1
|
Yaşar M, Bal C, Aksoy M, Güngörmüş M, Orhan K. In vitro caries-preventive effect of a mineralization-promoting peptide combined with fluoride gel on sound primary teeth. Int J Paediatr Dent 2024; 34:256-266. [PMID: 37837213 DOI: 10.1111/ipd.13126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Mineralization-promoting peptide-3 (MPP3) is a new biomimetic remineralization agent. AIM To assess the remineralization efficiency of MPP3, either alone or in combination with fluoride gel. DESIGN The samples were divided into four groups: control, 1.23% fluoride gel, 10% MPP3 gel, and 1.23% fluoride gel + 10% MPP3. Following the application of remineralization agents (4 min), the samples remained in a pH-cycling model (37°C, 4 weeks). Microhardness, microcomputed tomography (micro-CT), polarized light microscopy (PLM), and field emission scanning electron microscopy (FE-SEM) analysis were conducted. RM-ANOVA, one-way ANOVA, and intraclass correlation coefficient (ICC) were used for statistical analysis, and a significance level of p < .05 was employed. RESULTS Mineralization-promoting peptide 3 and fluoride gel + MPP3 increased the microhardness of the enamel compared with initial values in each group (p < .05). Mineralization-promoting peptide 3 successfully maintained the mineral density of enamel, although the cariogenic pH-cycling and PLM results indicated that the lesion depth (μm) was significantly lower in the fluoride gel + MPP3 group (27.0336 ± 12.53650) than in the control group (37.3907 ± 12.76002, p < .05). CONCLUSION The combined use of MPP3 with fluoride gel enhanced the caries-protective and mineralization-promoting effects of fluoride. Mineralization-promoting peptide 3 may be a potential agent that can be employed to improve the physical properties of enamel.
Collapse
Affiliation(s)
- Merve Yaşar
- Department of Pediatric Dentistry, Faculty of Gulhane Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Cenkhan Bal
- Department of Pediatric Dentistry, Faculty of Gulhane Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Merve Aksoy
- Department of Pediatric Dentistry, Faculty of Gulhane Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Mustafa Güngörmüş
- School of Engineering and Natural Sciences, Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
- MERLAB Application and Research Center, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Ankara University Faculty of Dentistry, Ankara, Turkey
| |
Collapse
|
2
|
Huang Y, Zhang X, Mao R, Li D, Luo F, Wang L, Chen Y, Lu J, Ge X, Liu Y, Yang X, Fan Y, Zhang X, Wang K. Nucleation Domains in Biomineralization: Biomolecular Sequence and Conformational Features. Inorg Chem 2024; 63:689-705. [PMID: 38146716 DOI: 10.1021/acs.inorgchem.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Biomolecules play a vital role in the regulation of biomineralization. However, the characteristics of practical nucleation domains are still sketchy. Herein, the effects of the representative biomolecular sequence and conformations on calcium phosphate (Ca-P) nucleation and mineralization are investigated. The results of computer simulations and experiments prove that the line in the arrangement of dual acidic/essential amino acids with a single interval (Bc (Basic) -N (Neutral) -Bc-N-Ac (Acidic)- NN-Ac-N) is most conducive to the nucleation. 2α-helix conformation can best induce Ca-P ion cluster formation and nucleation. "Ac- × × × -Bc" sequences with α-helix are found to be the features of efficient nucleation domains, in which process, molecular recognition plays a non-negligible role. It further indicates that the sequence determines the potential of nucleation/mineralization of biomolecules, and conformation determines the ability of that during functional execution. The findings will guide the synthesis of biomimetic mineralized materials with improved performance for bone repair.
Collapse
Affiliation(s)
- Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xinyue Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yue Liu
- Key Laboratory for Industrial Ceramics of Jiangxi Province, Pingxiang University, Pingxiang 337055 China
| | - Xusheng Yang
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Chengdu 610064, China
| |
Collapse
|
3
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
4
|
Cloyd AK, Boone K, Ye Q, Snead ML, Spencer P, Tamerler C. Engineered Peptides Enable Biomimetic Route for Collagen Intrafibrillar Mineralization. Int J Mol Sci 2023; 24:ijms24076355. [PMID: 37047325 PMCID: PMC10093982 DOI: 10.3390/ijms24076355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.
