1
|
Zhang J, Zhao M, Xi Z, Liu X, Feng L, Bai J, Zhan X, Zhang C, Midgley AC, Liu Y. Pistol Ribozyme-Driven Catalytic Spherical Nucleic Acid Integrates Gene and Chemotherapy for Enhanced Cancer Therapy. J Am Chem Soc 2025; 147:9424-9440. [PMID: 40063899 DOI: 10.1021/jacs.4c16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Gene-targeted therapies are revolutionizing cancer treatment due to their high specificity and low toxicity. Among these, ribozymes hold promise as independent gene therapy agents capable of directly cleaving target mRNAs. The pistol ribozyme, discovered in 2015, stands out for its compact structure and robust cleavage activity, making it a promising candidate for RNA silencing under physiological conditions. However, its clinical application is limited by nuclease susceptibility and biological barrier penetration. To overcome these obstacles, this study presents an innovative gene-regulation strategy incorporating engineered pistol ribozymes into a spherical nucleic acid (SNA) nanocarrier. This catalytic SNA nanocarrier, built on a DNA core-shell framework, combines the ribozyme with doxorubicin (Dox) to form the ApRz-CS/Dox nanoplatform. The design of ApRz-CS/Dox features a homopolymerized DNA core and a reticular DNA shell, enhancing stability. Tumor-targeting aptamers are arranged on its surface, directing it specifically to cancer cells. Within the target cells, the ribozyme is released in response to overexpressed miR-21, facilitating the cleavage of polo-like kinase 1 mRNA. This integrated approach effectively combines gene therapy with the chemotherapeutic effects of Dox, addressing the challenges associated with the delivery of newly developed nucleic acid drugs and offering a promising strategy for enhanced cancer treatment.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Ming Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Zhiqin Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Xiaoqian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Linyi Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Jie Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| | - Xuelin Zhan
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou 212200, China
| | - Chunqiu Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Institute of Transplantation Medicine, Nankai University, Tianjin 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300071, China
| |
Collapse
|
2
|
Zhang L, Al-Ammari A, Zhu D, Zhang H, Zhou P, Zhi X, Ding W, Li X, Yu Q, Gai Y, Ma X, Chen C, Zuo C, Zhang J, Zhu W, Sun D. A nanovaccine for immune activation and prophylactic protection of atherosclerosis in mouse models. Nat Commun 2025; 16:2111. [PMID: 40025093 PMCID: PMC11873251 DOI: 10.1038/s41467-025-57467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Vaccines offer prophylactic treatments against atherosclerosis by eliciting effector T cell and antibody responses, which require effective delivery of antigen and adjuvant to activate dendritic cells (DC). Here we show that individual conjugation of antigen p210 and adjuvant CpG oligodeoxynucleotides onto superparamagnetic iron oxide nanoparticles formulates a nanovaccine cocktail that activates DCs for antigen cross-presentation and induction of co-stimulatory signals, cytokines and CD8+ effector/effector memory T cell responses. This nanovaccine modulates the DCs in the draining lymph nodes, activates both CD4+ and CD8+ T cells, elicits memory responses, and induces both anti-p210 IgM and IgG antibodies to suppress atherosclerosis. Lastly, three intradermal vaccinations of this nanovaccine mitigate the atherosclerosis development in the ApoE-/- mice. Our nanovaccine design and preclinical data thus presents a potential candidate for prophylactic treatment for atherosclerosis.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Abdulrahman Al-Ammari
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, PR China
| | - Danxuan Zhu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Peng Zhou
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, PR China
| | - Weixiao Ding
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xinmeng Li
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Qingqing Yu
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Yuwen Gai
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Xiaoling Ma
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Chao Zuo
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, PR China.
