1
|
Zhou J, Zhou Q, Sun H, Li X, Chen A, Chen J, Chu C. Selective detoxification of a sulfur mustard simulant in air by a methylene blue-functionalized metal-organic framework. Dalton Trans 2025; 54:1827-1837. [PMID: 39670829 DOI: 10.1039/d4dt02740j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Efficient degradation of sulfur mustard is essential owing to its extreme toxicity and widespread use as a chemical warfare agent. However, current degradation methods often lack selectivity and generate highly toxic by-products. Herein, we demonstrate an approach for the selective photodegradation of a sulfur mustard simulant using singlet oxygen (1O2) produced by a methylene blue (MB)-modified UiO-66-(COOH)2 (UC, a classical metal-organic framework) composite, termed as MB@UC. The composite was prepared via adsorption of MB onto the surface of UC through strong electrostatic interactions. The MB@UC composite demonstrates high 1O2 generation, enabling selective detoxification of a sulfur mustard simulant (2-chloroethyl ethyl sulfide) into relatively non-toxic sulfoxide, with a half-life of 1.8 minutes under ambient conditions. Compared to traditional detoxifying agents, the MB@UC composite offers superior selectivity, rapid degradation, and excellent recyclability, maintaining its performance over multiple cycles. This work presents a promising strategy for the development of advanced heterogeneous photosensitizers for the detoxification of chemical warfare agents.
Collapse
Affiliation(s)
- Jinfeng Zhou
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Qing Zhou
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Haoxuan Sun
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Xiangqian Li
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
- Yaoshan Laboratory, Pingdingshan 467000, P. R. China
| | - Ao Chen
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| | - Junyao Chen
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| | - Chunjie Chu
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China.
| |
Collapse
|
2
|
Chen J, Wang Y, Shen R, Li W, Gao S, Xiao Z, Lv Q, Song X, Xu J, Xu G, Cui H, Li Z. Accurately Tunable AuNC-ZIF Content Architecture Based on Coordination-Dissociation Mechanism Enables Highly Brightness Dual-Site Fluorescent Biosensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408400. [PMID: 39630010 PMCID: PMC11775526 DOI: 10.1002/advs.202408400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Indexed: 01/30/2025]
Abstract
The quantum yield and fluorescence intensity of gold nanocluster (AuNC) nanocarriers are critical parameters for developing ultrasensitive biosensors. In this study, AuNCs-zeolitic-imidazolate-framework (Au-ZIF) nanocomposites are systematically constructed by impregnating AuNCs onto the ZIF-8 surface through a coordination-dissociation mechanism, resulting in a dual-site fluorescence-loaded structure. In this configuration, AuNCs are anchored to the external surface while the integrity of the inner cavity remains intact. The surface of ZIF-8 induces a confinement effect on the configuration and electrons of AuNCs, significantly enhancing luminescence (18-fold increase). The quantum yield of AuNCs exhibits an increase of more than 13-fold, from 2.80% to 38.1%. This approach demonstrates broad applicability and maintains strong fluorescence across different ZIFs. Additionally, a novel nanocomposite, Au-ZIF@carbon-dots (CDs), is synthesized by encapsulating CDs into the inner cavity of Au-ZIF. A ratiometric fluorescence detection platform is subsequently developed and incorporated into hydrogels for the quantitative detection of the pesticide triazophos. By employing an image-processing algorithm, quantitative detection is achieved with a detection limit of 0.07 ng mL⁻1. The findings provide crucial insights into the relationship between the assembly and performance of AuNCs and ZIFs, offering guidance for designing ultrasensitive multifunctional biosensors applicable in the field of biosensing.
Collapse
Affiliation(s)
- Junyang Chen
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yuqian Wang
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Runpu Shen
- School of Chemistry and Chemical EngineeringShaoxing UniversityShaoxingZhejiang312000China
| | - Wei Li
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Sainan Gao
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Zhikang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Qiyan Lv
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaojie Song
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Jianzhong Xu
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Gaoxiang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Huifang Cui
- School of Life SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
3
|
Hong Y, Nie Z, Tian X, Sun J, Zhou Q, Liang W, Chen S, Huang J, Tan K, Dong L. Rare-earth-free up and down-conversion dual-emission carbon dots for Cu 2+ sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124920. [PMID: 39111030 DOI: 10.1016/j.saa.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
In this work, up- and down-conversion dual-emission CDs without rare-earth (UD D-CDs) were synthesized using RhB and 1,4-Diaminoanthraquinone as precursors. The synthesized UD D-CDs exhibited dual emissions at 496 and 580 nm under 260 and 865 nm excitation, respectively. The fluorescence emission mechanism, including contributions from carbon nuclei, surface states, molecular states, and internal defect states, was discussed through the separation and purification of UD D-CDs. Based on the interaction between UD D-CDs and copper ions (Cu2+), a dual-mode ratio fluorescence probe was developed to detect and quantify Cu2+. The up-conversion ratio fluorescent probe shows a linear range of 0.0500-15.0 μM, with a detection limit as low as 2.76 nM. This method has been successfully applied to detecting Cu2+ in human serum and has potential applications in biochemical analysis and biological imaging. The successful preparation of up-conversion fluorescent carbon dots without rare earth elements and the ability to perform low-damage detection in high-background biological samples provide a new approach to constructing non-rare earth up-conversion probes.
