1
|
Kriukov K, Schneider D, Zeck S, Hahn L, Hofmann F, Altmann S, Luxenhofer R, Ebert R. Assessment of the viability and mechanoresponsiveness of hMSC-TERT printed with bioinert, thermoresponsive hydrogels. Sci Rep 2025; 15:12257. [PMID: 40210996 PMCID: PMC11986050 DOI: 10.1038/s41598-025-97196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
During three-dimensional (3D) bioprinting, the integration of living cells into hydrogel matrices results in complex biophysicochemical interactions between viscosity, shear stress, and temperature, critically influencing the structural and functional integrity of the resulting constructs. This study delves into the short-term biological ramifications of 3D extrusion printing of telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) embedded in bioinert hydrogels. Pluronic F127 and custom-synthesized poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2-oxazine) (POx/POzi) are synthetic, block copolymers that create shear-thinning, physically crosslinked hydrogels that were used for this study. The rheological properties of the cell-free hydrogels and cell-laden bioinks were examined, revealing that they exhibited comparable behavior. Contrary to the original hypotheses, a key finding of this research is the reduction in cell viability (up to 50%) within 24 h post-printing, a trend consistently observed across varying initial conditions. The relative expression levels of the mechanoresponsive genes FOS and PTGS2 were increased, partly due to the suspension and incubation of the cells in both hydrogels. Only FOS was significantly upregulated in some cases because of the printing process after 2 and 4 h of incubation. These insights highlight the potential of using POx/POzi hydrogel as a matrix in 3D bioprinting, particularly for depositing hMSC-TERT into structures with vasculature-mimicking scaffolds or scaffolds designed for bone regeneration.
Collapse
Affiliation(s)
- Kirill Kriukov
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Doris Schneider
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Sabine Zeck
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Lukas Hahn
- Institute for Functional Materials and Biofabrication, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Florian Hofmann
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Stephan Altmann
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany
| | - Robert Luxenhofer
- Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, Helsinki, 00014, Finland.
- Institute for Functional Materials and Biofabrication, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076, Würzburg, Germany.
| |
Collapse
|
2
|
Rony FK, Appiah J, Alawbali A, Clay D, Ilias S, Azad MA. Evaluating Swellable Cross-Linked Biopolymer Impact on Ink Rheology and Mechanical Properties of Drug-Contained 3D-Printed Thin Film. Pharmaceutics 2025; 17:183. [PMID: 40006550 PMCID: PMC11858972 DOI: 10.3390/pharmaceutics17020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Interest in 3D printing oral thin films (OTFs) has increased substantially. The challenge of 3D printing is film printability, which is strongly affected by the rheological properties of the ink and having suitable mechanical properties. This research assesses the suitability of sodium starch glycolate (SSG), a swellable cross-linked biopolymer, on ink rheology and the film's mechanical properties. Methods: A water-based ink comprising sodium alginate (SA), the drug fenofibrate (FNB), SSG, glycerin, and polyvinylpyrrolidone (PVP) was formulated, and its rheology was assessed through flow, amplitude sweeps, and thixotropy tests. Films (10 mm × 15 mm × 0.35 mm) were 3D-printed using a 410 µm nozzle, 50% infill density, 60 kPa pressure, and 10 mm/s speed, with mechanical properties (Young's modulus, tensile strength, and elongation at break) analyzed using a TA-XT Plus C texture analyzer. Results: The rheology showed SSG-based ink has suitable properties (shear-thinning behavior, high viscosity, higher modulus, and quick recovery) for 3D printing. SSG enhanced the rheology (viscosity and modulus) of ink but not the mechanical properties of film. XRD and DSC confirmed preserved FNB crystallinity without polymorphic changes. SEM images showed surface morphology and particle distribution across the film. The film demonstrated a drug loading of 44.28% (RSD 5.62%) and a dissolution rate of ~77% within 30 min. Conclusions: SSG improves ink rheology, makes it compatible with 3D printing, and enhances drug dissolution (formulation F-5). Plasticizer glycerin is essential with SSG to achieve the film's required mechanical properties. The study confirms SSG's suitability for 3D printing of OTFs.
