRI), and biosensors, among others. Recent studies have found that zinc ferrite-based nanomaterials are favorable candidates for cancer theranostics, particularly for magnetic hyperthermia applications. Zinc ferrite exhibits excellent biocompatibility, minimal toxicity, and more importantly, exciting magnetic properties. In addition, these materials demonstrate a Curie temperature much lower than other transition metal ferrites. By regulating synthesis protocols and/or introducing suitable dopants, the Curie temperature of zinc ferrite-based nanosystems can be tailored to the MHT therapeutic window, i.e., 43-46 °C, a range which is highly beneficial for clinical hyperthermia applications. Furthermore, zinc ferrite-based nanostructures have been extensively used in successful pre-clinical trials on mice models focusing on the synergistic killing of cancer cells involving magnetic hyperthermia and chemotherapy. This review provides a systematic and comprehensive understanding of the recent developments of zinc ferrite-based nanomaterials, including doped particles, shape-modified structures, and composites for magnetic hyperthermia applications. In addition, future research prospects involving pure ZnFe2O4 and its derivative nanostructures have also been proposed.
Collapse
Affiliation(s)
- Priyambada Sahoo
- Advanced Materials and Devices (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology (IIT) Jodhpur, Karwar, Jodhpur, Rajasthan, 342030, India.
| | - Piyush Choudhary
- Advanced Materials and Devices (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology (IIT) Jodhpur, Karwar, Jodhpur, Rajasthan, 342030, India.
| | - Suvra S Laha
- Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634, USA.
| | - Ambesh Dixit
- Advanced Materials and Devices (A-MAD) Laboratory, Department of Physics, Indian Institute of Technology (IIT) Jodhpur, Karwar, Jodhpur, Rajasthan, 342030, India.
| | - O Thompson Mefford
- Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
9
|
Zhang Y, Su B, Tian Y, Yu Z, Wu X, Ding J, Wu C, Wei D, Yin H, Sun J, Fan H. Magnetic manipulation of Fe 3O 4@BaTiO 3 nanochains to regulate extracellular topographical and electrical cues. Acta Biomater 2023; 168:470-483. [PMID: 37495167 DOI: 10.1016/j.actbio.2023.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Magnetic fields play an essential role in material science and biomedical engineering. Magnetic-responsive materials can be arranged orderly in matrix to realize the construction of an aligned scaffold under magnetic induction. However, a single topological cue is insufficient to activate neural tissue regeneration, demanding more cues to promote regeneration synergistically, such as electrical stimulation and a biomimetic matrix. Herein, we propose one-dimensional (1D) magnetoelectric Fe3O4@BaTiO3 nanochains with controllable lengths under the regulation of a magnetic field. These nanochains can be oriented in the biomimetic hydrogel under magnetic guidance and induce the hydrogel microfiber to align along the direction of the nanochains, which is beneficial for cell-oriented outgrowth. This aligned hydrogel enabled wireless electrical stimulation mediated by magnetoelectric nanochains under magnetic stimulation, thereby activating the voltage-gated ion channel. Consequently, topological and electrical cues in this multifunctional biomimetic hydrogel synergistically enhanced the expression of neural functional proteins, facilitating synapse remodeling and neural regeneration. Predictably, the construction of multifunctional hydrogels based on low-cost and facile synthesis of magnetoelectric nanochains is an emerging patient-friendly and effective therapeutic strategy for neural or other tissue regeneration. STATEMENT OF SIGNIFICANCE: A facile and controllable magnetic strategy is established to manipulate 1D nanomaterial growth, matrix topography, and wireless electrical stimulation of cells. First, the magnetic-assisted interface co-assembly was used to control the length of Fe3O4@BaTiO3 nanochains with enhanced magnetoelectric effect. Then, the motion of the magnetic-induced nanochains guided the orientation of nanofibers in a 3D biomimetic hydrogel matrix. Finally, wireless electrical signals and topological cues in the biomimetic matrix synergistically promoted orderly aligned cell outgrowth and membrane depolarization by Ca2+ influx, thus enhancing nerve cell synaptic plasticity and functional expression. Consequently, this work provides a conceptual strategy from material design to extracellular matrix signal manipulation and synergistic induction of tissue regeneration.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zhuoting Yu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Huabin Yin
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Jin Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