Collapse
Affiliation(s)
- Aya K. Cloyd
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA 90007, USA
| | - Paulette Spencer
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
5
|
Öztürk Z, Bal C, Güngörmüş M, Aksoy M. Effects of a mineralization-promoting peptide on the physical and chemical properties of mineral trioxide aggregate. J Mech Behav Biomed Mater 2023; 138:105570. [PMID: 36493613 DOI: 10.1016/j.jmbbm.2022.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Mineral trioxide aggregate (MTA) has been used widely in dentistry due to its sealing ability and biocompatibility. Delayed setting time is one of the major limitations of MTA. Various additives have been studied to further improve the properties of MTA with varied degrees of success. In this study, we have investigated the effect of a calcium phosphate mineralization promoting-peptide (MPP3) on the physical and chemical properties of MTA in comparison with Na2HPO4. Based on the reported effects of MPP3 on calcium-phosphate mineralization reaction, our hypothesis was that MPP3 may also show beneficial effects on the calcium-silicate mineralization system of MTA. Na2HPO4 was used for comparison since its setting accelerant effect on MTA has been well documented. The cements were prepared by mixing with distilled water, 0.40 mM MPP3 solution, 15% Na2HPO4 solution, and a combination of MPP3 and Na2HPO4 solution. Initial and final setting times were measured via Vicat needle. Microhardness values were measured via Vickers indenter at 1,3,7, and 28 days after hydration. Compressive strength after setting was measured via universal testing machine. Morphological and compositional analyses were performed via FESEM imaging, XRD and Raman spectroscopy. The microhardness data was evaluated via repeated-measures ANOVA. Setting time and compressive strength data were evasluated via one-way ANOVA. Initial setting time was reduced to ∼3 min in the Na2HPO4 containing groups but remained at ∼5 min in the control and MPP3 groups. Final setting times were significantly reduced in all groups compared to the control group. The reduction in the final setting times in the Na2HPO4 containing groups were significantly higher compared to the MPP3 group. Microhardness was significantly higher in the MPP3 group at all time points. No statistically significant difference in compressive strength was observed among the groups. FESEM analysis showed presence of ettringite crystals in the MPP3 group, and NaBiO3 crystals in the Na2HPO4 containing groups. XRD analysis showed a broadening of peaks at 2θ = 32° in the Na2HPO4 containing groups, possibly due to presence of NaBiO3. Raman spectroscopy showed statistically higher ettringite content in the MPP3 containing groups. Our findings indicate that MPP3 is a beneficial additive to eliminate some of the drawbacks associated with MTA with no detrimental effects on mechanical properties and without resulting in phases that potentially cause discoloration, such as NaBiO3. We propose that the reduced final setting time and increased microhardness by MPP3 may be associated with the increased ettringite content. Future studies, where wider range of MPP3 concentrations are studied may help elucidate and optimize the beneficial effects of MPP3 observed in this study.
Collapse
Affiliation(s)
- Zeynep Öztürk
- Bolu Abant İzzet Baysal University, Dentistry Faculty, Department of Pediatric Dentistry, Bolu, Turkey.
| | - Cenkhan Bal
- Health Sciences University, Gülhane Dentistry Faculty, Department of Pediatric Dentistry, Ankara, Turkey.
| | - Mustafa Güngörmüş
- Ankara Yıldırım Beyazıt University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara, Turkey; Ankara Yıldırım Beyazıt University, MERLAB Application and Research Center, Ankara, Turkey.
| | - Merve Aksoy
- Health Sciences University, Gülhane Dentistry Faculty, Department of Pediatric Dentistry, Ankara, Turkey.
| |
Collapse
|
6
|
Duanis-Assaf T, Hu T, Lavie M, Zhang Z, Reches M. Understanding the Adhesion Mechanism of Hydroxyapatite-Binding Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:968-978. [PMID: 34995466 PMCID: PMC8793143 DOI: 10.1021/acs.langmuir.1c02293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Indexed: 05/31/2023]
Abstract
Understanding the interactions between the protein collagen and hydroxyapatite is of high importance for understanding biomineralization and bone formation. Here, we undertook a reductionist approach and studied the interactions between a short peptide and hydroxyapatite. The peptide was selected from a phage-display library for its high affinity to hydroxyapatite. To study its interactions with hydroxyapatite, we performed an alanine scan to determine the contribution of each residue. The interactions of the different peptide derivatives were studied using a quartz crystal microbalance with dissipation monitoring and with single-molecule force spectroscopy by atomic force microscopy. Our results suggest that the peptide binds via electrostatic interactions between cationic moieties of the peptide and the negatively charged groups on the crystal surface. Furthermore, our findings show that cationic residues have a crucial role in binding. Using molecular dynamics simulations, we show that the peptide structure is a contributing factor to the adhesion mechanism. These results suggest that even small conformational changes can have a significant effect on peptide adhesion. We suggest that a bent structure of the peptide allows it to strongly bind hydroxyapatite. The results presented in this study improve our understanding of peptide adhesion to hydroxyapatite. On top of physical interactions between the peptide and the surface, peptide structure contributes to adhesion. Unveiling these processes contributes to our understanding of more complex biological systems. Furthermore, it may help in the design of de novo peptides to be used as functional groups for modifying the surface of hydroxyapatite.
