1
|
Yu M, Huang R, Hua J, Ru M, You R, Huang Y, Yan S, Zhang Q. High biocompatible bone screw enabled by a rapid and robust chitosan/silk fibroin composite material. Int J Biol Macromol 2024; 267:131519. [PMID: 38608985 DOI: 10.1016/j.ijbiomac.2024.131519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renyan Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiahui Hua
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ying Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Khoman GA, Kalijaga MHA, Aisah N, Fidyaningsih R, Raharjo J, Arjasa OP, Prajatelistia E. PMMA bone cement with L-arginine/nano fish bone nanocomplex for apatite formation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231694. [PMID: 38545617 PMCID: PMC10966394 DOI: 10.1098/rsos.231694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
Bone cement is one of the materials used in orthopaedics that serves various functions, such as binding bone implants, replacing damaged bones and filling spaces within bones. Various materials have been used to synthesize bone cement, and one promising material for further research is fish bone waste-based bone cement. This study investigates the potential of fish bone waste-based bone cement by incorporating nano fish bone (NFB) and L-arginine (L-Arg) protein into polymethyl methacrylate (PMMA) to examine apatite growth. NFB derived from the Salmo salar fish positively influences osteoblast cell proliferation and differentiation, while L-Arg enhances biocompatibility and antibiotic properties. The NFB/L-Arg combination holds promise in accelerating new bone formation and cell growth, both of which are crucial for fracture healing and bone remodelling. Tensile strength tests reveal the superior performance of BC-PMMA-1-NFB/L-Arg (36.11 MPa) compared with commercial PMMA (32 MPa). Immersion tests with simulated body fluid (SBF) solution for 7 days reveal accelerated apatite layer formation, emphasizing the potential benefits of NFB/L-Arg in bone cement applications.
Collapse
Affiliation(s)
- Gessica Aurel Khoman
- Materials Science and Engineering Study Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung40132, Indonesia
| | - Muhammad Harza Arbaha Kalijaga
- Materials Science and Engineering Study Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung40132, Indonesia
| | - Nuning Aisah
- Advanced Material Research Center, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Setu Serpong, South Tangerang, Banten15314, Indonesia
| | - Riastuti Fidyaningsih
- Advanced Material Research Center, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Setu Serpong, South Tangerang, Banten15314, Indonesia
| | - Jarot Raharjo
- Advanced Material Research Center, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Setu Serpong, South Tangerang, Banten15314, Indonesia
| | - Oka P. Arjasa
- Advanced Material Research Center, National Research and Innovation Agency (BRIN), Kawasan Puspiptek Setu Serpong, South Tangerang, Banten15314, Indonesia
| | - Ekavianty Prajatelistia
- Materials Science and Engineering Study Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung40132, Indonesia
| |
Collapse
|
3
|
Putra NE, Zhou J, Zadpoor AA. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv Healthc Mater 2024; 13:e2301837. [PMID: 37535435 PMCID: PMC11468967 DOI: 10.1002/adhm.202301837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The need for sustainable development has never been more urgent, as the world continues to struggle with environmental challenges, such as climate change, pollution, and dwindling natural resources. The use of renewable and recycled waste materials as a source of raw materials for biomaterials and tissue engineering is a promising avenue for sustainable development. Although tissue engineering has rapidly developed, the challenges associated with fulfilling the increasing demand for bone substitutes and implants remain unresolved, particularly as the global population ages. This review provides an overview of waste materials, such as eggshells, seashells, fish residues, and agricultural biomass, that can be transformed into biomaterials for bone tissue engineering. While the development of recycled metals is in its early stages, the use of probiotics and renewable polymers to improve the biofunctionalities of bone implants is highlighted. Despite the advances of additive manufacturing (AM), studies on AM waste-derived bone-substitutes are limited. It is foreseeable that AM technologies can provide a more sustainable alternative to manufacturing biomaterials and implants. The preliminary results of eggshell and seashell-derived calcium phosphate and rice husk ash-derived silica can likely pave the way for more advanced applications of AM waste-derived biomaterials for sustainably addressing several unmet clinical applications.