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| |
Collapse
|
3
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
4
|
Chen Q, Liu Y, Chen Q, Li M, Xu L, Lin B, Tan Y, Liu Z. DNA Nanostructures: Advancing Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405231. [PMID: 39308253 DOI: 10.1002/smll.202405231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| |
Collapse
|
5
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Hu Y, Luo Z, Ge Z, Li Q, Yang P, Zhang H, Zhang H. Morphology Dictated Immune Activation with Framework Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303454. [PMID: 37559164 DOI: 10.1002/smll.202303454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Framework nucleic acids (FNAs) of various morphologies, designed using the precise and programmable Watson-Crick base pairing, serve as carriers for biomolecule delivery in biology and biomedicine. However, the impact of their shape, size, concentration, and the spatial presentation of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) on immune activation remains incompletely understood. In this study, representative FNAs with varying morphologies are synthesized to explore their immunological responses. Low concentrations (50 nM) of all FNAs elicited no immunostimulation, while high concentrations of elongated DNA nanostrings and tetrahedrons triggered strong activation due to their larger size and increased cellular uptake, indicating that the innate immune responses of FNAs depend on both dose and morphology. Notably, CpG ODNs' immune response can be programmed by FNAs through regulating the spatial distance, with optimal spacing of 7-8 nm eliciting the highest immunostimulation. These findings demonstrate FNAs' potential as a designable tool to study nucleic acid morphology's impact on biological responses and provide a strategy for future CpG-mediated immune activation carrier design.
Collapse
Affiliation(s)
- Yao Hu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Zhongxu Luo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peihui Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
8
|
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI, Sharma A. Chronic Inflammation's Transformation to Cancer: A Nanotherapeutic Paradigm. Molecules 2023; 28:molecules28114413. [PMID: 37298889 DOI: 10.3390/molecules28114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Banglore 560056, India
| | - Amka Nagar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mohammad Amjad Kamal
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics Inc., Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow G1 0RE, UK
| |
Collapse
|
9
|
Tian R, Shang Y, Wang Y, Jiang Q, Ding B. DNA Nanomaterials-Based Platforms for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201518. [PMID: 36651129 DOI: 10.1002/smtd.202201518] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Indexed: 05/17/2023]
Abstract
The past few decades have witnessed the evolving paradigm for cancer therapy from nonspecific cytotoxic agents to selective, mechanism-based therapeutics, especially immunotherapy. In particular, the integration of nanomaterials with immunotherapy is proven to improve the therapeutic outcome and minimize off-target toxicity in the treatment. As a novel nanomaterial, DNA-based self-assemblies featuring uniform geometries, feasible modifications, programmability, surface addressability, versatility, and intrinsic biocompatibility, are extensively exploited for innovative and effective cancer immunotherapy. In this review, the successful employment of DNA nanoplatforms for cancer immunotherapy, including the delivery of immunogenic cell death inducers, adjuvants and vaccines, immune checkpoint blockers as well as the application in immune cell engineering and adoptive cell therapy is summarized. The remaining challenges and future perspectives regarding the pharmacokinetics/pharmacodynamics, in vivo fate and immunogenicity of DNA materials, and the design of intelligent DNA nanomedicine for individualized cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Chen F, Huang Y, Huang Z, Jiang T, Yang Z, Zeng J, Jin A, Zuo H, Huang CZ, Mao C. DNA-scaffolded multivalent vaccine against SARS-CoV-2. Acta Biomater 2023; 164:387-396. [PMID: 37088158 PMCID: PMC10122553 DOI: 10.1016/j.actbio.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Short peptides are poor immunogens. One way to increase their immune responses is by arraying immunogens in multivalency. Simple and efficient scaffolds for spatial controlling the inter-antigen distance and enhancing immune activation are required. Here, we report a molecular vaccine design principle that maximally drives potent SARS-CoV-2 RBD subunit vaccine on DNA duplex to induce robust and efficacious immune responses in vivo. We expect that the DNA-peptide epitope platform represents a facile and generalizable strategy to enhance the immune response. STATEMENT OF SIGNIFICANCE: DNA scaffolds offer a biocompatible and convenient platform for arraying immunogens in multivalency antigenic peptides, and spatially control the inter-antigen distance. This can effectively enhance immune response. Peptide (instead of entire protein) vaccines are highly attractive. However, short peptides are poor immunogens. Our DNA scaffolded multivalent peptide immunogen system induced robust and efficacious immune response in vivo as demonstrated by the antigenic peptide against SAR-CoV-2. The present strategy could be readily generalized and adapted to prepare multivalent vaccines against other viruses or disease. Particularly, the different antigens could be integrated into one single vaccine and lead to super-vaccines that can protect the host from multiple different viruses or multiple variants of the same virus.