10
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Ibrahim H, Billings C, Abdalla M, Korra A, Anderson DE. In Vivo Assessment of High-Strength and Corrosion-Controlled Magnesium-Based Bone Implants. Bioengineering (Basel) 2023; 10:877. [PMID: 37508904 PMCID: PMC10376803 DOI: 10.3390/bioengineering10070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The biodegradable nature of magnesium in aqueous mediums makes it an attractive material for various biomedical applications when it is not recommended that the material stay permanently in the body. Some of the main challenges that hinder the use of magnesium for bone fracture repair are its limited mechanical strength and fast corrosion rates. To this end, we developed a novel Mg-Zn-Ca-Mn-based alloy and post-fabrication methods that can deliver high-strength and corrosion-controlled implant materials to address these challenges. This study is focused on assessing the in vitro corrosion and in vivo biocompatibility of the developed magnesium-based alloy and post-fabrication processes. The developed heat treatment process resulted in an increase in the microhardness from 71.9 ± 5.4 HV for the as-cast Mg alloy to as high as 98.1 ± 6.5 HV for the heat-treated Mg alloy, and the ceramic coating resulted in a significant reduction in the corrosion rate from 10.37 mm/yr for the uncoated alloy to 0.03 mm/yr after coating. The in vivo assessments showed positive levels of biocompatibility in terms of degradation rates and integration of the implants in a rabbit model. In the rabbit studies, the implants became integrated into the bone defect and showed minimal evidence of an immune response. The results of this study show that it is possible to produce biocompatible Mg-based implants with stronger and more corrosion-controlled properties based on the developed Mg-Zn-Ca-Mn-based alloy and post-fabrication methods.
Collapse
Affiliation(s)
- Hamdy Ibrahim
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - Caroline Billings
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Moataz Abdalla
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - Ahmed Korra
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - David Edger Anderson
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
13
|
Wang Z, Zhu H, Li H, Wang Z, Sun M, Yang B, Wang Y, Wang L, Xu L. High-Strength Magnetic Hydrogels with Photoweldability Made by Stepwise Assembly of Magnetic-Nanoparticle-Integrated Aramid Nanofiber Composites. ACS NANO 2023; 17:9622-9632. [PMID: 37134301 DOI: 10.1021/acsnano.3c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.
Collapse
Affiliation(s)
- Zuochen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Hengjia Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bin Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Chen X, Wang H, Shi J, Chen Z, Wang Y, Gu S, Fu Y, Huang J, Ding J, Yu L. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials 2023; 298:122139. [PMID: 37148756 DOI: 10.1016/j.biomaterials.2023.122139] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Magnetic hyperthermia therapy (MHT) is a promising new modality to deal with solid tumors, yet the low magnetic-heat conversion efficacy, magnetic resonance imaging (MRI) artifacts, easy leakage of magnetic nanoparticles, and thermal resistance are the main obstacles to expand its clinical applications. Herein, a synergistic strategy based on a novel injectable magnetic and ferroptotic hydrogel is proposed to overcome these bottlenecks and boost the antitumor efficacy of MHT. The injectable hydrogel (AAGel) exhibiting a sol-gel transition upon heating is made of arachidonic acid (AA)-modified amphiphilic copolymers. Ferrimagnetic Zn0.4Fe2.6O4 nanocubes with high-efficiency hysteresis loss mechanism are synthesized and co-loaded into AAGel with RSL3, a potent ferroptotic inducer. This system maintains the temperature-responsive sol-gel transition, and provides the capacity of multiple MHT and achieves accurate heating after a single injection owing to the firm anchoring and uniform dispersion of nanocubes in the gel matrix. The high magnetic-heat conversion efficacy of nanocubes coupled with the application of echo limiting effect avoids the MRI artifacts during MHT. Besides the function of magnetic heating, Zn0.4Fe2.6O4 nanocubes combined with multiple MHT can sustain supply of redox-active iron to generate reactive oxygen species and lipid peroxides and accelerate the release of RLS3 from AAGel, thus enhancing the antitumor efficacy of ferroptosis. In turn, the reinforced ferroptosis can alleviate the MHT-triggered thermal resistance of tumors by impairment of the protective heat shock protein 70. The synergy strategy achieves the complete elimination of CT-26 tumors in mice without causing local tumor recurrence and other severe side effects.