Collapse
Affiliation(s)
- Niko E. Putra
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Jie Zhou
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical EngineeringFaculty of MechanicalMaritimeand Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
4
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
5
|
Ghosh S, Webster TJ. Bioinspired advanced nanomaterials for infection control and promotion of bone growth. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
6
|
Injectable decellularized cartilage matrix hydrogel encapsulating urine-derived stem cells for immunomodulatory and cartilage defect regeneration. NPJ Regen Med 2022; 7:75. [PMID: 36550127 PMCID: PMC9780205 DOI: 10.1038/s41536-022-00269-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of complex cartilage defects has remained a great challenge for tissue engineering due to the lack of stem cells and chronic inflammation within the joint. In this study, we have developed an injectable pig cartilage-derived decellularized extracellular matrix (dECM) hydrogels for the repair of cartilage defects, which has shown sound biocompatibility and immunomodulatory capacity both in vitro and in vivo. The dECM hydrogels can enhance the chondrogenic differentiation of human urine-derived stem cells (USCs). As shown by in vitro experiment, the USCs in the dECM hydrogels have survived, proliferated, and produced a mass of cartilage-specific extracellular matrix containing collagen II and aggrecan. And the USCs-laden dECM hydrogels have shown the capacity to promote the secretion of extracellular matrix, modulate the immune response and promote cartilage regeneration in the rat model for cartilage defect.
Collapse
|
7
|
Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics 2022; 14:pharmaceutics14102244. [PMID: 36297679 PMCID: PMC9610165 DOI: 10.3390/pharmaceutics14102244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Non-targeted persistent immune activation or suppression by different drug delivery platforms can cause adverse and chronic physiological effects including cancer and arthritis. Therefore, non-toxic materials that do not trigger an immunogenic response during delivery are crucial for safe and effective in vivo treatment. Hydrogels are excellent candidates that can be engineered to control immune responses by modulating biomolecule release/adsorption, improving regeneration of lymphoid tissues, and enhancing function during antigen presentation. This review discusses the aspects of hydrogel-based systems used as drug delivery platforms for various diseases. A detailed investigation on different immunomodulation strategies for various delivery options and deliberate upon the outlook of such drug delivery platforms are conducted.
Collapse
|
8
|
Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. BIOMATERIALS ADVANCES 2022; 140:213058. [PMID: 35933955 DOI: 10.1016/j.bioadv.2022.213058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The well-known synergetic interplay between the skeletal and immune systems has changed the design of advanced bone tissue engineering strategies. The immune system is essential during the bone lifetime, with macrophages playing multiple roles in bone healing and biomaterial integration. If in the past, the most valuable aspect of implants was to avoid immune responses of the host, nowadays, it is well-established how important are the crosstalks between immune cells and bone-engineered niches for an efficient regenerative process to occur. For that, it is essential to recapitulate the multiphenotypic cellular environment of bone tissue when designing new approaches. Indeed, the lack of osteoimmunomodulatory knowledge may be the explanation for the poor translation of biomaterials into clinical practice. Thus, smarter hydrogels incorporating immunomodulatory bioactive factors, stem cells, and immune cells are being proposed to develop a new generation of bone tissue engineering strategies. This review highlights the power of immune cells to upgrade the development of innovative engineered strategies, mainly focusing on orthopaedic and dental applications.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Ko GR, Lee JS. Engineering of Immune Microenvironment for Enhanced Tissue Remodeling. Tissue Eng Regen Med 2022; 19:221-236. [PMID: 35041181 PMCID: PMC8971302 DOI: 10.1007/s13770-021-00419-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023] Open
Abstract
The capability to restore the structure and function of tissues damaged by fatal diseases and trauma is essential for living organisms. Various tissue engineering approaches have been applied in lesions to enhance tissue regeneration after injuries and diseases in living organisms. However, unforeseen immune reactions by the treatments interfere with successful healing and reduce the therapeutic efficacy of the strategies. The immune system is known to play essential roles in the regulation of the microenvironment and recruitment of cells that directly or indirectly participate in tissue remodeling in defects. Accordingly, regenerative immune engineering has emerged as a novel approach toward efficiently inducing regeneration using engineering techniques that modulate the immune system. It is aimed at providing a favorable immune microenvironment based on the controlled balance between pro-inflammation and anti-inflammation. In this review, we introduce recent developments in immune engineering therapeutics based on various cell types and biomaterials. These developments could potentially overcome the therapeutic limitations of tissue remodeling.