Collapse
Affiliation(s)
- Fangfang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhengyu Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tingting Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Zeng
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA.
| |
Collapse
|
11
|
Zhao D, Tu ATT, Shobo M, Le NBT, Yoshikawa C, Sugai K, Hakamata Y, Yamazaki T. Non-Modified CpG Oligodeoxynucleotide Forming Guanine-Quadruplex Structure Complexes with ε-Poly- L-Lysine Induce Antibody Production as Vaccine Adjuvants. Biomolecules 2022; 12:biom12121868. [PMID: 36551297 PMCID: PMC9775190 DOI: 10.3390/biom12121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-β. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.
Collapse
Affiliation(s)
- Dandan Zhao
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Anh Thi Tram Tu
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Department of Magnetic and Biomedical Materials, Faculty of Materials Science and Technology, University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam
- Ho Chi Minh City Campus, Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 70000, Vietnam
| | - Miwako Shobo
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Nguyen Bui Thao Le
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Chiaki Yoshikawa
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
| | - Kazuhisa Sugai
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yoji Hakamata
- School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
- Correspondence: ; Tel.: +81-29-859-2345; Fax: +81-29-859-2449
| |
Collapse
|
12
|
Yang Q, Wang Y, Liu T, Wu C, Li J, Cheng J, Wei W, Yang F, Zhou L, Zhang Y, Yang S, Dong H. Microneedle Array Encapsulated with Programmed DNA Hydrogels for Rapidly Sampling and Sensitively Sensing of Specific MicroRNA in Dermal Interstitial Fluid. ACS NANO 2022; 16:18366-18375. [PMID: 36326107 DOI: 10.1021/acsnano.2c06261] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Author: Please verify that the changes made to improve the English still retain your original meaning.Detection of microRNA (miRNA) in dermal interstitial fluid (ISF) has emerged as clinically useful in health status monitoring. However, it remains a great challenge owing to the difficult sampling and low abundance. Here, we report a DNA hydrogel microneedles (MNs) array to realize rapid enrichment and sensitive detection of miRNA in ISF. The MNs' patch consists of methacrylate hyaluronic acid (MeHA) equipped with a smart DNA circuit hydrogels' system (MeHA/DNA), in which an appropriate miRNA input enables triggering a cascading toehold-mediated DNA displacement reaction to catalytically cleave cross-linking points to generate amplified fluorescence (FL) for miRNA detection. The MeHA/DNA-MNs patch with high mechanical strength can extract adequate ISF in a short time (0.97 ± 0.2 mg in 5 min) in vivo because of its supreme water affinity. Additionally, the cascading toehold-mediated DNA displacement signal amplification reaction allows for sensitive detection of the low-abundant miRNAs down to 241.56 pM. The DNA hydrogels' MNs present potential for minimally invasive personalized diagnosis and real-time health monitoring in clinical applications.
