1
|
Nguyen MD, Attanayake SB, Chinwangso P, Hoijang S, Qin C, Bao J, Phan MH, Lee TR. Nickel-Zinc Ferrite Nanoparticles for Hyperthermia: Preserving Superparamagnetism Across a Broad Range of Particle Sizes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22929-22940. [PMID: 40172238 DOI: 10.1021/acsami.5c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nickel-zinc ferrite (NZF) compounds, renowned for their mixed spinel structures, hold significant promise for diverse applications in high-frequency devices and biomedicine. This study utilizes solvothermal synthesis to produce NZF nanoparticles (NPs) with tunable diameters ranging from 40 to 300 nm. These NZF NPs exhibit polycrystalline structures, with crystallite sizes tailored to be approximately 8 nm, a pivotal factor in preserving their superparamagnetic (SPM) properties across a broad size spectrum. A combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray photoelectron spectroscopy (XPS) confirms the structures and compositions of the synthesized samples. Magnetometry measurements revealed consistent saturation magnetization (MS) values and SPM features at room temperature across all samples, despite variations in particle size. These nanoparticles transition to a ferrimagnetic (FiM) or blocked state at approximately 150 K. Consequently, comparable specific absorption rate (SAR) values are achieved across the samples, which can be attributed to the uniformity in the size of the primary crystals (crystallite size ∼8 nm) within the polycrystalline structures of the NZF nanoparticles. Our study underscores the significance of controlling the crystallite sizes in polycrystalline ferrite nanoparticles, enabling the attainment of desirable SPM and hyperthermia responses across a wide size spectrum. It also delineates an effective methodology for producing NZF nanoparticles suitable for a variety of applications, including optoelectronic and high-frequency devices, photocatalysis, environmental remediation, sensor systems, and advanced biomedical technologies.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Supun B Attanayake
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Pailinrut Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Supawitch Hoijang
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Chengzhen Qin
- Department of Electrical and Computer Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4005, United States
| | - Jiming Bao
- Department of Electrical and Computer Engineering and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-4005, United States
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
2
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025:d5na00195a. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
3
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Zhang L, Li Q, Liu J, Deng Z, Zhang X, Alifu N, Zhang X, Yu Z, Liu Y, Lan Z, Wen T, Sun K. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf B Biointerfaces 2024; 234:113754. [PMID: 38241891 DOI: 10.1016/j.colsurfb.2024.113754] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qifan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Junxiao Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Zunyi Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xueliang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China; State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaofeng Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhong Yu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tianlong Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
5
|
Phalake SS, Somvanshi SB, Tofail SAM, Thorat ND, Khot VM. Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model. NANOSCALE 2023; 15:15686-15699. [PMID: 37724853 DOI: 10.1039/d3nr02816j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Localized heat generation from manganese iron oxide nanoparticles (MIONPs) conjugated with chemotherapeutics under the exposure of an alternating magnetic field (magneto-chemotherapy) can revolutionize targeted breast cancer therapy. On the other hand, the lack of precise control of local temperature and adequate MIONP distribution in laboratory settings using the conventional two-dimensional (2D) cellular models has limited its further translation in tumor sites. Our current study explored advanced 3D in vitro tumor models as a promising alternative to replicate the complete range of tumor characteristics. Specifically, we have focused on investigating the effectiveness of MIONP-based magneto-chemotherapy (MCT) as an anticancer treatment in a 3D breast cancer model. To achieve this, chitosan-coated MIONPs (CS-MIONPs) are synthesized and functionalized with an anticancer drug (doxorubicin) and a tumor-targeting aptamer (AS1411). CS-MIONPs with a crystallite size of 16.88 nm and a specific absorption rate (SAR) of 181.48 W g-1 are reported. In vitro assessment of MCF-7 breast cancer cell lines in 2D and 3D cell cultures demonstrated anticancer activity. In the 2D and 3D cancer models, the MIONP-mediated MCT reduced cancer cell viability to about 71.48% and 92.2%, respectively. On the other hand, MIONP-mediated MCT under an AC magnetic field diminished spheroids' viability to 83.76 ± 2%, being the most promising therapeutic modality against breast cancer.