Collapse
Affiliation(s)
- Tal Duanis-Assaf
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tan Hu
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key
Laboratory of Environment Correlative Dietology, Huazhong Agricultural
University, Ministry of Education, Wuhan, Hubei 430070, People’s Republic of China
| | - Maayan Lavie
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuo Zhang
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key
Laboratory of Environment Correlative Dietology, Huazhong Agricultural
University, Ministry of Education, Wuhan, Hubei 430070, People’s Republic of China
| | - Meital Reches
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Gungormus M, Tulumbaci F. Peptide-assisted pre-bonding remineralization of dentin to improve bonding. J Mech Behav Biomed Mater 2020; 113:104119. [PMID: 33035925 DOI: 10.1016/j.jmbbm.2020.104119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Bonding with dentin is a complex process involving physical and chemical adhesion where the adhesive must be able to penetrate and envelop collagen fibers. Acid etching clears the dentin of debris, which prevents adhesives to interact with dentin. However, it also demineralizes the outermost surface of dentin and exposes collagen fibers. The mineral-free collagen is susceptible to collapse after drying and to proteolytic or microbial attack, ultimately impairing the bonding with dentin. To address this, we have attempted a pre-bonding rapid remineralization approach to recover the mineral content of etched dentin. We have used a mineralization-promoting peptide and high calcium/phosphate concentration to achieve this in a clinically applicable timeframe. Partial remineralization was confirmed via SEM and XRD analyses. The mechanical properties and the stability of the partially remineralized dentin were investigated via microhardness, collagen hydrolysis and shrinkage tests. The bonding properties were investigated via shear bond strength (SBS) and microleakage tests. Pre-bonding remineralization of dentin with peptide for 10 min significantly increased the stiffness, resistance to hydrolysis and reduced shrinkage due to drying. SBS was increased with both an etch&rinse and a self-etch adhesive. However, pre-bonding remineralization resulted in reduced microleakage only with the etch&rinse adhesive. The described method is readily applicable to clinic since it is expected to add only 10 min to the procedure. Future in situ and/or in vivo studies will help to confirm the benefits observed in this in vitro study and allow optimize the parameters of the method.
Collapse
Affiliation(s)
- Mustafa Gungormus
- Department of Basic Sciences, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey; Department of Biomedical Engineering, School of Engineering and Natural Sciences Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Fatih Tulumbaci
- Department of Pediatric Dentistry, School of Dentistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
8
|
Tulumbaci F, Gungormus M. In vitro remineralization of primary teeth with a mineralization-promoting peptide containing dental varnish. J Appl Oral Sci 2020; 28:e20200259. [PMID: 32901695 PMCID: PMC7480669 DOI: 10.1590/1678-7757-2020-0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/28/2022] Open
Abstract
Mineralization-promoting peptides are attractive candidates for new remineralization systems. In previous studies, peptides have been applied as aqueous solutions, which is not a clinically relevant form. OBJECTIVE This study aims to investigate the efficiency of a mineralization-promoting peptide, applied in varnish, on remineralizing artificial caries on primary teeth. METHODOLOGY 55 primary molars were collected. Specimens were immersed in a demineralizing solution for 7 days and then, divided into 7 groups: Baseline: No-remineralization, Placebo: Blank colophony, F: Colophony 5% fluoride, P: Colophony 10% peptide, P+F: Colophony 5% fluoride and 10% peptide, Embrace: Embrace™ varnish, Durashield: Durashield™ varnish. A mixture of 35% w/v colophony varnishes were prepared in ethanol and applied accordingly. Specimens were immersed in a remineralization solution for 4 weeks and it was evaluated using PLM and SEM. Lesion depth reduction was examined by one-way ANOVA. RESULTS There was no significant difference in mean lesion depths between baseline (147.04 ± 10.18 μm) and placebo groups (139.73 ± 14.92 μm), between F (120.95 ± 12.23 μm) and Durashield (113.47 ± 14.36 μm) groups and between P (81.79 ± 23.15 μm) and Embrace (90.26 ± 17.72 μm) groups. Lesion depth for the P+F group (66.95±10.59 μm) was significantly higher compared to all other groups. All groups contained samples with subsurface demineralized regions. Number of subsurface demineralized regions were higher in fluoride-containing groups. CONCLUSIONS We conclude that the mineralization-promoting peptide (MPP3) is effective in this in vitro study and the peptide shows benefits over fluoride as it yields less subsurface demineralized regions.
Collapse
Affiliation(s)
- Fatih Tulumbaci
- Ankara Yildirim Beyazit University, School of Dentistry, Department of Pediatric Dentistry, Ankara, Turkey
| | - Mustafa Gungormus
- Ankara Yildirim Beyazit University, School of Dentistry, Department of Basic Sciences, Ankara, Turkey
- Ankara Yildirim Beyazit University, School of Engineering and Natural Sciences, Biomedical Engineering, Ankara, Turkey
| |
Collapse
|