Collapse
Affiliation(s)
- Farzana Khan Rony
- Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Jonathan Appiah
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Asmaa Alawbali
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Distinee Clay
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Shamsuddin Ilias
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Mohammad A. Azad
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| |
Collapse
|
3
|
Wang H, Wang Q, Su Y, Wang J, Zhang X, Liu Y, Zhang J. Thermosensitive Triblock Copolymer for Slow-Release Lubricants under Ocular Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1675-1687. [PMID: 38127457 DOI: 10.1021/acsami.3c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The ocular environment is crucial for a biological lubrication system. An unstable condition of tear film may cause a series of ocular diseases due to serious friction, such as dry eye syndrome, which has drawn extensive attention nowadays. In this study, an in vitro biocompatible superlubricity system, containing thermogelling copolymers (PCGA-PEG-PCGA) and slow-release lubricant (PEG 300/Tween 80), was constructed. First, the sol-gel transition temperature and gel strength of PCGA-PEG-PCGA were adjusted based on the ocular environment by regulating the length of PCGA blocks. Furthermore, the copolymer hydrogel exhibited a reliable slow-release property within 10 days and showed low cytotoxicity. Then, the superlubricity (coefficient of friction of approximately 0.005) was achieved with its released PEG 300/Tween 80 aqueous solution at the sliding velocity range of 1-100 mm s-1 and pressure range of 10-22 kPa. However, the lubrication behaviors varied, while PEG 300 chains and Tween 80 micelles were demonstrated to form a multilayer and a single layer adsorption structure on the sliding surface, respectively. On the whole, the composite lubrication systems, especially the one composed of Tween 80, showed excellent tribological properties owing to the stable slow-release and full hydration effects under ocular conditions, which hold great potential for improving ocular lubrication and maintaining human visual health.
Collapse
Affiliation(s)
- Hongdong Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Qi Wang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Yunjuan Su
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| | - Junyu Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Xiacong Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai 200444, China
| |
Collapse
|
4
|
Haider MS, Mahato AK, Kotliarova A, Forster S, Böttcher B, Stahlhut P, Sidorova Y, Luxenhofer R. Biological Activity In Vitro, Absorption, BBB Penetration, and Tolerability of Nanoformulation of BT44:RET Agonist with Disease-Modifying Potential for the Treatment of Neurodegeneration. Biomacromolecules 2023; 24:4348-4365. [PMID: 36219820 PMCID: PMC10565809 DOI: 10.1021/acs.biomac.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Indexed: 11/29/2022]
Abstract
BT44 is a novel, second-generation glial cell line-derived neurotropic factor mimetic with improved biological activity and is a lead compound for the treatment of neurodegenerative disorders. Like many other small molecules, it suffers from intrinsic poor aqueous solubility, posing significant hurdles at various levels for its preclinical development and clinical translation. Herein, we report a poly(2-oxazoline)s (POx)-based BT44 micellar nanoformulation with an ultrahigh drug-loading capacity of 47 wt %. The BT44 nanoformulation was comprehensively characterized by 1H NMR spectroscopy, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), dynamic light scattering (DLS), and cryo-transmission/scanning electron microscopy (cryo-TEM/SEM). The DSC, XRD, and redispersion studies collectively confirmed that the BT44 formulation can be stored as a lyophilized powder and can be redispersed upon need. The DLS suggested that the redispersed formulation is suitable for parenteral administration (Dh ≈ 70 nm). The cryo-TEM measurements showed the presence of wormlike structures in both the plain polymer and the BT44 formulation. The BT44 formulation retained biological activity in immortalized cells and in cultured dopamine neurons. The micellar nanoformulation of BT44 exhibited improved absorption (after subcutaneous injection) and blood-brain barrier (BBB) penetration, and no acute toxic effects in mice were observed. In conclusion, herein, we have developed an ultrahigh BT44-loaded aqueous injectable nanoformulation, which can be used to pave the way for its preclinical and clinical development for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- University