Collapse
Affiliation(s)
- Ga Ryang Ko
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Kumar R, Sarkar C, Panja S, Khatua C, Gugulothu K, Sil D. Biomimetic Nanocomposites for Biomedical Applications. ACS SYMPOSIUM SERIES 2022:163-196. [DOI: 10.1021/bk-2022-1410.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkand 833202, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Chandra Khatua
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad, Telangana 500007, India
| | - Diptesh Sil
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| |
Collapse
|
11
|
Chen Q, Xia C, Shi B, Chen C, Yang C, Mao G, Shi F. Extracorporeal Shock Wave Combined with Teriparatide-Loaded Hydrogel Injection Promotes Segmental Bone Defects Healing in Osteoporosis. Tissue Eng Regen Med 2021; 18:1021-1033. [PMID: 34427911 DOI: 10.1007/s13770-021-00381-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease characterized by decreased bone density and deterioration of bone microstructure, leading to an increased probability of fragility fractures. Once segmental bone defect occurs, it is easy to cause delayed union and nonunion. METHODS The aim of this study is to investigate the efficacy of extracorporeal shock wave (ESW) and teriparatide-loaded hydrogel (T-Gel) combined strategy on the cell activity and differentiation of osteoporosis derived bone marrow mesenchymal stem cells (OP-BMSCs) in vitro and bone regeneration in osteoporotic segmental bone defects in vivo. RESULTS In vitro, the strategy of combining ESW and T-Gel significantly enhanced OP-BMSCs proliferation, survival, migration, and osteogenic differentiation by up-regulating the alkaline phosphatase activity, mineralization, and expression of runt-related transcription factor-2, type I collagen, osteocalcin, and osteopontin. In the segmental bone defect models of osteoporotic rabbits, Micro-CT evaluation and histological observation demonstrated this ESW-combined with T-Gel injection significantly induced bone healing by enhancing the osteogenic activity of the local microenvironment in osteoporotic defects. CONCLUSION In conclusion, ESW-combined with T-Gel injection could regulate the poor osteogenic microenvironment in osteoporotic defects and show potential for enhancing fragility fractures healing.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Binbin Shi
- Department of Orthopedic Surgery, Tongxiang First People's Hospital, Tongxiang, 314500, People's Republic of China
| | - Chuyong Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Yang
- Department of Orthopedic Surgery, No 1 People's Hospital of AkeSu, AkeSu, 843000, Xinjiang, People's Republic of China
| | - Guangfeng Mao
- Department of Orthopedic Surgery, The Third People Hospital of Zhuji, Shaoxing, 310014, People's Republic of China
| | - Fangfang Shi
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
12
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
13
|
He M, Hou Y, Zhu C, He M, Jiang Y, Feng G, Liu L, Li Y, Chen C, Zhang L. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjug Chem 2021; 32:1915-1925. [PMID: 34247477 DOI: 10.1021/acs.bioconjchem.1c00322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A three-dimensional (3D) printed biodegradable hydrogel scaffold with a strong self-expanding ability to conform to the contour of irregular bone defects and be closely adjacent to host tissues is reported herein. The scaffold has a triple cross-linked network structure consisting of photo-cross-linked polyacrylamide (PAAM) and polyurethane (PU) as the primary IPN network and chemical cross-linked gelatin (Gel) as the secondary network, which confers the scaffold with good mechanical properties. The addition of PU in the polymerization process of acrylamide (AAM) can improve the ultraviolet (UV) photocuring efficiency of the hydrogel and incorporate abundant hydrogen bonds between the PAAM copolymer chain and the PU chain. The results show that the hydrogel scaffold contains regular structures with smooth morphology, excellent dimensional stability, and uniform aperture. The degradation rate of the hydrogel scaffold is controllable through adjusting cross-linking agents and can be up to about 60% after degradation for 28 days. More importantly, the rapid self-inflating characteristic of the scaffold in water, that is, the volume of hydrogel scaffold can increase to about 8 times that of their own in an hour and can generate a slight compressive stress on the surrounding host tissue, thus stimulating the reconstruction and growth of new bone tissues. The in vitro experiment indicates that the scaffold is nontoxic and biocompatible. The in vivo experiment shows that the PU/PAAM/Gel chemically cross-linked scaffold displays the desirable osteogenic capability. This UV-curable 3D printed self-adaptive and degradable hydrogel scaffold holds great potential for nonload-bearing bone repair.