Collapse
Affiliation(s)
- Satish S Phalake
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| | - Sandeep B Somvanshi
- School of Materials Engineering, Purdue University, West Lafayette, USA
- Department of Physics, Dr. B. A. M. University, Aurangabad-431004, Maharashtra, India
| | - Syed A M Tofail
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
| | - Nanasaheb D Thorat
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Vishwajeet M Khot
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| |
Collapse
|
6
|
Golvari P, Alkameh K, Rahmani A, Jurca T, Kuebler SM. Pt-Coated Silicon Nanoparticles: An Investigation into the Hydrosilylation on Hydrogen-Terminated Silicon Surfaces Using Pt(dvs). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37326507 DOI: 10.1021/acs.langmuir.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction of hydrogen-terminated silicon nanoparticles (H-SiNPs) with Karstedt's catalyst at various temperatures was investigated. The results indicate that at room temperature, the oxidative addition of Pt(0) onto H-SiNPs is irreversible, and the catalyst is not eliminated from the surface of H-SiNPs, enabling a facile synthesis of Pt-loaded SiNPs that can undergo ligand exchange. The nature of the Pt-on-Si ensemble is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Reaction conditions that enable effective hydrosilylation are discussed. It is found that higher temperatures favor reductive elimination of the catalyst and hydrosilylation of 1-octene onto the surface of the H-SiNPs.
Collapse
Affiliation(s)
- Pooria Golvari
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Khaled Alkameh
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Stephen M Kuebler
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
7
|
Attanayake SB, Chanda A, Hulse T, Das R, Phan MH, Srikanth H. Competing Magnetic Interactions and Field-Induced Metamagnetic Transition in Highly Crystalline Phase-Tunable Iron Oxide Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1340. [PMID: 37110925 PMCID: PMC10145142 DOI: 10.3390/nano13081340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The inherent existence of multi phases in iron oxide nanostructures highlights the significance of them being investigated deliberately to understand and possibly control the phases. Here, the effects of annealing at 250 °C with a variable duration on the bulk magnetic and structural properties of high aspect ratio biphase iron oxide nanorods with ferrimagnetic Fe3O4 and antiferromagnetic α-Fe2O3 are explored. Increasing annealing time under a free flow of oxygen enhanced the α-Fe2O3 volume fraction and improved the crystallinity of the Fe3O4 phase, identified in changes in the magnetization as a function of annealing time. A critical annealing time of approximately 3 h maximized the presence of both phases, as observed via an enhancement in the magnetization and an interfacial pinning effect. This is attributed to disordered spins separating the magnetically distinct phases which tend to align with the application of a magnetic field at high temperatures. The increased antiferromagnetic phase can be distinguished due to the field-induced metamagnetic transitions observed in structures annealed for more than 3 h and was especially prominent in the 9 h annealed sample. Our controlled study in determining the changes in volume fractions with annealing time will enable precise control over phase tunability in iron oxide nanorods, allowing custom-made phase volume fractions in different applications ranging from spintronics to biomedical applications.
Collapse
Affiliation(s)
- Supun B. Attanayake
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (S.B.A.); (H.S.)
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (S.B.A.); (H.S.)
| | - Thomas Hulse
- Department of Physics & Astronomy, University of Louisville, Louisville, KY 40208, USA;
| | - Raja Das
- SEAM Research Centre, South East Technological University, X91 K0EK Waterford, Ireland;
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (S.B.A.); (H.S.)
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (S.B.A.); (H.S.)
| |
Collapse
|
8
|
Kulpa-Greszta M, Tomaszewska A, Dziedzic A, Pązik R. Temperature effects induced by NIR photo-stimulation within I st and II nd optical biological windows of seed-mediated multi-shell nanoferrites. Dalton Trans 2023; 52:2580-2591. [PMID: 36756813 DOI: 10.1039/d2dt04178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different types of ferrite core-shell structures, namely CoFe2O4@CoFe2O4, CoFe2O4@Fe3O4, CoFe2O4@MnFe2O4, and CoFe2O4@MnFe2O4@ZnFe2O4, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, i.e., temperature, time, and solvent. The contactless conversion of laser light within Ist (808 nm) and IInd (1122 nm) biological optical windows was studied on the fabricated ferrite core-shell materials which showed promising heating effects that can be a basis of their practical exploitation in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
9
|
Lavorato GC, de Almeida AA, Vericat C, Fonticelli MH. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. NANOTECHNOLOGY 2023; 34:192001. [PMID: 36825776 DOI: 10.1088/1361-6528/acb943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Adriele A de Almeida
- Instituto de Física 'Gleb Wataghin' (IFGW), Universidade Estadual de Campinas-UNICAMP, R. Sérgio Buarque de Holanda, 777-CEP: 13083-859, Campinas - SP, Brazil
| | - Carolina Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Mariano H Fonticelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
10
|
Lucaciu CM, Nitica S, Fizesan I, Filip L, Bilteanu L, Iacovita C. Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3578. [PMID: 36296768 PMCID: PMC9611223 DOI: 10.3390/nano12203578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/23/2023]
Abstract
The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.