Hospital of Würzburg, Department of Ophthalmology, Josef-Schneider-Street 11, D-97080Würzburg, Germany
| | - Arun Kumar Mahato
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Anastasiia Kotliarova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Stefan Forster
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
| | - Bettina Böttcher
- Biocenter
and Rudolf Virchow Centre, Julius-Maximilians-University
Würzburg, Haus
D15, Josef-Schneider-Strasse 2, 97080Würzburg, Germany
| | - Philipp Stahlhut
- Department
of Functional Materials in Medicine and Dentistry, Institute of Functional
Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070Würzburg, Germany
| | - Yulia Sidorova
- Laboratory
of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014Helsinki, Finland
| | - Robert Luxenhofer
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring
11, 97070Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, and Helsinki Institute
of Sustainability Science, Faculty of Science, University of Helsinki, PB 55-00014Helsinki, Finland
| |
Collapse
|
5
|
Hahn L, Zorn T, Kehrein J, Kielholz T, Ziegler AL, Forster S, Sochor B, Lisitsyna ES, Durandin NA, Laaksonen T, Aseyev V, Sotriffer C, Saalwächter K, Windbergs M, Pöppler AC, Luxenhofer R. Unraveling an Alternative Mechanism in Polymer Self-Assemblies: An Order-Order Transition with Unusual Molecular Interactions between Hydrophilic and Hydrophobic Polymer Blocks. ACS NANO 2023; 17:6932-6942. [PMID: 36972400 PMCID: PMC10100562 DOI: 10.1021/acsnano.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.
Collapse
Affiliation(s)
- Lukas Hahn
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Zorn
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josef Kehrein
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Kielholz
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Anna-Lena Ziegler
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Stefan Forster
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Benedikt Sochor
- Chair for
X-Ray Microscopy, Julius-Maximilians-University
Würzburg, Josef-Martin-Weg
63, 97074 Würzburg, Germany
| | - Ekaterina S. Lisitsyna
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Nikita A. Durandin
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Timo Laaksonen
- Faculty
of Engineering and Natural Science, Tampere
University, Korkeakoulunkatu 8, 33720 Tampere, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kay Saalwächter
- Institute
of Physics-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Maike Windbergs
- Institute
of Pharmaceutical Technology and Buchmann Institute for Molecular
Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ann-Christin Pöppler
- Center
for Nanosystems Chemistry & Institute of Organic Chemistry, Department
of Chemistry and Pharmacy, Julius-Maximilians-University
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Institute
for Functional Materials and Biofabrication, Department of Chemistry
and Pharmacy, Julius-Maximilians-University
Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft
Matter Chemistry, Department of Chemistry, Helsinki Institute of Sustainability
Science, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
6
|
|
7
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Wong JHM, Tan RPT, Chang JJ, Chan BQY, Zhao X, Cheng JJW, Yu Y, Boo YJ, Lin Q, Ow V, Su X, Lim JYC, Loh XJ, Xue K. Injectable Hybrid-Crosslinked Hydrogels as Fatigue-Resistant and Shape-Stable Skin Depots. Biomacromolecules 2022; 23:3698-3712. [PMID: 35998618 DOI: 10.1021/acs.biomac.2c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Rebekah Pei Ting Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinxin Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.,School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| |
Collapse
|
9
|
Tenhu H, Baddam V, Välinen L, Kuckling L. Morphological transitions of cationic PISA particles by salt, triflate ions and temperature; comparison of three polycations. Polym Chem 2022. [DOI: 10.1039/d2py00301e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three strong polycation stabilizers, poly((vinylbenzyl) trimethylammonium chloride), PVBTMAC, poly((2-(methacryloyloxy)ethyl)trimethylammonium chloride), PMOTAC, and poly((3-acrylamidopropyl) trimethylammonium chloride), PAMPTMAC have been synthesized with reversible addition-fragmentation chain transfer, RAFT, reactions. Solubilities of the polycations...