Collapse
Affiliation(s)
- Yushuang Hong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhengpei Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xuelian Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jingfang Sun
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Jin Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China.
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
4
|
Mondal P, Brahma BK, Vali DK, Ray J, Kasu JVN, Gangopadhyay A, Laha S, Adhikari U. Calcium-Based Metal-Organic Framework: Detection and Idiosyncratic Removal of Copper by Nano-Particle Deposition. Chemistry 2024; 30:e202400587. [PMID: 38639718 DOI: 10.1002/chem.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
A novel calcium-based metal-organic framework (CaMOF@LSB) was designed and synthesized, exhibiting dual functionality for both selective detection and removal of Cu2+ ions from aqueous solutions. The framework's stability, including solvent and pH variations, was established with notable thermal resilience. Colorimetric Cu2+ detection (≥5 ppm) with a high capture capacity of 484.2 mg g-1 by CaMOF@LSB places this material among the few that ensure efficient colorimetric detection and high removal capabilities of Cu2+ ions. Batch adsorption experiments revealed pH-dependent behavior and competitive interactions. Langmuir and pseudo-second-order kinetics models aptly described adsorption isotherms and kinetics, respectively. Thermodynamic assessments confirmed spontaneous and endothermic adsorption. Mechanistically, nanoparticle deposition contributes to the Cu2+ uptake. CaMOF@LSB also exhibited one of the best removal behaviour of Cu2+ by means of oxide formation on the surface. Regeneration of CaMOF@LSB was achieved by simple sonication in 0.1 M aqueous NaOH solution. The recyclability was also tested up to 5 cycles, and it exhibited a small decrease in adsorption capacity observed across the cycles. This research presents a promising avenue for addressing heavy metal pollution using metal-organic frameworks, thereby offering potential applications in water purification and environmental pollution monitoring and remediation.
Collapse
Affiliation(s)
- Pallav Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Bhaskar K Brahma
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Dudekula Khasim Vali
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Joydeep Ray
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Jyothirlatha V N Kasu
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Avishek Gangopadhyay
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Sourav Laha
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| |
Collapse
|
5
|
Li M, Zhang P, Mao J, Wang D, Xu B, Zhou J, Zhang Y, Liu S, Xiao H. Cellulose-based adsorbent using in mercury detection and removal from water via an efficient grafting strategy of fluorometric sensors by click reaction. Int J Biol Macromol 2024; 271:132567. [PMID: 38782314 DOI: 10.1016/j.ijbiomac.2024.132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Mercury pollution in waters attracts lots of attention due to its serious toxicity and high bioenrichment and many efforts have been devoted in the development of adsorbents for mercury detection and removal. Herein, a cellulose-based adsorbent Cell-TriA-HQ is functionalized with quinoline fluorophore by covalent immobilization through "Click reaction" with high yield. In addition to the admirable adsorptive performance, the prepared adsorbent exhibits excellent selectivity and sensitivity towards Hg (II) in water that the detection limit for Hg (II) is determined to be as low as 1.92 × 10-7 M. The sensitive fluorescence enhancement response is considered to be resulted from the inhibition of photo-induced electron transfer between triazole and quinoline groups and the reinforcement of structural rigidity. The easy manipulation along with excellent performance of adsorption capacity, detective ability and reusability for the multifunctional adsorbent makes it potential in mercury monitoring and removal from aqueous solutions in the field of water treatment.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianwei Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Dongqing Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bo Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Jin Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Songtao Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada.
| |
Collapse
|
6
|
Si Y, Li Y, Guo J, Wang H, Wang X, Fu J. Combined fabrication of zeolitic imidazolate framework-8 and lanthanide towards coordination polymers: A dual-signal fluorescent probe for sensing Cu 2+ based on synergistic effect of aggregation-induced emission and antenna effect. Talanta 2024; 273:125941. [PMID: 38518715 DOI: 10.1016/j.talanta.2024.125941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/15/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Copper ion (Cu2+) detection remains an important task for monitoring water quality because of its specific toxicity. Herein, a new dual-signal fluorescent probe was developed by combining zeolitic imidazolate framework-8 (ZIF-8) and lanthanide for the detection of Cu2+ for the first time. The lanthanide coordination polymer (guanosine monophosphate and Eu3+, GMP/Eu) was initially incorporated into ZIF-8 to yield ZIF-8/GMP/Eu nanomaterials with extremely weak single emission fluorescence at 618 nm. It was found that the resulted nanomaterials could display a dual emission fluorescence at 515 nm and 618 nm after the introduction of tetracycline (TC) due to the synergistic effect of aggregation-induced emission effect (AIE, TC induced by ZIF-8) and antenna effect (AE, between TC and GMP/Eu). Interestingly, in the presence of Cu2+, the AIE of TC was destroyed because of the interaction of Cu2+ with ZIF-8 and TC. The AE between TC and GMP/Eu disappeared due to the formation of complex between TC and Cu2+. A dual-signal fluorescent probe of ZIF-8/GMP/Eu/TC was thereby established for sensing Cu2+ in the range of 0.5-100 μM. Such a dual-signal response strategy that intelligently utilized the "ON"/"OFF" of AIE and AE can not only eliminate the background interference, but also ensure the improved selectivity of Cu2+ sensing. Subsequently, the dual-signal fluorimetric strategy was applied for the detection of Cu2+ in environmental water samples, indicating the potential feasibility of applications for water quality monitoring.