Collapse
Affiliation(s)
- Qiqi Yang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yeyu Wang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Tengfei Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Jiale Cheng
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yufan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Shuangshuang Yang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
13
|
He S, Yu S, Li R, Chen Y, Wang Q, He Y, Liu X, Wang F. On‐Site Non‐enzymatic Orthogonal Activation of a Catalytic DNA Circuit for Self‐Reinforced In Vivo MicroRNA Imaging. Angew Chem Int Ed Engl 2022; 61:e202206529. [DOI: 10.1002/anie.202206529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shizhen He
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan P. R. China
- Department of Gastrointestinal Surgery Zhongnan Hospital of Wuhan University Wuhan P. R. China
- Research Centre for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan P. R. China
| |
Collapse
|
14
|
He S, Yu S, Li R, Chen Y, Wang Q, He Y, Liu X, Wang F. On‐Site Nonenzymatic Orthogonal Activation of a Catalytic DNA Circuit for Self‐Reinforced In Vivo MicroRNA Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | - Yuqiu He
- Wuhan University Chemistry CHINA
| | | | - Fuan Wang
- Wuhan University College of Chemistry and Molecular Sciences Bayi Road 299 430072 Wuhan CHINA
| |
Collapse
|
15
|
Chen P, Wang D, Wang Y, Zhang L, Wang Q, Liu L, Li J, Sun X, Ren M, Wang R, Fang Y, Zhao JJ, Zhang K. Maximizing TLR9 Activation in Cancer Immunotherapy with Dual-Adjuvanted Spherical Nucleic Acids. NANO LETTERS 2022; 22:4058-4066. [PMID: 35522597 PMCID: PMC9164000 DOI: 10.1021/acs.nanolett.2c00723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen. Here, we demonstrate that a spherical nucleic acid (SNA)-based self-adjuvanting system consisting of phosphodiester oligonucleotides and vitamin E can function as a potent anticancer vaccine without a carrier. The two functional modules work synergistically, serving as each other's delivery vector to enhance toll-like receptor 9 activation. The vaccine rapidly enters cells carrying OVA model antigens, which enables efficient activation of adaptive immunity in vitro and in vivo. In OVA-expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a B16F10-OVA model.
Collapse
Affiliation(s)
- Peiru Chen
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Yuyan Wang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Lei Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Qiwei Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Lanxia Liu
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ruoxuan Wang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
Li S, Wang B, Jiang S, Pan Y, Shi Y, Kong W, Shan Y. Surface-Functionalized Silica-Coated Calcium Phosphate Nanoparticles Efficiently Deliver DNA-Based HIV-1 Trimeric Envelope Vaccines against HIV-1. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53630-53645. [PMID: 34735127 DOI: 10.1021/acsami.1c16989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains one of the worst crises in global health. The prevention of HIV-1 infection is a crucial task that needs to be addressed due to the absence of a licensed vaccine against HIV-1. DNA vaccines present a promising alternative approach to combat HIV-1 infection due to their excellent safety profile, lack of severe side effects, and relatively rapid fabrication. Traditional vaccines composed of a monomeric envelope or peptide fragments have been indicated to lack protective efficacy mediated by inducing HIV-1-specific neutralizing antibodies in clinical trials. The immunogenicity and protection against HIV-1 induced by DNA vaccines are limited due to the poor uptake of these vaccines by antigen-presenting cells and their ready degradation by DNases and lysosomes. To address these issues of naked DNA vaccines, we described the feasibility of CpG-functionalized silica-coated calcium phosphate nanoparticles (SCPs) for efficiently delivering DNA-based HIV-1 trimeric envelope vaccines against HIV-1. Vaccines comprising the soluble BG505 SOSIP.664 trimer fused to the GCN4-based isoleucine zipper or bacteriophage T4 fibritin foldon motif with excellent simulation of the native HIV-1 envelope were chosen as trimer-based vaccine platforms. Our results showed that SCP-based DNA immunization could significantly induce both broad humoral immune responses and potent cellular immune responses compared to naked DNA vaccination in vivo. To the best of our knowledge, this study is the first to assess the feasibility of CpG-functionalized SCPs for efficiently delivering DNA vaccines expressing a native-like HIV-1 trimer. These CpG-functionalized SCPs for delivering DNA-based HIV-1 trimeric envelope vaccines may lead to the development of promising vaccine candidates against HIV-1.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
17
|
