1
|
Su W, Nie Y, Zheng S, Yao Y. Recent Research on Chondrocyte Dedifferentiation and Insights for Regenerative Medicine. Biotechnol Bioeng 2025; 122:749-760. [PMID: 39716991 DOI: 10.1002/bit.28915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Chondrocytes maintain the balance of the extracellular matrix by synthesizing glycoproteins, collagen, proteoglycans and hyaluronic acid. Chondrocyte dedifferentiation refers to a process in which chondrocytes lose their mature differentiated phenotype and transform into a fibroblast-like morphology with fewer differentiated stages and inferior function under external stimulation. The important mechanism of homeostasis loss in osteoarthritis (OA) is a change in the chondrocyte phenotype. The dedifferentiation markers of chondrocytes are upregulated in OA, and the pathogenic factors related to OA have also been shown to enhance chondrocyte dedifferentiation. In this review, we compile recent studies on chondrocyte dedifferentiation, with an emphasis on potential markers and the underlying mechanisms of dedifferentiation, as well as the current research progress in inhibiting dedifferentiation or achieving redifferentiation. A deep understanding of chondrocyte dedifferentiation would not only support the pathogenesis of OA theoretically but also provide insightful ideas for regenerative medicine to manipulate the functional phenotype of cells.
Collapse
Affiliation(s)
- Weixian Su
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Nie
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Shicong Zheng
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhang Q, Wang Y, Zhang Y, Wei X, Chen W, Zhang Q. A single-cell 3D dynamic volume control system for chondrocytes. Biotechniques 2024; 76:495-504. [PMID: 39404194 DOI: 10.1080/07366205.2024.2412414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/24/2024] [Indexed: 01/18/2025] Open
Abstract
In articular cartilage, zone-specific cellular morphology is a typical characteristic of cartilage tissue, which is related with chondrocyte function, inflammation and osteoarthritis (OA). Chondrocyte hypertrophic phenotype is a criticle physiological process which indicates a hallmark of chondrocyte terminal differentiation and bone formation. Thus, developing a in vitro cell culture system for dynamic regulation of single chondrocyte volume at a three-dimensional (3D) level is particularly necessary for understanding how physical cues of matrix microenvironment regulate chondrocyte fate and the degeneration of articular cartilage. Here, based on the soft lithography techniques, we have constructed well-defined single-cell 3D dynamic volume control system to recapitulate the physiological matrix microenvironment of single chondrocyte niche. The results of finite element analysis indicated that the stress and strain distribution in the cell culture region is homogeneous during the stretching process. Additionally, 3D dynamic volume expansion and compression of single cells in physiological or hyperphysiological can be realized in this cell culture system. Our device for single-cell 3D dynamic culture provides a microphysiological culture system for chondrocytes to explore the mechanisms of cartilage hypertrophy, as well as develops a new paradigm for functional cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yiyao Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone & Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone & Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone & Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
3
|
Chen X, Huang S, Niu Y, Luo M, Liu H, Jiao Y, Huang J. Transplantation of Gelatin Microspheres Loaded with Wharton's Jelly Derived Mesenchymal Stem Cells Facilitates Cartilage Repair in Mice. Tissue Eng Regen Med 2024; 21:171-183. [PMID: 37688747 PMCID: PMC10764672 DOI: 10.1007/s13770-023-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a prevalent chronic joint disease caused by various factors. Mesenchymal stem cells (MSCs) therapy is an increasingly promising therapeutic option for osteoarthritis. However, the chronic inflammation of knee joint can severely impede the therapeutic effects of transplanted cells. Gelatin microspheres (GMs) are degradable biomaterial that have various porosities for cell adhesion and cell-cell interaction. Excellent elasticity and deformability of GMs make it an excellent injectable vehicle for cell delivery. METHODS We created Wharton's jelly derived mesenchymal stem cells (WJMSCs)-GMs complexes and assessed the effects of GMs on cell activity, proliferation and chondrogenesis. Then, WJMSCs loaded in GMs were transplanted in the joint of osteoarthritis mice. After four weeks, joint tissue was collected for histological analysis. Overexpressing-luciferase WJMSCs were performed to explore cell retention in mice. RESULTS In vitro experiments demonstrated that WJMSCs loaded with GMs maintained cell viability and proliferative potential. Moreover, GMs enhanced the chondrogenesis differentiation of WJMSCs while alleviated cell hypertrophy. In KOA mice model, transplantation of WJMSCs-GMs complexes promoted cartilage regeneration and cartilage matrix formation, contributing to the treatment of KOA. Compared with other groups, in WJMSCs+GMs group, there were fewer cartilage defects and with a more integrated tibia structure. Tracking results of stable-overexpressing luciferase WJMSCs demonstrated that GMs significantly extended the retention time of WJMSCs in knee joint cavity. CONCLUSION Our results indicated that GMs facilitate WJMSCs mediated knee osteoarthritis healing in mice by promoting cartilage regeneration and prolonging cell retention. It might potentially provide an optimal strategy for the biomaterial-stem cell based therapy for knee osteoarthritis.