Collapse
Affiliation(s)
- Yanmei Si
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, 272067, PR China
| | - Yanli Li
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jianli Guo
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, 272067, PR China
| | - Hua Wang
- School of Life Science, Huzhou University, Huzhou, 313000, PR China.
| | - Xinfang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, PR China
| | - Jia Fu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, 272067, PR China.
| |
Collapse
|
7
|
Zhang Y, Yuan X, Guo X, Xu H, Zhang D, Wu Z, Zhang J. All-in-One Zinc-Doped Prussian Blue Nanozyme for Efficient Capture, Separation, and Detection of Copper Ion (Cu 2+ ) in Complicated Matrixes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306961. [PMID: 37803466 DOI: 10.1002/smll.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Copper is a vital micronutrient for lives and an important ingredient for bactericides and fungicides. Given its indispensable biological and agricultural roles, there is an urgent need to develop simple, affordable, and reliable methods for detecting copper in complicated matrixes, particularly in underdeveloped regions where costly standardized instruments and sample dilution procedures hinder progress. The findings that zinc-doped Prussian blue nanoparticle (ZnPB NP) exhibits exceptional efficiency in capturing and isolating copper ions, and accelerates the generation of dissolved oxygen in a solution of H2 O2 with remarkable sensitivity and selectivity, the signal of which displays a positive correlation with the copper level due to the copper-enhanced catalase-like activity of ZnPB NP, are presented. Consequently, the ZnPB NP serves as an all-in-one sensor for copper ion. The credibility of the method for copper assays in human urine and farmland soil is shown by comparing it to the standard instrumentation, yielding a coefficient of correlation (R2 = 0.9890), but the cost is dramatically reduced. This ZnPB nanozyme represents a first-generation probe for copper ion in complicated matrixes, laying the groundwork for the future development of a practical copper sensor that can be applied in resource-constrained environments.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Xinyue Guo
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Huan Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
8
|
Wei Y, Zhao H, Liu Z, Yang J, Ren J, Qu X. MOFs Modulate Copper Trafficking in Tumor Cells for Bioorthogonal Therapy. NANO LETTERS 2024; 24:1341-1350. [PMID: 38252869 DOI: 10.1021/acs.nanolett.3c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In situ drug synthesis using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has attracted considerable attention in tumor therapy because of its satisfactory effectiveness and reduced side-effects. However, the exogenous addition of copper catalysts can cause cytotoxicity and has hampered biomedical applications in vivo. Here, we design and synthesize a metal-organic framework (MOF) to mimic copper chaperone, which can selectively modulate copper trafficking for bioorthogonal synthesis with no need of exogenous addition of copper catalysts. Like copper chaperones, the prepared ZIF-8 copper chaperone mimics specifically bind copper ions through the formation of coordination bonds. Moreover, the copper is unloaded under the acidic environment due to the dissipation of the coordination interactions between metal ions and ligands. In this way, the cancer cell-targeted copper chaperone mimics can selectively transport copper ions into cells. Regulation of intracellular copper trafficking may inspire constructing bioorthogonal catalysis system with reduced metal cytotoxicity in live cells.
Collapse
Affiliation(s)
- Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
10
|
Chan K, Kawai M, Yamake M, Zinchenko A. Copper Ion Removal Using a Waste-Plastic-Derived Hydrogel Adsorbent Prepared via Microwave-Assisted PET Aminolysis. Gels 2023; 9:874. [PMID: 37998964 PMCID: PMC10670419 DOI: 10.3390/gels9110874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to prepare short aminophthalamide oligomers followed by chemically cross-linking into a hydrogel material. Catalyst-free microwave-assisted aminolysis of PET was completed within 30-40 s, demonstrating high efficiency of the depolymerization reaction. Subsequent epoxy cross-linking of the oligomers yielded a hydrogel with a swelling degree of ca. 92.1 times in pure water. The application of the obtained hydrogel for the removal of copper ions (Cu2+) from water was demonstrated. Efficient complexation of NH2 groups of the hydrogel with Cu2+ resulted in high adsorption capacities of the hydrogel material toward Cu2+ removal, which were the highest at neutral pHs and reached ca. 213 mg/g. The proposed type of environmental material is beneficial owing to its waste-derived nature and functionality that can be applied for the high-efficiency removal of a broad scope of known environmental pollutants.