Cao Y, Ding S, Zeng L, Miao J, Wang K, Chen G, Li C, Zhou J, Bian XW, Tian G. Reeducating Tumor-Associated Macrophages Using CpG@Au Nanocomposites to Modulate Immunosuppressive Microenvironment for Improved Radio-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53504-53518. [PMID: 34704726 DOI: 10.1021/acsami.1c07626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the recent success of immune checkpoint blockade (ICB) in cancer immunotherapy, there has been renewed interest in evaluating the combination of ICB inhibitors with radiotherapy (RT) in clinical trials in view of the localized RT-initiated vaccination effect, which can be augmented further by systemic immune-stimulating agents. Unfortunately, traditional RT/ICB accompanies severe toxicity from high-dose ionizing irradiation and low response rate from RT-aggravated immunosuppression, among which M2-type tumor-associated macrophages (TAMs) play an important role. Herein, CpG-decorated gold (Au) nanoparticles (CpG@Au NPs) were fabricated to improve the RT/ICB efficacy by immune modulation under low-dose X-ray exposure, where Au NPs served as radioenhancers to minimize the radiotoxicity, and yet acted as nanocarriers to deliver CpG, a toll-like receptor 9 agonist, to re-educate immunosuppressive M2 TAMs to immunostimulatory M1 counterparts, thus arousing innate immunity and meanwhile priming T cell activation. When combined with an anti-programmed death 1 antibody, irradiated CpG@Au led to consistent abscopal responses that efficiently suppressed distant tumors in a bilateral GL261 tumor-bearing model. This work thus demonstrates that CpG@Au-mediated macrophage reeducation could efficiently modulate the tumor-immune microenvironment for synergistic RT/ICB.
Collapse
Affiliation(s)
- Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Kai Wang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Gang Chen
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Chunyan Li
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, P. R. China
| |
Collapse
|
18
|
Sun J, Liu F, Yu W, Fu D, Jiang Q, Mo F, Wang X, Shi T, Wang F, Pang D, Liu X. Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew Chem Int Ed Engl 2021; 60:24275-24283. [PMID: 34476884 PMCID: PMC8652846 DOI: 10.1002/anie.202111093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The direct visualization of vaccine fate is important to investigate its immunoactivation process to elucidate the detailed molecular reaction process at single-molecular level. Yet, visualization of the spatiotemporal trafficking of vaccines remains poorly explored. Here, we show that quantum dot (QD) nanomaterials allow for monitoring vaccine dynamics and for amplified immune response. Synthetic QDs enable efficient conjugation of antigen and adjuvants to target tissues and cells, and non-invasive imaging the trafficking dynamics to lymph nodes and cellular compartments. The nanoparticle vaccine elicits potent immune responses and anti-tumor efficacy alone or in combination with programmed cell death protein 1 blockade. The synthetic QDs showed high fluorescence quantum yield and superior photostability, and the reliable and long-term spatiotemporal tracking of vaccine dynamics was realized for the first time by using the synthetic QDs, providing a powerful strategy for studying immune response and evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Junlin Sun
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Feng Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Wenqian Yu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Dandan Fu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Fengye Mo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionFrontiers Science Center for New Organic MatterResearch Center for Analytical SciencesCollege of ChemistryFrontiers Science Center for Cell ResponsesNankai UniversityTianjin300071P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
19
|
Sun J, Liu F, Yu W, Fu D, Jiang Q, Mo F, Wang X, Shi T, Wang F, Pang D, Liu X. Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junlin Sun
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Feng Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Wenqian Yu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Dandan Fu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Qunying Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Tianhui Shi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Biosensing and Molecular Recognition Frontiers Science Center for New Organic Matter Research Center for Analytical Sciences College of Chemistry Frontiers Science Center for Cell Responses Nankai University Tianjin 300071 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
20
|
Dai Z, Wang L, Wang Z. Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100083. [PMID: 33896107 DOI: 10.1002/mabi.202100083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy has risen as a promising method in clinical practice for cancer treatment and DNA-based immune intervention materials, along with DNA nanotechnology, have obtained increasing importance in this field. In this review, various immunostimulating DNA materials are introduced and the mechanisms via which they exerted an immune effect are explained. Then, representative examples in which DNA is used as the leading component for anticancer applications through immune stimulation are provided and their efficacy is evaluated. Finally, the challenges for those materials in clinical applications are discussed and suggestions for possible further research directions are also put forward.