Collapse
Affiliation(s)
- Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Zhu Y, Sun Y, Rui B, Lin J, Shen J, Xiao H, Liu X, Chai Y, Xu J, Yang Y. A Photoannealed Granular Hydrogel Facilitating Hyaline Cartilage Regeneration via Improving Chondrogenic Phenotype. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40674-40687. [PMID: 36052731 DOI: 10.1021/acsami.2c11956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based chondrocyte implantation presents a promising tissue engineering strategy for cartilage repair. However, the widely used elastic hydrogels usually restrict cell volume expansion and induce the dedifferentiation of encapsulated chondrocytes. To address this limitation, a photoannealed granular hydrogel (GH) composed of hyaluronic acid, polyethylene glycol, and gelatin was formulated for cartilage regeneration in this study. The unannealed GH prepared by Diels-Alder cross-linked microgels could be mixed with chondrocytes and delivered to cartilage defects by injection, after which light was introduced to anneal the scaffold, leading to the formation of a stable and microporous chondrocyte deploying scaffold. The in vitro studies showed that GH could promote the volume expansion and morphology recovery of chondrocytes and significantly improve their chondrogenic phenotype compared to the nongranular hydrogel (nGH) with similar compositions. Further in vivo studies of subcutaneous culture and the rat full-thickness cartilage defect model proved that chondrocyte loaded GH could significantly stimulate hyaline cartilage matrix deposition and connection, therefore facilitating hyaline-like cartilage regeneration. Finally, the mechanistic study revealed that GH might improve chondrogenic phenotype via activating the AMP-activated protein kinase/glycolysis axis. This study proves the great feasibility of GHs as in situ chondrocyte deploying scaffolds for cartilage regeneration and brings new insights in designing hydrogel scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Biyu Rui
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Huimin Xiao
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
5
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
6
|
Fu L, Li P, Zhu J, Liao Z, Gao C, Li H, Yang Z, Zhao T, Chen W, Peng Y, Cao F, Ning C, Sui X, Guo Q, Lin Y, Liu S. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ. Bioact Mater 2021; 9:411-427. [PMID: 34820580 PMCID: PMC8586787 DOI: 10.1016/j.bioactmat.2021.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
Many recent studies have shown that joint-resident mesenchymal stem cells (MSCs) play a vital role in articular cartilage (AC) in situ regeneration. Specifically, synovium-derived MSCs (SMSCs), which have strong chondrogenic differentiation potential, may be the main driver of cartilage repair. However, both the insufficient number of MSCs and the lack of an ideal regenerative microenvironment in the defect area will seriously affect the regeneration of AC. Tetrahedral framework nucleic acids (tFNAs), notable novel nanomaterials, are considered prospective biological regulators in biomedical engineering. Here, we aimed to explore whether tFNAs have positive effects on AC in situ regeneration and to investigate the related mechanism. The results of in vitro experiments showed that the proliferation and migration of SMSCs were significantly enhanced by tFNAs. In addition, tFNAs, which were added to chondrogenic induction medium, were shown to promote the chondrogenic capacity of SMSCs by increasing the phosphorylation of Smad2/3. In animal models, the injection of tFNAs improved the therapeutic outcome of cartilage defects compared with that of the control treatments without tFNAs. In conclusion, this is the first report to demonstrate that tFNAs can promote the chondrogenic differentiation of SMSCs in vitro and enhance AC regeneration in vivo, indicating that tFNAs may become a promising therapeutic for AC regeneration. Tetrahedral framework nucleic acids (tFNAs) can promote SMSCs proliferation by activating the Wnt/β-catenin pathway. tFNAs can promote SMSCs migration in vitro and vivo. tFNAs can promote SMSCs chondrogenic differentiation by regulating the TGF/Smad2/3 signaling pathway. tFNAs show improved articular cartilage in situ regeneration activity in vivo.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Stomatology Department, The Fifth Hospital of Sichuan Province, Chengdu, 610031, People's Republic of China
| | - Zhiyao Liao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Hao Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Tianyuan Zhao
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Wei Chen
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| |
Collapse
|
7
|
Thomas J, Chopra V, Sharma A, Panwar V, Kaushik S, Rajput S, Mittal M, Guha R, Chattopadhyay N, Ghosh D. An injectable hydrogel having proteoglycan-like hierarchical structure supports chondrocytes delivery and chondrogenesis. Int J Biol Macromol 2021; 190:474-486. [PMID: 34508717 DOI: 10.1016/j.ijbiomac.2021.08.226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The ECM of cartilage is composed of proteoglycans (PG) that contain glycosaminoglycan (GAG), aggrecan, hyaluronic acid (HA) and other molecular components which play an important role in regulating chondrocyte functions via cell-matrix interactions, integrin-mediated signalling etc. Implantation of chondrocytes encapsulated in scaffolds that mimic the micro-architecture of proteoglycan, is expected to enhance cartilage repair. With an aim to create a hydrogel having macromolecular structure that resembles the cartilage-specific ECM, we constructed a hierarchal structure that mimic the PG. The bottle brush structure of the aggrecan was obtained using chondroitin sulphate and carboxymethyl cellulose which served as GAG and core protein mimic respectively. A proteoglycan-like structure was obtained by cross-linking it with modified chitosan that served as a HA substitute. The physico-chemical characteristics of the above cross-linked injectable hydrogel supported long term human articular chondrocyte subsistence and excellent post-injection viability. The chondrocytes encapsulated in the PMH expressed significant levels of articular cartilage specific markers like collagen II, aggrecan, GAGs etc., indicating the ability of the hydrogel to support chondrocyte differentiation. The biocompatibility and biodegradability of the hydrogels was confirmed using suitable in vivo studies. The results revealed that the PG-mimetic hydrogel could serve as a promising scaffold for chondrocyte implantation.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Kaushik
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Monika Mittal
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
8
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|