Collapse
Affiliation(s)
- Kayee Chan
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masami Kawai
- Gifu High School, 3-1, Onawaba, Gifu 500-8889, Japan
| | - Mina Yamake
- Gifu Kita High School, 1841-11, Noritake, Gifu 502-0931, Japan
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Li M, Zhang P, Zhang X, Chen Q, Cao Q, Zhang Y, Xiao H. Bis-Schiff base cellulosic nanocrystals for Hg (II) removal from aqueous solution with high adsorptive capacity and sensitive fluorescent response. Int J Biol Macromol 2023; 242:124802. [PMID: 37182619 DOI: 10.1016/j.ijbiomac.2023.124802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Mercury pollution in aqueous solutions is a severe problem in environmental protection and the contaminated water may cause serious risks to human health. Based on the constant development of adsorptive materials, adsorption technique is widely applied as an efficient and convenient approach to eliminate mercury species from waters. In this work, we report a one-pot procedure to prepare a bis-Schiff base cellulosic adsorbent to integrate the advantages of large adsorptive capacity and excellent fluorescent recognition towards mercury ions. The adsorption experiments demonstrate that sulfydryl-contained cellulosic nanocrystals exhibit specific affinity with mercury species and the adsorption capacity reaches as high as 624.8 mg/g at room temperature. Besides, the introduction of rhodamine moiety endows the material a 19 times enhancement of selective "off-on" fluorescent sensing while exposed to mercury. Additionally, the bifunctional adsorbent material shows high sensitivity towards mercury ions in aqueous solution with detection limits of as low as 8.29 × 10-8 M for fluorescence and 5.9 × 10-9 M for UV-vis spectrum, respectively. The fitting results of the adsorption models indicate a monolayer adsorption during the uptake of mercury ions and the removal process follows the pseudo-second order kinetics. Moreover, density functional theory studies are employed to further understand the adsorptive and responsive mechanisms.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xuemeng Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qian Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada.
| |
Collapse
|
12
|
Xing S, Cheng S, Tan M. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 2023; 64:7028-7044. [PMID: 36794423 DOI: 10.1080/10408398.2023.2179594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Food contamination and spoilage is a worldwide concern considering its adverse effect on public health and food security. Real time monitoring food quality can reduce the risk of foodborne disease to consumers. Particularly, the emergence of multi-emitter luminescent metal-organic frameworks (LMOFs) as ratiometric sensory materials has provided the possibility for food quality and safety detection with high sensitivity and selectivity taking advantage of specific host-guest interactions, pre-concentrating and molecule-sieving effects of MOFs. Furthermore, the excellent sensing performance of multi-emitter MOF-based ratiometric sensors including self-calibration, multi-dimensional recognition and visual signal readout is able to meet the increasing rigor requirement of food safety evaluation. Multi-emitter MOF-based ratiometric sensors have become the focus of food safety detection. This review focuses on design strategies for different multiple emission sources assembly to construct multi-emitter MOFs materials based on at least two emitting centers. The design strategies for creating multi-emitter MOFs can be mainly classified into three categories: (1) multiple emission building blocks assembly in a single MOF phase; (2) single non-luminescent MOF or LMOF phase as a matrix for chromophore guest(s); (3) heterostructured hybrids of LMOF with other luminescent materials. In addition, the sensing signal output modes of multi-emitter MOF-based ratiometric sensors have critically discussed. Next, we highlight the recent progress for the development of multi-emitter MOF as ratiometric sensors in food contamination and spoilage detection. Their future improvement and advancing direction potential for their practical application is finally discussed.
Collapse
Affiliation(s)
- Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
13
|
Fang W, Zhang L, Feng H, Meng J, Zhang Z, Liu Z. Research Progress of fluorescent-substance@MOFs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Dutta M, Karan CK, Bhattacharjee M. Self‐Healable Metallogels for Selective Dye Adsorption. ChemistrySelect 2022. [DOI: 10.1002/slct.202203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mita Dutta
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Chandan Kumar Karan
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
- Indian Oil R&D Centre Faridabad, Sector−84, Haryana 121007 India
| | | |
Collapse
|
15
|
Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11468-11480. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, heavy metal pollution has become increasingly serious. Heavy metals exist in an environment mainly in the form of ions (heavy metal ions, HMs). They can contaminate food, water, soil, and the atmosphere, leading to serious harm to plants and animals. With high bioavailability and nonbiodegradability, HMs can accumulate through biomagnification. Consequently, heavy metal pollution has become the cause of many fatal diseases threatening human health and ecological environment. Therefore, the accurate detection of HMs is vital and necessary. In this paper, the harm and limit standards of heavy metals were systematically summarized and the common analysis methods were overviewed and compared. Specifically, the latest research progress of ratiometric photoelectric sensor, including optical and electrical sensor, were mainly described. The research status and advantages and disadvantages of a photoelectric sensor were summarized. Furthermore, the future directions were proposed, which provided the reference for the further research and application of the ratiometric photoelectric sensor.