Collapse
|
10
|
Brossier T, Benkhaled BT, Colpaert M, Volpi G, Guillaume O, Blanquer S, Lapinte V. Polyoxazoline Hydrogels fabricated by Stereolithography. Biomater Sci 2022; 10:2681-2691. [DOI: 10.1039/d2bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogel materials in additive manufacturing displaying stiff and strong mechanical properties while maintaining high water uptake, remains a great challenge. Taking advantage of the versatility of poly(oxazoline)...
Collapse
|
11
|
Hu C, Ahmad T, Haider MS, Hahn L, Stahlhut P, Groll J, Luxenhofer R. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Biofabrication 2021; 14. [PMID: 34875631 DOI: 10.1088/1758-5090/ac40ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
Alginates are the most commonly used bioink in biofabrication, but their rheological profiles makes it very challenging to perform real 3D printing. In this study, an advanced hybrid hydrogel ink was developed, a mixture of thermogelling diblock copolymer, alginate and clay i.e. Laponite XLG. The reversible thermogelling and shear thinning properties of the diblock copolymer in the ink system improves handling and 3D printability significantly. Various three-dimensional constructs, including suspended filaments, were printed successfully with high shape fidelity and excellent stackability. Subsequent ionic crosslinking of alginate fixates the printed scaffolds, while the diblock copolymer is washed out of the structure, acting as a fugitive material on the (macro)molecular level. Finally, cell-laden printing and culture over 21 days demonstrated good cytocompatibility and feasibility of the novel hybrid hydrogels for 3D bioprinting. We believe that the developed material could be interesting for a wide range of bioprinting applications including tissue engineering and drug screening, potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks.
Collapse
Affiliation(s)
- Chen Hu
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Taufiq Ahmad
- Department for Functional Materials in Medicine and Dentistry , University of Würzburg, Pleicherwall 2, Würzburg, Würzburg, D-97070, GERMANY
| | - Malik Salman Haider
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Lukas Hahn
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University Würzburg, Pleicherwall 2, Wurzburg, 97070, GERMANY
| | - Juergen Groll
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-Universitat Wurzburg, Pleicherwall 2, D17, D-97070 Wurzburg, Wurzburg, 97070, GERMANY
| | - Robert Luxenhofer
- Chemistry and Pharmacy, Julius-Maximilians-Universitat Wurzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| |
Collapse
|
12
|
Hasselmann S, Hahn L, Lorson T, Schätzlein E, Sébastien I, Beudert M, Lühmann T, Neubauer JC, Sextl G, Luxenhofer R, Heinrich D. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. MATERIALS HORIZONS 2021; 8:3334-3344. [PMID: 34617095 DOI: 10.1039/d1mh00925g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Hasselmann
- Fraunhofer Project Center for Stem Cell Process Engineering Neunerplatz 2, Würzburg 97082, Germany
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Eva Schätzlein
- East Bavarian Technical University of Applied Sciences, Prüfeninger Str. 58, Regensburg 93049, Germany
| | - Isabelle Sébastien
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Gerhard Sextl
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki, Helsinki 00014, Finland.