Collapse
Affiliation(s)
- Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Zhiyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Siyi Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
15
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
16
|
Li Z, Xue L, Wang P, Ren X, Zhang Y, Wang C, Sun J. Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1429. [PMID: 36837058 PMCID: PMC9961196 DOI: 10.3390/ma16041429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xueqian Ren
- Clinical Medical Engineering Department, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing 210009, China
| | - Yunyang Zhang
- Center of Modern Analysis, Nanjing University, Nanjing 210000, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
17
|
Andrade RGD, Ferreira D, Veloso SRS, Santos-Pereira C, Castanheira EMS, Côrte-Real M, Rodrigues LR. Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia. Pharmaceutics 2022; 14:pharmaceutics14122694. [PMID: 36559189 PMCID: PMC9784010 DOI: 10.3390/pharmaceutics14122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Calcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaxMn1-xFe2O4 (x = 0, 0.2, 1), were synthesized by the sol-gel method, followed by calcination, and then characterized regarding their crystalline structure (by X-ray diffraction, XRD), size and shape (by Transmission Electron Microscopy, TEM), hydrodynamic size and zeta potential (by Dynamic Light Scattering, DLS), and heating efficiency (measuring the Specific Absorption Rate, SAR, and Intrinsic Loss Power, ILP) under an alternating magnetic field. The obtained NPs showed a particle size within the range of 10 nm to 20 nm (by TEM) with a spherical or cubic shape. Ca0.2Mn0.8Fe2O4 NPs exhibited the highest SAR value of 36.3 W/g at the lowest field frequency tested, and achieved a temperature variation of ~7 °C in 120 s, meaning that these NPs are suitable magnetic hyperthermia agents. In vitro cellular internalization and cytotoxicity experiments, performed using the human cell line HEK 293T, confirmed cytocompatibility over 0-250 µg/mL range and successful internalization after 24 h. Based on these studies, our data suggest that these manganese-calcium ferrite NPs have potential for MH application and further use in in vivo systems.
Collapse
Affiliation(s)
- Raquel G. D. Andrade
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Cátia Santos-Pereira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
18
|
Cansever Mutlu E, Kaya M, Küçük I, Ben-Nissan B, Stamboulis A. Exosome Structures Supported by Machine Learning Can Be Used as a Promising Diagnostic Tool. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7967. [PMID: 36431454 PMCID: PMC9693854 DOI: 10.3390/ma15227967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Principal component analysis (PCA) as a machine-learning technique could serve in disease diagnosis and prognosis by evaluating the dynamic morphological features of exosomes via Cryo-TEM-imaging. This hypothesis was investigated after the crude isolation of similarly featured exosomes derived from the extracellular vehicles (EVs) of immature dendritic cells (IDCs) JAWSII. It is possible to identify functional molecular groups by FTIR, but the unique physical and morphological characteristics of exosomes can only be revealed by specialized imaging techniques such as cryo-TEM. On the other hand, PCA has the ability to examine the morphological features of each of these IDC-derived exosomes by considering software parameters such as various membrane projections and differences in Gaussians, Hessian, hue, and class to assess the 3D orientation, shape, size, and brightness of the isolated IDC-derived exosome structures. In addition, Brownian motions from nanoparticle tracking analysis of EV IDC-derived exosomes were also compared with EV IDC-derived exosome images collected by scanning electron microscopy and confocal microscopy. Sodium-Dodecyl-Sulphate-Polyacrylamide-Gel-Electrophoresis (SDS-PAGE) was performed to separate the protein content of the crude isolates showing that no considerable protein contamination occurred during the crude isolation technique of IDC-derived-exosomes. This is an important finding because no additional purification of these exosomes is required, making PCA analysis both valuable and novel.