Collapse
Affiliation(s)
- Mingming Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiangping Liu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| |
Collapse
|
16
|
Lv X, Zhang Y, Wang X, Hu L, Shi C. Multilayer Graphene Oxide Supported ZIF-8 for Efficient Removal of Copper Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3162. [PMID: 36144950 PMCID: PMC9503737 DOI: 10.3390/nano12183162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
To address the performance deterioration of ZIF-8 for the adsorption of copper ions caused by powder volume pressure and particle aggregation, we employed multilayer graphene oxide (MGO) as a support to prepare composite adsorbents (MGO@ZIF-8) by using the in situ growth of ZIF-8 on MGO. Due to a good interfacial compatibility and affinity between ZIF-8 and graphene nanosheets, the MGO@ZIF-8 was successfully prepared. The optimal Cu2+ adsorption conditions of MGO@ZIF-8 were obtained through single factor experiments and orthogonal experiments. Surprisingly, the Cu2+ adsorption capacity was significantly improved by the integration of MGO and ZIF-8, and the maximum Cu2+ adsorption capacity of MGO@ZIF-8 reached 431.63 mg/g under the optimal adsorption conditions. Furthermore, the kinetic fitting and isotherm curve fitting confirmed that the adsorption law of Cu2+ by MGO@ZIF-8 was the pseudo-second-order kinetic model and the Langmuir isotherm model, which indicated that the process of Cu2+ adsorption was monolayer chemisorption. This work provides a new approach for designing and constructing ZIF-8 composites, and also offers an efficient means for the removal of heavy metals.
Collapse
Affiliation(s)
- Xifeng Lv
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar 843300, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yishi Zhang
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Libing Hu
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China
| | - Chunhui Shi
- College of Chemistry and Chemical Engineering, Tarim University, Alar 843300, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar 843300, China
| |
Collapse
|
17
|
Zhou J, Zhou Q, Chu C. Dyes-modified metal − organic frameworks composite as a sensitive, reversible and ratiometric fluorescent probe for the rapid detection of malachite green. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
19
|
Zhang L, Wang H, Zhang Q, Wang W, Yang C, Du T, Yue T, Zhu M, Wang J. Demand-oriented construction of Mo 3S 13-LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag(I), Hg(II), As(III), and Cr(VI) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153334. [PMID: 35074376 DOI: 10.1016/j.scitotenv.2022.153334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the classic ion-exchange reaction, a single phase material of Mg0.66Al0.34(OH)2(Mo3S13)0.03(NO3)0.14(CO3)0.07·H2O (Mo3S13-LDH) was masterly constructed by intercalating Mo3S132- into the MgAl-LDH gallery. Prepared Mo3S13-LDH displays excellent binding affinity and high selectivity for Ag(I) and Hg(II) in a mixed solution, in which an apparent selectivity order of Hg(II) > Ag(I) ≫ Pb(II), Cu(II), Ni(II), Co(II), Cd(II), and Mn(II) is observed. Enormous capture capacities (qmAg = 446.4 mg/g, qmHg = 354.6 mg/g) and fast equilibration time (within 60 min) place Mo3S13-LDH in the upper ranks of materials for such removal. For oxoanions, As(III) (HAsO32-) and Cr(VI) (CrO42-) can be specifically trapped by Mo3S13-LDH with comparable loading ability (qmAs = 61.8 mg/g, qmCr = 90.6 mg/g) in the coexistence of multiple interfering anions. Notably, high Hg(II) and Cr(VI) concentrations are finally reduced below the safe limit of drinking water. The excellent capture capacity of Mo3S13-LDH benefits from the rational design by following two aspects: (i) the multiple sulfur ligands in Mo3S132- groups give place to various capture modes and different affinity orders for target ions, and (ii) large-sized Mo3S132- groups widen the interlayer spacing of LDH, thereby accelerating the mass transfer process. Furthermore, the satisfactory structural stability of Mo3S13-LDH is also reflected through the unchanged hexagonal prismatic shape after adsorption. All of these highlight the great potential of Mo3S13-LDH for the application in water remediation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiting Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Zhang M, Liang R, Li K, Chen T, Li S, Zhang Y, Zhang D, Chen X. Dual-emitting metal-organic frameworks for ratiometric fluorescence detection of fluoride and Al 3+ in sequence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120896. [PMID: 35121473 DOI: 10.1016/j.saa.2022.120896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Fluoride (F-) and Al3+ are two common ions existing in drinking water and natural water bodies. Excessive intake of F- can lead to serious health issues such as fluorosis and bone diseases while accumulated consumption of Al3+ may cause neurotoxicity-based diseases. Developing a fast, reliable, and sensitive sensor for visually detecting both F- and Al3+ is of great significance. In the present work, a ratiometric fluorescence sensor was constructed by incorporating rhodamine B (RhB) in situ into a zirconium-based metal-organic framework, UiO-66-NH2. The obtained nanocomposite UiO-66-NH2@RhB exhibited similar octahedral structure to UiO-66-NH2 with high BET surface area, and showed two emission peaks at 450 nm and 585 nm. The blue fluorescence from UiO-66-NH2 was enhanced by the addition of F- while subsequent Al3+ addition diminished the increased fluorescence intensity, and the red emission from RhB as the reference remained unchangeable to improve the detection precision. Under optimal conditions, detection of limits as low as 1.55 μM for F- and 0.54 μM for Al3+ in aqueous solution were achieved with good selectivity. High recoveries in drinking water samples were also acquired, showing potential applications of this ratiometric fluorescence sensor for practical evaluation of F- and Al3+.