Collapse
Affiliation(s)
- Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Liviu Bilteanu
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae St., 077190 Bucharest, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|
11
|
A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
13
|
Zhou W, Chen M, Huang H, Wang G, Luo X, Yuan C, Zhang J, Wu Y, Zheng X, Shen J, Wang S, Shen B. Interfacial Effect on Photo-Modulated Magnetic Properties of Core/Shell-Structured NiFe/NiFe 2O 4 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1347. [PMID: 35207886 PMCID: PMC8876216 DOI: 10.3390/ma15041347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Photo-modulated magnetism has become an emerging method for technological applications, such as magneto-optical devices. In this work, by introducing oxygen during rapid thermal annealing, NiFe/NiFe2O4 core/shell nanoparticles were successfully fabricated by pulsed laser deposition. Obvious photo-modulated ferromagnetism was observed in core/shell nanoparticles confined in Al2O3 film. Theoretical and experimental investigations indicate much more photogenerated electrons are captured at the interface of NiFe/NiFe2O4 compared with NiFe nanoparticles due to interfacial effect, resulting in the improved ferromagnetism under light irradiation. This work provides a promising strategy for optical engineering design of optical information storage, high-speed wireless communication, and magneto-optical semiconductor devices.
Collapse
Affiliation(s)
- Wenda Zhou
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China;
| | - Mingyue Chen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China;
| | - He Huang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Guyue Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China;
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China;
| | - Jingyan Zhang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Yanfei Wu
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Xinqi Zheng
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Jianxin Shen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Shouguo Wang
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
| | - Baogen Shen
- School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.Z.); (M.C.); (H.H.); (G.W.); (J.Z.); (Y.W.); (X.Z.); (J.S.)
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
14
|
Nguyen MD, Tran HV, Xu S, Lee TR. Fe 3O 4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:11301. [PMID: 35844268 PMCID: PMC9285867 DOI: 10.3390/app112311301] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Shoujun Xu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| |
Collapse
|
15
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
16
|
Simeonidis K, Kaprara E, Rivera-Gil P, Xu R, Teran FJ, Kokkinos E, Mitropoulos A, Maniotis N, Balcells L. Hydrotalcite-Embedded Magnetite Nanoparticles for Hyperthermia-Triggered Chemotherapy. NANOMATERIALS 2021; 11:nano11071796. [PMID: 34361181 PMCID: PMC8308439 DOI: 10.3390/nano11071796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023]
Abstract
A magnetic nanocomposite, consisting of Fe3O4 nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe2+, Fe3+) and Mg2+/Al3+ nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements. Heat transfer was found to trigger a very rapid release of drug which reached 80% of the loaded mass within 10 min exposure to the applied field. The potential of the Fe3O4/LDH nanocomposites as cancer treatment agents with minimum side-effects, owing to the exclusive presence of inorganic phases, was validated by cell internalization and toxicity assays.
Collapse
Affiliation(s)
- Konstantinos Simeonidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece;
- Correspondence:
| | - Efthimia Kaprara
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.R.-G.); (R.X.)
| | - Ruixue Xu
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.R.-G.); (R.X.)
| | - Francisco J. Teran
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Evgenios Kokkinos
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece;
| | - Athanassios Mitropoulos
- Hephaestus Advanced Laboratory, Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikolaos Maniotis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lluis Balcells
- Institut de Ciencia de Materials de Barcelona, CSIC, 08193 Bellaterra, Spain;
| |
Collapse
|
17
|
Finding the Limits of Magnetic Hyperthermia on Core-Shell Nanoparticles Fabricated by Physical Vapor Methods. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7040049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic nanoparticles can generate heat when exposed to an alternating magnetic field. Their heating efficacy is governed by their magnetic properties that are in turn determined by their composition, size and morphology. Thus far, iron oxides (e.g., magnetite, Fe3O4) have been the most popular materials in use, though recently bimagnetic core-shell structures are gaining ground. Herein we present a study on the effect of particle morphology on heating efficiency. More specifically, we use zero waste impact methods for the synthesis of metal/metal oxide Fe/Fe3O4 nanoparticles in both spherical and cubic shapes, which present an interesting venue for understanding how spin coupling across interfaces and also finite size effects may influence the magnetic response. We show that these particles can generate sufficient heat (hundreds of watts per gram) to drive hyperthermia applications, whereas faceted nanoparticles demonstrate superior heating capabilities than spherical nanoparticles of similar size.