Collapse
Affiliation(s)
- Esra Cansever Mutlu
- College of Engineering and Physical Science, School of Metallurgy and Materials, Biomaterials Research Group, University of Birmingham, Birmingham B15 2TT, UK
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, Sarıyer, 34398 İstanbul, Türkiye
| | - Mustafa Kaya
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, Sarıyer, 34398 İstanbul, Türkiye
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Türkiye
| | - Israfil Küçük
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Türkiye
| | - Besim Ben-Nissan
- School of Life Sciences, Translational Biomaterials and Medicine Group, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Artemis Stamboulis
- College of Engineering and Physical Science, School of Metallurgy and Materials, Biomaterials Research Group, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Porru M, Morales MDP, Gallo-Cordova A, Espinosa A, Moros M, Brero F, Mariani M, Lascialfari A, Ovejero JG. Tailoring the Magnetic and Structural Properties of Manganese/Zinc Doped Iron Oxide Nanoparticles through Microwaves-Assisted Polyol Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3304. [PMID: 36234433 PMCID: PMC9565877 DOI: 10.3390/nano12193304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Tuning the fundamental properties of iron oxide magnetic nanoparticles (MNPs) according to the required biomedical application is an unsolved challenge, as the MNPs' properties are affected by their composition, their size, the synthesis process, and so on. In this work, we studied the effect of zinc and manganese doping on the magnetic and structural properties of MNPs synthesized by the microwave-assisted polyol process, using diethylene glycol (DEG) and tetraethylene glycol (TEG) as polyols. The detailed morpho-structural and magnetic characterization showed a correspondence between the higher amounts of Mn and smaller crystal sizes of the MNPs. Such size reduction was compensated by an increase in the global magnetic moment so that it resulted in an increase of the saturation magnetization. Saturation magnetization MS values up to 91.5 emu/g and NMR transverse relaxivities r2 of 294 s-1mM-1 were obtained for Zn and Mn- doped ferrites having diameters around 10 nm, whereas Zn ferrites with diameters around 15 nm reached values of MS∼ 97.2 emu/g and of r2∼ 467 s-1mM-1, respectively. Both kinds of nanoparticles were synthesized by a simple, reproducible, and more sustainable method that makes them very interesting for diagnostic applications as MRI contrast agents.
Collapse
Affiliation(s)
- Margherita Porru
- Dipartimento di Fisica, Università degli Studi di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
| | - María del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, C. Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Alvaro Gallo-Cordova
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, C. Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ana Espinosa
- IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia) Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Francesca Brero
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, Università degli Studi di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
| | - Alessandro Lascialfari
- Dipartimento di Fisica, Università degli Studi di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
| | - Jesús G. Ovejero
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, C. Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Hospital General Universitario Gregorio Marañón, C. Dr. Esquerdo, 46, 28007 Madrid, Spain
| |
Collapse
|
20
|
Narayanaswamy V, Al-Omari IA, Kamzin AS, Issa B, Obaidat IM. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:262. [PMID: 35055278 PMCID: PMC8781948 DOI: 10.3390/nano12020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Magnetically hard-soft core-shell ferrite nanoparticles are synthesized using an organometallic decomposition method through seed-mediated growth. Two sets of core-shell nanoparticles (S1 and S2) with different shell (Fe3O4) thicknesses and similar core (CoFe2O4) sizes are obtained by varying the initial quantities of seed nanoparticles of size 6.0 ± 1.0 nm. The nanoparticles synthesized have average sizes of 9.5 ± 1.1 (S1) and 12.2 ± 1.7 (S2) nm with corresponding shell thicknesses of 3.5 and 6.1 nm. Magnetic properties are investigated under field-cooled and zero-field-cooled conditions at several temperatures and field cooling values. Magnetic heating efficiency for magnetic hyperthermia applications is investigated by measuring the specific absorption rate (SAR) in alternating magnetic fields at several field strengths and frequencies. The exchange bias is found to have a nonmonotonic and oscillatory relationship with temperature at all fields. SAR values of both core-shell samples are found to be considerably larger than that of the single-phase bare core particles. The effective anisotropy and SAR values are found to be larger in S2 than those in S1. However, the saturation magnetization displays the opposite behavior. These results are attributed to the occurrence of spin-glass regions at the core-shell interface of different amounts in the two samples. The novel outcome is that the interfacial exchange anisotropy of core-shell nanoparticles can be tailored to produce large effective magnetic anisotropy and thus large SAR values.
Collapse
Affiliation(s)
- Venkatesha Narayanaswamy
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | | | - Aleksandr S. Kamzin
- Laboratory of Ferroelectricity and Magnetism Physics, Ioffe Physical Technical Institute, 194021 St. Petersburg, Russia;
| | - Bashar Issa
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
21
|
Fizesan I, Iacovita C, Pop A, Kiss B, Dudric R, Stiufiuc R, Lucaciu CM, Loghin F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021; 13:2148. [PMID: 34959431 PMCID: PMC8708233 DOI: 10.3390/pharmaceutics13122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 12/02/2022] Open
Abstract
The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs' hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 μg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 μg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells.