Collapse
Affiliation(s)
- Min Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Rui Liang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ke Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ting Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shuangjun Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dieqing Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
22
|
Pang CM, Cao XY, Xiao Y, Luo SH, Chen Q, Zhou YJ, Wang ZY. N-alkylation briefly constructs tunable multifunctional sensor materials: Multianalyte detection and reversible adsorption. iScience 2021; 24:103126. [PMID: 34632330 PMCID: PMC8487030 DOI: 10.1016/j.isci.2021.103126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
A series of N-alkyl-substituted polybenzimidazoles (SPBIs), synthesized by simple condensation and N-alkylation, act as functional materials with tunable microstructures and sensing performance. For their controllable morphologies, the formation of nano-/microspheres is observed at the n(RBr)/n(PBI) feed ratio of 5:1. Products with different degrees of alkylation can recognize metal ions and nitroaromatic compounds (NACs). For example, SPBI-c, obtained at the feed ratio of 1:1, can selectively detect Cu2+, Fe3+, and NACs. By contrast, SPBI-a, obtained at the feed ratio of 0.1:1, can exclusively detect Cu2+ with high sensitivity. Their sensing mechanisms have been studied by FT-IR spectroscopy, SEM, XPS, and DFT calculations. Interestingly, the SPBIs can adsorb Cu2+ in solution and show good recyclability. These results demonstrate that polymeric materials with both sensing and adsorption applications can be realized by regulating the alkylation extent of the main chain, thus providing a new approach for the facile synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Chu-Ming Pang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
23
|
Cao XY, Pang CM, Xiao Y, Xiao WQ, Luo SH, He JP, Wang ZY. Preparation of Large Conjugated Polybenzimidazole Fluorescent Materials and Their Application in Metal Ion Detection. Polymers (Basel) 2021; 13:polym13183091. [PMID: 34577993 PMCID: PMC8472194 DOI: 10.3390/polym13183091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023] Open
Abstract
A new type of conjugated polybenzimidazole (CPBI) was synthesized through a simple polycondensation reaction without metal catalysis, and N-alkylation modification was carried out to solve the problems of solubility and fluorescence properties. A series of nano-microsphere polymers CPBIn with large conjugation, good solubility, and strong fluorescence has been successfully used as “turn-off” fluorescent probes for the first time. The results show that, under suitable N-alkylation conditions, the obtained CPBIn can be used as a highly sensitive and selective fluorescent probe for the detection of Cu2+ and Zn2+ at the same time, and their detection limits are both nM levels. In addition, CPBI2 can be designed as an ultra-sensitive IMPLICATION logic gate at the molecular level, cyclically detecting Cu2+. With the test paper containing CPBI2, easy and quick on-site detection can be achieved. This research provides a new idea for the brief synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Chu-Ming Pang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, China
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Wan-Qing Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Jin-Ping He
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| |
Collapse
|
24
|
Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study used a thiolated calix[4]arene derivative modified on gold nanoparticles and a screen-printed carbon electrode (TC4/AuNPs/SPCE) for Pb2+ and Cu2+ determination. The surface of the modified electrode was characterised via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used for the detection of Pb2+ and Cu2+ under optimum conditions. The limit of detection (LOD) for detecting Pb2+ and Cu2+ was 0.7982 × 10−2 ppm and 1.3358 × 10−2 ppm, respectively. Except for Zn2+ and Hg2+, the presence of competitive ions caused little effect on the current response when detecting Pb2+. However, all competitive ions caused a significant drop in the current response when detecting Cu2+, except Ca2+ and Mg2+, suggesting the sensing platform is more selective toward Pb2+ ions rather than copper (Cu2+) ions. The electrochemical sensor demonstrated good reproducibility and excellent stability with a low relative standard deviation (RSD) value in detecting lead and copper ions. Most importantly, the result obtained in the analysis of Pb2+ and Cu2+ had good recovery in river water, demonstrating the applicability of the developed sensor for real samples.