Collapse
|
18
|
Lak A, Disch S, Bender P. Embracing Defects and Disorder in Magnetic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002682. [PMID: 33854879 PMCID: PMC8025001 DOI: 10.1002/advs.202002682] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/30/2020] [Indexed: 05/22/2023]
Abstract
Iron oxide nanoparticles have tremendous scientific and technological potential in a broad range of technologies, from energy applications to biomedicine. To improve their performance, single-crystalline and defect-free nanoparticles have thus far been aspired. However, in several recent studies, defect-rich nanoparticles outperform their defect-free counterparts in magnetic hyperthermia and magnetic particle imaging (MPI). Here, an overview on the state-of-the-art of design and characterization of defects and resulting spin disorder in magnetic nanoparticles is presented with a focus on iron oxide nanoparticles. The beneficial impact of defects and disorder on intracellular magnetic hyperthermia performance of magnetic nanoparticles for drug delivery and cancer therapy is emphasized. Defect-engineering in iron oxide nanoparticles emerges to become an alternative approach to tailor their magnetic properties for biomedicine, as it is already common practice in established systems such as semiconductors and emerging fields including perovskite solar cells. Finally, perspectives and thoughts are given on how to deliberately induce defects in iron oxide nanoparticles and their potential implications for magnetic tracers to monitor cell therapy and immunotherapy by MPI.
Collapse
Affiliation(s)
- Aidin Lak
- Department of Physics and Center for NanoScienceLMU MunichAmalienstr. 54Munich80799Germany
| | - Sabrina Disch
- Department für ChemieUniversität zu KölnGreinstraße 4‐6Köln50939Germany
| | - Philipp Bender
- Department of Physics and Materials ScienceUniversity of Luxembourg162A avenue de la FaÏencerieLuxembourgL‐1511Grand Duchy of Luxembourg
- Present address:
Heinz Maier‐Leibnitz Zentrum (MLZ)Technische Universität MünchenD‐85748GarchingGermany
| |
Collapse
|
19
|
Lavorato GC, Das R, Alonso Masa J, Phan MH, Srikanth H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. NANOSCALE ADVANCES 2021; 3:867-888. [PMID: 36133290 PMCID: PMC9418677 DOI: 10.1039/d0na00828a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/04/2023]
Abstract
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Universidad Nacional de La Plata 1900 La Plata Argentina
| | - Raja Das
- Faculty of Materials Science and Engineering and Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Hanoi 10000 Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan Hanoi 10000 Vietnam
| | | | - Manh-Huong Phan
- Department of Physics, University of South Florida 33620 Tampa FL USA
| | | |
Collapse
|
20
|
Role of Magnetic Anisotropy on the Hyperthermia Efficiency in Spherical Fe3−xCoxO4 (x = 0–1) Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of magnetic nanoparticles in the treatment of cancer using alternating current hyperthermia therapy has shown the potential to replace or supplement conventional cancer treatments, radiotherapy and chemotherapy, which have severe side effects. Though the nearly spherical sub-10 nm iron oxide nanoparticles have their approval from the US Food and Drug Administration, their low heating efficiency and removal from the body after hyperthermia treatment raises serious concerns. The majority of magnetic hyperthermia research is working to create nanomaterials with improved heating efficiency and long blood circulation time. Here, we have demonstrated a simple strategy to enhance the heating efficiency of sub-10 nm Fe3O4 nanoparticles through the replacement of Fe+2 ions with Co+2 ions. Magnetic and hyperthermia experiments on the 7 nm Fe3−xCoxO4 (x = 0–1) nanoparticles showed that the blocking temperature, the coercivity at 10 K, and the specific absorption rate followed a similar trend with a maximum at x = 0.75, which is in corroboration with the theoretical prediction. Our study revealed that the heating efficiency of the Fe3−xCoxO4 (x = 0–1) nanoparticles varies not just with the size and saturation magnetization but also with the magnetocrystalline anisotropy of the particles.
Collapse
|
21
|
Fabris F, Lohr J, Lima E, de Almeida AA, Troiani HE, Rodríguez LM, Vásquez Mansilla M, Aguirre MH, Goya GF, Rinaldi D, Ghirri A, Peddis D, Fiorani D, Zysler RD, De Biasi E, Winkler EL. Adjusting the Néel relaxation time of Fe 3O 4/Zn x Co 1-x Fe 2O 4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia. NANOTECHNOLOGY 2020; 32:065703. [PMID: 33210620 DOI: 10.1088/1361-6528/abc386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/Zn x Co1-x Fe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g-1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.