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, Heilbad Heiligenstadt 37308, Germany
- Faculty for Mathematics and Natural Sciences, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
13
|
Idumah CI, Ezika AC. Recent advancements in hybridized polymer nano-biocomposites for tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Anthony Chidi Ezika
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
14
|
Hahn L, Keßler L, Polzin L, Fritze L, Forster S, Helten H, Luxenhofer R. ABA Type Amphiphiles with Poly(2‐benzhydryl‐2‐oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Röntgenring 11 Würzburg 97070 Germany
| | - Larissa Keßler
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Röntgenring 11 Würzburg 97070 Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki P.O. Box 55 Helsinki 00014 Finland
| | - Lando Polzin
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Röntgenring 11 Würzburg 97070 Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius‐Maximilians‐University Würzburg Am Hubland Würzburg 97074 Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Röntgenring 11 Würzburg 97070 Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius‐Maximilians‐University Würzburg Am Hubland Würzburg 97074 Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy Julius‐Maximilians‐University Würzburg Röntgenring 11 Würzburg 97070 Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki P.O. Box 55 Helsinki 00014 Finland
| |
Collapse
|
15
|
Hahn L, Beudert M, Gutmann M, Keßler L, Stahlhut P, Fischer L, Karakaya E, Lorson T, Thievessen I, Detsch R, Lühmann T, Luxenhofer R. From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking. Macromol Biosci 2021; 21:e2100122. [PMID: 34292657 DOI: 10.1002/mabi.202100122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Larissa Keßler
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Lena Fischer
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, Erlangen, 91052, Germany
| | - Emine Karakaya
- Institute of Biomaterials, University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen, 91058, Germany
| | - Thomas Lorson
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Ingo Thievessen
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Henkestrasse 91, Erlangen, 91052, Germany
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen, 91058, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg, 97070, Germany.,Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 55, Helsinki, FIN-00014, Finland
| |
Collapse
|
16
|
Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021; 7:78. [PMID: 34202652 PMCID: PMC8293086 DOI: 10.3390/gels7030078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, 00014 Helsinki, Finland
| |
Collapse
|
17
|
Hahn L, Karakaya E, Zorn T, Sochor B, Maier M, Stahlhut P, Forster S, Fischer K, Seiffert S, Pöppler AC, Detsch R, Luxenhofer R. An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile. Biomacromolecules 2021; 22:3017-3027. [PMID: 34100282 DOI: 10.1021/acs.biomac.1c00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into a macroporous hydrogel of densely packed micelles. This hydrogel exhibited pronounced viscoelastic solid-like properties, as well as extensive shear-thinning, rapid structure recovery, and good strain resistance properties. Excellent 3D-printability of the hydrogel at lower temperature opens a wide range of different applications, for example, in the field of biofabrication. In preliminary bioprinting experiments using NIH 3T3 cells, excellent cell viabilities of more than 95% were achieved. The particularly interesting feature of this novel material is that it can be used as a printing support in hybrid bioink systems and sacrificial bioink due to rapid dissolution at physiological conditions.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Theresa Zorn
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Benedikt Sochor
- Chair for X-Ray Microscopy, Julius-Maximilians-University Würzburg, Josef-Martin-Weg 63, Würzburg 97074, Germany
| | - Matthias Maier
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-University Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Karl Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich Alexander University of Erlangen-Nürnberg, Cauerstr. 6, Erlangen 91058, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, Würzburg 97070, Germany.,Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
18
|
Hu C, Haider MS, Hahn L, Yang M, Luxenhofer R. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel. J Mater Chem B 2021; 9:4535-4545. [PMID: 34037651 DOI: 10.1039/d1tb00484k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high intrinsic 3D printing performance has been proven to be a major challenge. Herein, a novel 3D printable organic-inorganic hybrid hydrogel is developed from three components, and characterized in detail in terms of rheological property, swelling behavior and composition. The nanocomposite hydrogel combines a thermoresponsive hydrogel with clay LAPONITE® XLG and in situ polymerized poly(N,N-dimethylacrylamide). Before in situ polymerization, the thermogelling and shear thinning properties of the thermoresponsive hydrogel provides a system well-suited for extrusion-based 3D printing. After chemical curing of the 3D-printed constructs by free radical polymerization, the resulting interpenetrating polymer network hydrogel shows excellent mechanical strength with a high stretchability to a tensile strain at break exceeding 550%. Integrating with the advanced 3D-printing technique, the introduced material could be interesting for a wide range of applications including tissue engineering, drug delivery, soft robotics and additive manufacturing in general.