Collapse
|
25
|
Yang GL, Jiang XL, Xu H, Zhao B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005327. [PMID: 33634574 DOI: 10.1002/smll.202005327] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
The environmental pollution has become a serious issue because the pollutants can cause permanent damage to the DNA, nervous system, and circulating system, resulting in various incurable diseases, such as organ failure, malformation, angiocardiopathy, and cancer. The effective detection of environmental pollutants is urgently needed to keep them far away from daily life. Among the reported pollutant sensors, luminescent metal-organic frameworks (LMOFs) with tunable structures have attracted remarkable attention to detect the pollutants because of their excellent selectivity, sensitivity, and recyclability. Although lots of metal-organic framework (MOF)-based luminescent sensors have been summarized and discussed in previous reviews, the detection of environmental pollutants, especially radioactive ions and heavy metal ions, still have not been systematically presented. Here, the sensing mechanisms and construction principles of luminescent MOFs are discussed, and the state-of-the-art MOF-based luminescent sensors of environmental pollutants, including pesticides, antibiotics, explosives, VOCs, toxic gas, toxic small molecules, radioactive ions, and heavy metal ions are highlighted. This comprehensive review may further guide the development of luminescent MOFs and promote their practical applications for sensing environmental pollutants.
Collapse
Affiliation(s)
- Guo-Li Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Du T, Huang L, Wang J, Sun J, Zhang W, Wang J. Luminescent metal-organic frameworks (LMOFs): An emerging sensing platform for food quality and safety control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Shu Y, Ye Q, Dai T, Xu Q, Hu X. Encapsulation of Luminescent Guests to Construct Luminescent Metal-Organic Frameworks for Chemical Sensing. ACS Sens 2021; 6:641-658. [PMID: 33571406 DOI: 10.1021/acssensors.0c02562] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs), which are a class of coordination polymers constructed by metal ions or clusters with organic ligands, have emerged as exciting inorganic-organic hybrid materials with the superiorities of inherent crystallinity, adjustable pore size, clear structure, and high degree of functionalization. The MOFs have attracted much attention to develop good luminescent functional materials due to their inherent luminescent centers of both inorganic and organic photonic units. Furthermore, the pores within MOFs can also be used to encapsulate a large number of luminescent guest species, which provides a broader luminescent property for MOF materials. MOFs possess the incomparable multifunctional advantages of inorganic and organic luminescent materials. A large number of luminescent MOFs (LMOFs) have been synthesized for applications in sensing, white-light-emitting diodes (LED), photocatalysis, biomedicine, etc. This paper reviews the encapsulation of various luminescent guests such as lanthanide ions, dyes, quantum dots, and luminescent complexes in metal-organic frameworks to construct luminous sensors with single- or double-emission centers, as well as the research progress of these sensors in chemical sensing. Finally, the challenges in these fields were outlined and the prospects for future development were put forward.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
28
|
Goel A, Tomer N, Ghule VD, Malhotra R. A multi-responsive pyranone based Schiff base for the selective, sensitive and competent recognition of copper metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119221. [PMID: 33257246 DOI: 10.1016/j.saa.2020.119221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Exploring a new multi-responsive pyranone chemosensor capable of sensing copper ions specifically and selectively through colorimetric, UV-Vis absorption and fluorescence methods is of great importance. In this piece of work, a novel pyranone based Schiff base ligand 4-Hydroxy-6-methyl-3-[1-(2-morpholin-4-yl-ethylimino)-ethyl]-pyran-2-one (DM) was synthesized by the condensation of dehydroacetic acid and 4-(2-aminoethyl) morpholine. The structural determination of ligand DM was executed using distinct spectral techniques i.e.,1H NMR, 13C NMR, FT-IR and HR-MS techniques. The reported Schiff base DM showed an immediate colorimetric change from pale yellow to colorless accompanied by a strong change in the UV-Vis absorption band onto the addition of Cu (II) ions. This metal ligand chelation leads a decrease in ICT process. Also the decrease in fluorescence emission intensity of Schiff base DM with Cu (II) ions addition showed its turn-off behavior towards copper ions. Further absorption/ emission titration studies, Job's plot, HR-MS and 1H NMR titration data designated 2:1 stoichiometric ratio between DM and Cu (II) ions respectively. Density functional theory studies were also performed to authenticate the binding mechanism theoretically. The sensitivity of Schiff base DM towards Cu (II) ions was applicable at every pH conditions and at the same time DM exhibited selectivity towards Cu (II) ions with a negligible interference of other metal ions. DM showed a detection limit of 7.7 nM towards copper ions via fluorescence emission studies. The best part about DM is that it has good stability but showed an instant chemical reversibility when titrated with EDTA solution.