Collapse
Affiliation(s)
- Fernando Fabris
- Instituto de Nanociencia y Nanotecnología CNEA-CONICET-Centro Atómico Bariloche, S. C. de Bariloche, 8400, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Das A, Mohanty S, Kumar R, Kuanr BK. Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42016-42029. [PMID: 32799438 DOI: 10.1021/acsami.0c13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we have designed a magnetoluminescent nanocomposite as a single platform for optical imaging and safe magnetic hyperthermia therapy by optimizing the composition of magnetic nanoparticles and controlling the conjugation strategy of the luminescent lanthanide complex. We have synthesized CoxMn1-xFe2O4 nanoferrites, with x = 0 to 1 in 0.25 steps, from soft (MnFe2O4) to hard (CoFe2O4) ferrites of size (∼20 nm) following a one-pot oxidative hydrolysis method. We have performed the induction heating study with an aqueous dispersion of nanoferrites using an alternating magnetic field (AMF) of 12 kAm-1, 335 kHz. This shows an enhancement of heating efficiency with the increment of manganese content and attains the highest intrinsic loss power (ILP) of 6.47 nHm2 kg-1 for MnFe2O4 nanoparticles. We have then fabricated a magnetoluminescent nanocomposite employing MnFe2O4 nanoparticles as it shows outstanding heating performance within the threshold limit of AMF (≤5 × 109 Am-1 s-1). A layer-by-layer coating strategy is followed, where a pure silica coating of thickness ∼10 nm on MnFe2O4 nanoparticles is achieved before encapsulation of the luminescent complex of europium(III), 2-thenoyltrifluoroacetone, and 1,10-phenanthroline in the second layer of silica. This is to ensure the optimal distance between the magnetic core and Eu(III)-complex to pertain significant luminescence in the composite (Eu-MnFe2O4). The photoluminescence spectra of an aqueous dispersion of Eu-MnFe2O4 by excitation in the UV region show a narrow and strong emission at 612 nm, which is stable even after 72 h. The induction heating study of an aqueous dispersion of Eu-MnFe2O4 in 12 kAm-1, 335 kHz AMF shows an ILP as 4.02 nHm2 kg-1, which is remarkably higher than the hyperthermia efficiency of reported magnetoluminescent nanoparticles.
Collapse
Affiliation(s)
- Anindita Das
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonali Mohanty
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Lavorato GC, Rubert AA, Xing Y, Das R, Robles J, Litterst FJ, Baggio-Saitovitch E, Phan MH, Srikanth H, Vericat C, Fonticelli MH. Shell-mediated control of surface chemistry of highly stoichiometric magnetite nanoparticles. NANOSCALE 2020; 12:13626-13636. [PMID: 32558841 DOI: 10.1039/d0nr02069a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetite (Fe3O4) nanoparticles are one of the most studied nanomaterials for different nanotechnological and biomedical applications. However, Fe3O4 nanomaterials gradually oxidize to maghemite (γ-Fe2O3) under conventional environmental conditions leading to changes in their functional properties that determine their performance in many applications. Here we propose a novel strategy to control the surface chemistry of monodisperse 12 nm magnetite nanoparticles by means of a 3 nm-thick Zn-ferrite epitaxial coating in core/shell nanostructures. We have carried out a combined Mössbauer spectroscopy, dc magnetometry, X-ray photoelectron spectroscopy and spatially resolved electron energy loss spectroscopy study on iron oxide and Fe3O4/Zn0.6Fe2.4O4 core/shell nanoparticles aged under ambient conditions for 6 months. Our results reveal that while the aged iron oxide nanoparticles consist of a mixture of γ-Fe2O3 and Fe3O4, the Zn-ferrite-coating preserves a highly stoichiometric Fe3O4 core. Therefore, the aged core/shell nanoparticles present a sharp Verwey transition, an increased saturation magnetization and the possibility of tuning the effective anisotropy through exchange-coupling at the core/shell interface. The inhibition of the oxidation of the Fe3O4 cores can be accounted for in terms of the chemical nature of the shell layer and an epitaxial crystal symmetry matching between the core and the shell.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simeonidis K, Martinez-Boubeta C, Serantes D, Ruta S, Chubykalo-Fesenko O, Chantrell R, Oró-Solé J, Balcells L, Kamzin AS, Nazipov RA, Makridis A, Angelakeris M. Controlling Magnetization Reversal and Hyperthermia Efficiency in Core-Shell Iron-Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling. ACS APPLIED NANO MATERIALS 2020; 3:4465-4476. [PMID: 32582880 PMCID: PMC7304833 DOI: 10.1021/acsanm.0c00568] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/13/2020] [Indexed: 05/20/2023]