Collapse
Affiliation(s)
- Ziwen Dai
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
21
|
Wang J, Yu S, Wu Q, Gong X, He S, Shang J, Liu X, Wang F. A Self‐Catabolic Multifunctional DNAzyme Nanosponge for Programmable Drug Delivery and Efficient Gene Silencing. Angew Chem Int Ed Engl 2021; 60:10766-10774. [DOI: 10.1002/anie.202101474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
- Oil Crops Research Institute Chinese Academy of Agricultural Sciences Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing Ministry of Agriculture 430062 Wuhan P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Qiong Wu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
22
|
Wang J, Yu S, Wu Q, Gong X, He S, Shang J, Liu X, Wang F. A Self‐Catabolic Multifunctional DNAzyme Nanosponge for Programmable Drug Delivery and Efficient Gene Silencing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
- Oil Crops Research Institute Chinese Academy of Agricultural Sciences Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing Ministry of Agriculture 430062 Wuhan P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Qiong Wu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
23
|
Wang H, Luo D, Wang H, Wang F, Liu X. Construction of Smart Stimuli-Responsive DNA Nanostructures for Biomedical Applications. Chemistry 2021; 27:3929-3943. [PMID: 32830363 DOI: 10.1002/chem.202003145] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/12/2020] [Indexed: 12/13/2022]
Abstract
DNA nanostructures have recently attracted increasing interest in biological and biomedical applications by virtue of their unique properties, such as structural programmability, multi-functionality, stimuli-responsive behaviors, and excellent biocompatibility. In particular, the intelligent responsiveness of smart DNA nanostructures to specific stimuli has facilitated their extensive development in the field of high-performance biosensing and controllable drug delivery. This minireview begins with different self-assembly strategies for the construction of various DNA nanostructures, followed by the introduction of a variety of stimuli-responsive functional DNA nanostructures for assembling metastable soft materials and for facilitating amplified biosensing. The recent achievements of smart DNA nanostructures for controllable drug delivery are highlighted. Finally, the current challenges and possible developments of this promising research are discussed in the fields of intelligent nanomedicine.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Dan Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| |
Collapse
|
24
|
Feng J, Ren WX, Kong F, Dong YB. Recent insight into functional crystalline porous frameworks for cancer photodynamic therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01051k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We summarize and illustrate the recent developments of MOF- and COF-based nanomedicines for PDT and its combined antitumor treatments. Furthermore, major challenges and future development prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen-Xiu Ren
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Kong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
25
|
Kimna C, Lieleg O. Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine. BIOPHYSICS REVIEWS 2020; 1:011305. [PMID: 38505628 PMCID: PMC10903406 DOI: 10.1063/5.0033378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 03/21/2024]
Abstract
Current advances in DNA nanotechnology pinpoint exciting perspectives for the design of customized, patient-specific treatments. This advance is made possible by the exceptionally high precision and specificity that are typical for DNA base pairing on the one hand and our growing ability to harness those features in synthetic, DNA-based constructs on the other hand. Modern medicine may soon benefit from recent developments in this field, especially regarding the targeted delivery of drugs and the rational interference of synthetic DNA strands with cellular oligonucleotides. In this Review, we summarize selected examples from the area of DNA nanotechnology, where the development of precisely controlled, advanced functional mechanisms was achieved. To demonstrate the high versatility of these rationally designed structures, we categorize the dynamic DNA-based materials suggested for precision medicine according to four fundamental tasks: "hold & release," "heal," "detect & measure," as well as "guide & direct." In all the biomedical applications we highlight, DNA strands not only constitute structural building blocks but allow for creating stimuli-responsive objects, serve as an active cargo, or act as molecular control/guidance tools. Moreover, we discuss several issues that need to be considered when DNA-based structures are designed for applications in the field of precision medicine. Even though the majority of DNA-based objects have not been used in clinical settings yet, recent progress regarding the stability, specificity, and control over the dynamic behavior of synthetic DNA structures has advanced greatly. Thus, medical applications of those nanoscopic objects should be feasible in the near future.