Collapse
Affiliation(s)
- Apurva Goel
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Nisha Tomer
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India.
| |
Collapse
|
29
|
Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA. Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124314. [PMID: 33168312 DOI: 10.1016/j.jhazmat.2020.124314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The monitoring and removal of abundant heavy metals such as Cu ions are considerable global concerns because of their severe impact on the health of humans and other living organisms. To meet this global challenge, we engineered a novel mesoscopic capture protocol for the highly selective removal and visual monitoring of copper (Cu2+) ions from wide-ranging water sources. The capture hierarchy carriers featured three-dimensional, microsized MgO mesoarchitecture rectangular sheet-like mosaics that were randomly built in horizontal and vertical directions, uniformly arranged sheet faces, corners, and edges, smoothly quadrilateral surface coverage for strong Cu2+-to-ligand binding exposure, and multidiffusible pathways. The Cu2+ ion-selectively active captor surface design was engineered through the simple incorporation/encapsulation of a synthetic molecular chelation agent into hierarchical mesoporous MgO rectangular sheet platforms to produce a selective, visual mesoscopic captor (VMC). The nanoscale VMC dressing of MgO rectangular mosaic hierarchy by molecularly electron-enriched chelates with actively double core bindings of azo- and sulfonamide- groups and hydrophobic dodecyl tail showed potential to selectively trap and efficiently remove ultratrace Cu2+-ions with an extreme removal capability of ~233 mg/g from watery solutions, such as drinking water, hospital effluent, and food-processing wastewater at specific pH values. In addition to the Cu2+ ion-selective removal, the VMC design enabled the continuous visual monitoring of ultratrace Cu2+ ions (~3.35 × 10-8 M) as a consequence of strong chelate-to-Cu2+ binding events among all accumulated matrices in water sources. Our experimental recycle protocol provided evidence of reusability and recyclability of VMC (≥10 cycles). With our mesoscopic capture protocol, the VMC can be a promising candidate for the selective decontamination/removal and sensitive detection of hazardous inorganic pollutants from different water sources with indoor or outdoor applications.
Collapse
Affiliation(s)
- H Gomaa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - M A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - A Elbaz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Egypt
| | - H Yamaguchi
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
| | - M Abdelmottaleb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - S A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
30
|
Li X, Lin H, Li Q, Xue J, Xu Y, Zhuang L. Recyclable Magnetic Fluorescent Fe 3O 4@SiO 2 Core–Shell Nanoparticles Decorated with Carbon Dots for Fluoride Ion Removal. ACS APPLIED NANO MATERIALS 2021. [DOI: 10.1021/acsanm.1c00238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaolei Li
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Han Lin
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Qianli Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Jingyi Xue
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, Floor 17, Tower Wing, London Bridge, London SE1 9RT, U.K
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People’s Republic of China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
31
|
Shi R, Fu G, Zhang Z, Zou X, Li L, Qi B, Luo F. Eu(III) complex coated carbon sphere core-shell material for fluorescence detection, catalytic reduction and real-time monitoring of nitrophenol compounds. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
LI XCQ, YANG T, WANG J, HUANG CZ. CdTe Quantum Dots-Electrospun Nanofibers Assembly for Visual and Portable Detection of Cu2+. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60079-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Zheng X, Zhao Y, Jia P, Wang Q, Liu Y, Bu T, Zhang M, Bai F, Wang L. Dual-Emission Zr-MOF-Based Composite Material as a Fluorescence Turn-On Sensor for the Ultrasensitive Detection of Al 3. Inorg Chem 2020; 59:18205-18213. [PMID: 33285064 DOI: 10.1021/acs.inorgchem.0c02674] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, a novel zirconium-based metal-organic framework (MOF) composite material, UiO-(OH)2@RhB, has been solvothermally prepared with zirconyl chloride octahydrate, 2,5-dihydroxyterephthalic acid, and rhodamine B (RhB) for ratiometric fluorescence sensing of Al3+ ions in an aqueous medium. The luminescence measurement results showed that, at the single excitation wavelength of 420 nm, the fluorescence intensity of the ligand at 500 nm increased significantly in the case of Al3+, while that of RhB at 583 nm changed slightly, together with an apparent color change. Under optimal conditions, UiO-(OH)2@RhB exhibited an extraordinary sensitivity (10 nM), good selectivity, and a fast response (2 min) for Al3+. As far as we know, the limit of detection is superior to that of the current reported MOF-based Al3+ fluorescence sensors. The response mechanism suggested that -OH could capture Al3+ in water through coordination and high electrostatic affinity and achieved turn-on ratiometric fluorescence through the excited-state intramolecular proton transfer process and stable fluorescence of RhB. In addition, this sensor was also applied to actual food samples (grain beans), with the recoveries ranging from 89.08% to 113.61%. Such a turn-on ratiometric fluorescence sensor will provide a constructive strategy for the ultrasensitive detection of Al3+ in practical applications.
Collapse
Affiliation(s)
- Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
34
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|