Abstract
Magnetic particle hyperthermia, in which colloidal nanostructures are exposed to an alternating magnetic field, is a promising approach to cancer therapy. Unfortunately, the clinical efficacy of hyperthermia has not yet been optimized. Consequently, routes to improve magnetic particle hyperthermia, such as designing hybrid structures comprised of different phase materials, are actively pursued. Here, we demonstrate enhanced hyperthermia efficiency in relatively large spherical Fe/Fe-oxide core-shell nanoparticles through the manipulation of interactions between the core and shell phases. Experimental results on representative samples with diameters in the range 30-80 nm indicate a direct correlation of hysteresis losses to the observed heating with a maximum efficiency of around 0.9 kW/g. The absolute particle size, the core-shell ratio, and the interposition of a thin wüstite interlayer are shown to have powerful effects on the specific absorption rate. By comparing our measurements to micromagnetic calculations, we have unveiled the occurrence of topologically nontrivial magnetization reversal modes under which interparticle interactions become negligible, aggregates formation is minimized and the energy that is converted into heat is increased. This information has been overlooked until date and is in stark contrast to the existing knowledge on homogeneous particles.
Collapse
Affiliation(s)
- K. Simeonidis
- Department
of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Ecorecources
P.C., Giannitson-Santaroza
Str. 15-17, 54627 Thessaloniki, Greece
| | | | - D. Serantes
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
- Applied
Physics Department and IIT, Universidade
de Santiago de Compostela, Compostela 15782, Spain
| | - S. Ruta
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - R. Chantrell
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - J. Oró-Solé
- Institut
de Ciència de Materials de Barcelona, CSIC, Bellaterra 08193, Spain
| | - Ll. Balcells
- Institut
de Ciència de Materials de Barcelona, CSIC, Bellaterra 08193, Spain
| | - A. S. Kamzin
- Ioffe
Physical-Technical Institute, Russian Academy
of Sciences, St. Petersburg 194021, Russia
| | - R. A. Nazipov
- Kazan
National Research Technological University, Kazan 420015, Russia
| | - A. Makridis
- Department
of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M. Angelakeris
- Department
of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
25
|
Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance. NANOMATERIALS 2020; 10:nano10050991. [PMID: 32455690 PMCID: PMC7281385 DOI: 10.3390/nano10050991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
Magnetic ferrite nanoparticles (MFNs) with high heating efficiency are highly desirable for hyperthermia applications. As conventional MFNs usually show low heating efficiency with a lower specific loss power (SLP), extensive efforts to enhance the SLP of MFNs have been made by varying the particle compositions, sizes, and structures. In this study, we attempted to increase the SLP values by creating core-shell structures of MFNs. Accordingly, first we synthesized three different types of core ferrite nanoparticle of magnetite (mag), cobalt ferrite (cf) and zinc cobalt ferrite (zcf). Secondly, we synthesized eight bi-magnetic core-shell structured MFNs; Fe3O4@CoFe2O4 (mag@cf1, mag@cf2), CoFe2O4@Fe3O4 (cf@mag1, cf@mag2), Fe3O4@ZnCoFe2O4 (mag@zcf1, mag@zcf2), and ZnCoFe2O4@Fe3O4 (zcf@mag1, zcf@mag2), using a modified controlled co-precipitation process. SLP values of the prepared core-shell MFNs were investigated with respect to their compositions and core/shell dimensions while varying the applied magnetic field strength. Hyperthermia properties of the prepared core-shell MFNs were further compared to commercial magnetic nanoparticles under the safe limits of magnetic field parameters (<5 × 109 A/(m·s)). As a result, the highest SLP value (379.2 W/gmetal) was obtained for mag@zcf1, with a magnetic field strength of 50 kA/m and frequency of 97 kHz. On the other hand, the lowest SLP value (1.7 W/gmetal) was obtained for cf@mag1, with a magnetic field strength of 40 kA/m and frequency of 97 kHz. We also found that magnetic properties and thickness of the shell play critical roles in heating efficiency and hyperthermia performance. In conclusion, we successfully enhanced the SLP of MFNs by engineering their compositions and dimensions.
Collapse
|