Collapse
Affiliation(s)
- Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany. and Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Trachsel L, Zenobi-Wong M, Benetti EM. The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomater Sci 2021; 9:2874-2886. [PMID: 33729230 DOI: 10.1039/d0bm02217a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Poly(2-alkyl-2-oxazoline)s (PAOXAs) have been rapidly emerging as starting materials in the design of tissue engineering supports and for the generation of platforms for cell cultures, especially in the form of hydrogels. Thanks to their biocompatibility, chemical versatility and robustness, PAOXAs now represent a valid alternative to poly(ethylene glycol)s (PEGs) and their derivatives in these applications, and in the formulation of bioinks for three-dimensional (3D) bioprinting. In this review, we summarize the recent literature where PAOXAs have been used as main components for hydrogels and biofabrication mixtures, especially highlighting how their easily tunable composition could be exploited to fabricate multifunctional biomaterials with an extremely broad spectrum of properties.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland. and Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| |
Collapse
|
20
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
21
|
Halupczok S, Pfister M, Ringhand A, Fetsch C, Cubukova A, Appelt-Menzel A, Luxenhofer R. Poly(2-ethyl-2-oxazoline- co-N-propylethylene imine)s by controlled partial reduction of poly(2-ethyl-2-oxazoline): synthesis, characterization and cytotoxicity. Polym Chem 2021. [DOI: 10.1039/d0py01258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers obtained via partial reduction of poly(2-ethy-2-oxazoline)s were studied on their cytocompatibility and their buffer capacity in acidic environment.
Collapse
Affiliation(s)
- Sebastian Halupczok
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Maria Pfister
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Annemarie Ringhand
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Corinna Fetsch
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| | - Alevtina Cubukova
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC
- Translational Center Regenerative Therapies TLC-RT
- 97070 Würzburg
- Germany
- University Hospital Würzburg
| | - Robert Luxenhofer
- Polymer Functional Materials
- Chair for Advanced Materials Synthesis
- Department for Chemistry and Pharmacy
- Julius-Maximilians-Universität Würzburg
- 97070 Würzburg
| |
Collapse
|
22
|
Borova S, Tokarev V, Stahlhut P, Luxenhofer R. Crosslinking of hydrophilic polymers using polyperoxides. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04738-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractHydrogels that can mimic mechanical properties and functions of biological tissue have attracted great interest in tissue engineering and biofabrication. In these fields, new materials and approaches to prepare hydrogels without using toxic starting materials or materials that decompose into toxic compounds remain to be sought after. Here, we report the crosslinking of commercial, unfunctionalized hydrophilic poly(2-ethyl-2-oxazoline) using peroxide copolymers in their melt. The influence of temperature, peroxide copolymer concentration, and duration of the crosslinking process has been investigated. The method allows to create hydrogels from unfunctionalized polymers in their melt and to control the mechanical properties of the resulting materials. The design of hydrogels with a suitable mechanical performance is of crucial importance in many existing and potential applications of soft materials, including medical applications.
Collapse
|
23
|
Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001379. [PMID: 32999820 PMCID: PMC7507554 DOI: 10.1002/advs.202001379] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Indexed: 05/24/2023]
Abstract
3D printing is a rapidly growing technology that has an enormous potential to impact a wide range of industries such as engineering, art, education, medicine, and aerospace. The flexibility in design provided by this technique offers many opportunities for manufacturing sophisticated 3D devices. The most widely utilized method is an extrusion-based solid-freeform fabrication approach, which is an extremely attractive additive manufacturing technology in both academic and industrial research communities. This method is versatile, with the ability to print a range of dimensions, multimaterial, and multifunctional 3D structures. It is also a very affordable technique in prototyping. However, the lack of variety in printable polymers with advanced material properties becomes the main bottleneck in further development of this technology. Herein, a comprehensive review is provided, focusing on material design strategies to achieve or enhance the 3D printability of a range of polymers including thermoplastics, thermosets, hydrogels, and other polymers by extrusion techniques. Moreover, diverse advanced properties exhibited by such printed polymers, such as mechanical strength, conductance, self-healing, as well as other integrated properties are highlighted. Lastly, the stimuli responsiveness of the 3D printed polymeric materials including shape morphing, degradability, and color changing is also discussed.
Collapse
Affiliation(s)
- Zhen Jiang
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Broden Diggle
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Ming Li Tan
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | - Jekaterina Viktorova
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| | | | - Luke A. Connal
- Research School of ChemistryAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|