Collapse
Affiliation(s)
- Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Bela Kiss
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Rares Stiufiuc
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (B.K.); (F.L.)
| |
Collapse
|
22
|
Silvestri N, Gavilán H, Guardia P, Brescia R, Fernandes S, Samia ACS, Teran FJ, Pellegrino T. Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. NANOSCALE 2021; 13:13665-13680. [PMID: 34477642 PMCID: PMC8374679 DOI: 10.1039/d1nr01044a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 05/31/2023]
Abstract
Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Collapse
Affiliation(s)
| | - Helena Gavilán
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
| | - Pablo Guardia
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
- IREC-Catalonia Institute for Energy Research, Jardins de les Dones de Negre 1Sant Adria de Besos08930 BarcelonaSpain
| | - Rosaria Brescia
- Istituto Italiano di TecnologiaVia Morego 3016163 GenovaItaly
| | | | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University10900 Euclid AvenueClevelandOH 44106USA
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco28049 MadridSpain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC)28049 MadridSpain
| | | |
Collapse
|
23
|
Monodisperse superparamagnetic nanoparticles separation adsorbents for high-yield removal of arsenic and/or mercury metals in aqueous media. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Castellanos-Rubio I, Arriortua O, Marcano L, Rodrigo I, Iglesias-Rojas D, Barón A, Olazagoitia-Garmendia A, Olivi L, Plazaola F, Fdez-Gubieda ML, Castellanos-Rubio A, Garitaonandia JS, Orue I, Insausti M. Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3139-3154. [PMID: 34556898 PMCID: PMC8451613 DOI: 10.1021/acs.chemmater.0c04794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/02/2021] [Indexed: 05/15/2023]
Abstract
The currently existing magnetic hyperthermia treatments usually need to employ very large doses of magnetic nanoparticles (MNPs) and/or excessively high excitation conditions (H × f > 1010 A/m s) to reach the therapeutic temperature range that triggers cancer cell death. To make this anticancer therapy truly minimally invasive, it is crucial the development of improved chemical routes that give rise to monodisperse MNPs with high saturation magnetization and negligible dipolar interactions. Herein, we present an innovative chemical route to synthesize Zn-doped magnetite NPs based on the thermolysis of two kinds of organometallic precursors: (i) a mixture of two monometallic oleates (FeOl + ZnOl), and (ii) a bimetallic iron-zinc oleate (Fe3-y Zn y Ol). These approaches have allowed tailoring the size (10-50 nm), morphology (spherical, cubic, and cuboctahedral), and zinc content (Zn x Fe3-x O4, 0.05 < x < 0.25) of MNPs with high saturation magnetization (≥90 Am2/kg at RT). The oxidation state and the local symmetry of Zn2+ and Fe2+/3+ cations have been investigated by means of X-ray absorption near-edge structure (XANES) spectroscopy, while the Fe center distribution and vacancies within the ferrite lattice have been examined in detail through Mössbauer spectroscopy, which has led to an accurate determination of the stoichiometry in each sample. To achieve good biocompatibility and colloidal stability in physiological conditions, the Zn x Fe3-x O4 NPs have been coated with high-molecular-weight poly(ethylene glycol) (PEG). The magnetothermal efficiency of Zn x Fe3-x O4@PEG samples has been systematically analyzed in terms of composition, size, and morphology, making use of the latest-generation AC magnetometer that is able to reach 90 mT. The heating capacity of Zn0.06Fe2.9 4O4 cuboctahedrons of 25 nm reaches a maximum value of 3652 W/g (at 40 kA/m and 605 kHz), but most importantly, they reach a highly satisfactory value (600 W/g) under strict safety excitation conditions (at 36 kA/m and 125 kHz). Additionally, the excellent heating power of the system is kept identical both immobilized in agar and in the cellular environment, proving the great potential and reliability of this platform for magnetic hyperthermia therapies.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Dpto.
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Oihane Arriortua
- Dpto.
Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Lourdes Marcano
- Dpto.
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str.15, 12489 Berlin, Germany
| | - Irati Rodrigo
- Dpto.
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- BC
Materials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Daniela Iglesias-Rojas
- Dpto.
Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ander Barón
- Dpto.
Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Dpto.
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- Biocruces
Bizkaia Health Research Institute, Cruces Plaza, 48903 Barakaldo, Spain
| | - Luca Olivi
- Elettra
Synchrotron Trieste, 34149 Basovizza, Italy
| | - Fernando Plazaola
- Dpto.
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - M. Luisa Fdez-Gubieda
- Dpto.
Electricidad y Electrónica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- BC
Materials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Dpto.