Collapse
|
26
|
Zeng Y, Nixon RL, Liu W, Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2020; 268:120560. [PMID: 33285441 DOI: 10.1016/j.biomaterials.2020.120560] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Deoxyribonucleic acid (DNA) is a molecular carrier of genetic information that can be fabricated into functional nanomaterials in biochemistry and engineering fields. Those DNA nanostructures, synthesized via Watson-Crick base pairing, show a wide range of attributes along with excellent applicability, precise programmability, and extremely low cytotoxicity in vitro and in vivo. In this review, the applications of functionalized DNA nanostructures in bioimaging and tumor therapy are summarized. We focused on approaches involving DNA origami nanostructures due to their widespread use in previous and current reports. Non-DNA origami nanostructures such as DNA tetrahedrons are also covered. Finally, the remaining challenges and perspectives regarding DNA nanostructures in the biomedical arena are discussed.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| | - Rachel L Nixon
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
27
|
Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors. ACS Sens 2020; 5:2977-3000. [PMID: 32945653 DOI: 10.1021/acssensors.0c01453] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the continuous development of biosensors, researchers have focused increasing attention on various signal amplification strategies to pursue superior performance for more applications. In comparison with other signal amplification strategies, hybridization chain reaction (HCR) as a powerful signal amplification technique shows its certain charm owing to nonenzymatic and isothermal features. Recently, on the basis of conventional HCR, this technique has been developed and improved rapidly, and a variety of HCR-based biosensors with excellent performance have been reported. Herein, we present a systematic and critical review on the research progress of HCR in biosensors in the last five years, including the newly developed HCR strategies such as multibranched HCR, migration HCR, localized HCR, in situ HCR, netlike HCR, and so on, as well as the combination strategies of HCR with isothermal signal amplification techniques, nanomaterials, and functional DNA molecules. By illustrating some representative works, we also summarize the advantage and challenge of HCR in biosensors, and offer a deep discussion of the latest progress and future development trends of HCR in biosensors.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
28
|
Yu W, Sun J, Liu F, Yu S, Hu J, Zhao Y, Wang X, Liu X. Treating Immunologically Cold Tumors by Precise Cancer Photoimmunotherapy with an Extendable Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40002-40012. [PMID: 32805869 DOI: 10.1021/acsami.0c09469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although immunotherapy has merged as an ideal cancer therapeutic strategy for preventing tumor growth and recurrence, effective approaches to treat immunologically cold tumors are still lacking. Herein, we reported a practical and extendable nanoplatform (HA/ZIF-8@ICG@IMQ) that facilely integrated various therapeutics and functions for boosting host antitumor immunity to treat immunologically cold tumors. The tumor-targeted and microenvironment-responsive HA/ZIF-8@ICG@IMQ facilitated the tumor-specific accumulation and release of photothermal agents and immune adjuvants. With near-infrared irradiation, the designed nanoparticles effectively enhanced the infiltration of cytotoxic T lymphocytes and helper T cells and effectively blocked the growth of primary and distant tumors. Moreover, the smart therapeutic could effectively prevent tumor rechallenge and recurrence with a long-term host immunological memory response. This method shows an effective immunologically cold tumor treatment using extendable nanotherapeutics and may have reference significance for clinical cancer therapy.
Collapse
Affiliation(s)
- Wenqian Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Junlin Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shuyi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jialing Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiuyuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|