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- Biocruces
Bizkaia Health Research Institute, Cruces Plaza, 48903 Barakaldo, Spain
- Biomedical
Research Center in Diabetes Network and Associated Metabolic Diseases, 28029 Madrid, Spain
- IKERBASQUE
Basque Foundation for Science, 48013 Bilbao, Spain
| | - José S. Garitaonandia
- Dpto.
Física Aplicada II, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker,
Servicios Generales de Investigación, UPV/EHU, Barrio Sarriena
s/n, 48940 Leioa, Spain
| | - Maite Insausti
- Dpto.
Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- BC
Materials, Basque Center for Materials, Applications and Nanostructures, Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
25
|
Sun T, Liu Y, Zhou C, Zhang L, Kang X, Xiao S, Du M, Xu Z, Liu Y, Liu G, Gong M, Zhang D. Fluorine-mediated synthesis of anisotropic iron oxide nanostructures for efficient T2-weighted magnetic resonance imaging. NANOSCALE 2021; 13:7638-7647. [PMID: 33928960 DOI: 10.1039/d1nr00338k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we developed a novel strategy for the shape-controlled synthesis of iron oxide nanostructures with superior r2 values through the introduction of fluoride ions as a morphology controlling agent and dopant. The selective adsorption of fluoride ions onto the specified crystal planes of iron oxide nanocrystals leads to the formation of octapod nanoparticles (ONPs) and cubic nanocrystal clusters (CNCs). Both ONPs and CNCs present high r2 values (526.5 and 462.2 mM-1 s-1, respectively) due to the synergistic effect of a larger effective radius, clustering and fluorine doping. The in vivo MRI results show significant enhancement in T2-weighted images of the liver after the intravenous injection of ONPs and CNCs, suggesting their great potential as efficient T2-weighted MRI contrast agents. This new approach of achieving anisotropic fluorine-doped iron oxide nanostructures with high r2 relaxivity provides an alternative strategy for the development of highly sensitive T2 contrast agents for MRI.
Collapse
Affiliation(s)
- Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Yiding Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Xun Kang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Mengmeng Du
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| |
Collapse
|
26
|
Finding the Limits of Magnetic Hyperthermia on Core-Shell Nanoparticles Fabricated by Physical Vapor Methods. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7040049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic nanoparticles can generate heat when exposed to an alternating magnetic field. Their heating efficacy is governed by their magnetic properties that are in turn determined by their composition, size and morphology. Thus far, iron oxides (e.g., magnetite, Fe3O4) have been the most popular materials in use, though recently bimagnetic core-shell structures are gaining ground. Herein we present a study on the effect of particle morphology on heating efficiency. More specifically, we use zero waste impact methods for the synthesis of metal/metal oxide Fe/Fe3O4 nanoparticles in both spherical and cubic shapes, which present an interesting venue for understanding how spin coupling across interfaces and also finite size effects may influence the magnetic response. We show that these particles can generate sufficient heat (hundreds of watts per gram) to drive hyperthermia applications, whereas faceted nanoparticles demonstrate superior heating capabilities than spherical nanoparticles of similar size.
Collapse
|
27
|
Spangenberg J, Kilian D, Czichy C, Ahlfeld T, Lode A, Günther S, Odenbach S, Gelinsky M. Bioprinting of Magnetically Deformable Scaffolds. ACS Biomater Sci Eng 2021; 7:648-662. [DOI: 10.1021/acsbiomaterials.0c01371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Günther
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
28
|
Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS NANO 2021; 15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most tissues of the human body are characterized by highly anisotropic physical properties and biological organization. Hydrogels have been proposed as scaffolding materials to construct artificial tissues due to their water-rich composition, biocompatibility, and tunable properties. However, unmodified hydrogels are typically composed of randomly oriented polymer networks, resulting in homogeneous structures with isotropic properties different from those observed in biological systems. Magnetic materials have been proposed as potential agents to provide hydrogels with the anisotropy required for their use on tissue engineering. Moreover, the intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote actuators to control the behavior of the cells encapsulated within the hydrogels under the application of external magnetic fields. In this review, we combine a detailed summary of the main strategies to prepare magnetic nanoparticles showing controlled properties with an analysis of the different approaches available to their incorporation into hydrogels. The application of magnetically responsive nanocomposite hydrogels in the engineering of different tissues is also reviewed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
29
|
Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2021; 7:597634. [PMID: 33505987 PMCID: PMC7831291 DOI: 10.3389/fmolb.2020.597634] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| |
Collapse
|