Collapse
Affiliation(s)
- Meiling He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Miaomiao He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yulin Jiang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Chen Chen
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
14
|
Li T, He H, Yang Z, Wang J, Zhang Y, He G, Huang J, Song D, Ni J, Zhou X, Zhu J, Ding M. Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils. Biomater Sci 2021; 9:2931-2946. [PMID: 33621297 DOI: 10.1039/d0bm02126a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immune system mediates inflammation, vascularization and the first response to injuries or implanted biomaterials. Although the function of neutrophils in tissue repair has been extensively studied, its complete role in the tissue regeneration of biomaterials, specifically the resolution of inflammation and promotion of angiogenesis, is unclear. Here, we fabricate nanofibrous gelatin scaffolds containing 10% (w/w) strontium-hydroxyapatite (SrHA) via phase-separation methods to investigate Sr-mediated regulation of neutrophil polarization and, subsequently, the effects on angiogenesis and macrophage polarization. Compared with neutrophils cultured on pure gelatin or HA-incorporated gelatin scaffolds, neutrophils on SrHA-incorporated gelatin scaffolds show more N2 polarization in vitro and in vivo and significantly greater production of immunomodulatory and angiogenic factors. The Sr-induced immunomodulatory and proangiogenic functions of neutrophils are mediated through NF-κB pathway downregulation and increased STAT3 phosphorylation. Thus, neutrophils play a vital role in tissue engineering, and Sr-incorporated scaffolds efficiently promote neutrophil polarization to the N2 phenotype, enhancing resolution of inflammation and ultimately promoting angiogenesis and tissue regeneration. Thus, incorporation of neutrophils in analyses of the immune characteristics of scaffolds and the development of immunomodulatory biomaterials that can regulate neutrophils are novel and promising strategies in tissue engineering.
Collapse
Affiliation(s)
- Tao Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China. and Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, Liaoning Province 116000, P. R. China
| | - Zezheng Yang
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Minhang District, Shanghai 200240, P. R. China
| | - Junjie Wang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu District, Shanghai 200011, China
| | - Guangxu He
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| | - Jun Huang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| | - Deye Song
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| | - Jiangdong Ni
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| | - Xiaojun Zhou
- College of Chemistry, Chemical Engineering and Biotechnology; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China.
| | - Junfeng Zhu
- Department of Orthopaedics, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| | - Muliang Ding
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.
| |
Collapse
|
15
|
Diwu W, Dong X, Nasif O, Alharbi SA, Zhao J, Li W. In-vivo Investigations of Hydroxyapatite/Co-polymeric Composites Coated Titanium Plate for Bone Regeneration. Front Cell Dev Biol 2021; 8:631107. [PMID: 33681187 PMCID: PMC7930390 DOI: 10.3389/fcell.2020.631107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
A perfect mimic of human bone is very difficult. Still, the latest advancement in biomaterials makes it possible to design composite materials with morphologies merely the same as that of bone tissues. In the present work is the fabrication of selenium substituted Hydroxyapatite (HAP-Se) covered by lactic acid (LA)-Polyethylene glycol (PEG)-Aspartic acid (AS) composite with the loading of vincristine sulfate (VCR) drug (HAP-Se/LA-PEG-AS/VCR) for twin purposes of bone regenerations. The HAP-Se/LA-PEG-AS/VCR composite coated on titanium implant through electrophoretic deposition (EPD). The prepared composite characterized using FTIR, XRD techniques to rely on the composites' chemical nature and crystalline status. The morphology of the composite and the titanium plate with the composite coating was investigated by utilizing SEM, TEM instrument techniques, and it reveals the composite has porous morphology. The drug (VCR) load in HAP-Se/LA-PEG-AS and releasing nature were investigated through UV-Visible spectroscopy at the wavelength of 295 nm. In vitro study of SBF treatment shows excellent biocompatibility to form the HAP crystals. The viability against MG63 and toxicity against Saos- 2 cells have expressed the more exceptional biocompatibility in bone cells and toxicity with the cancer cells of prepared composites. The in-vivo study emphasizes prepared biomaterial suitable for implantation and helps accelerate bone regeneration on osteoporosis and osteosarcoma affected hard tissue.
Collapse
Affiliation(s)
- Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Xin Dong
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jian Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Wei Li
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Huang L, Zhang J, Liu X, Zhao T, Gu Z, Li Y. l-Arginine/nanofish bone nanocomplex enhances bone regeneration via antioxidant activities and osteoimmunomodulatory properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Wan B, Wang R, Sun Y, Cao J, Wang H, Guo J, Chen D. Building Osteogenic Microenvironments With Strontium-Substituted Calcium Phosphate Ceramics. Front Bioeng Biotechnol 2020; 8:591467. [PMID: 33117789 PMCID: PMC7576675 DOI: 10.3389/fbioe.2020.591467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Bioceramics have experienced great development over the past 50 years. Modern bioceramics are designed to integrate bioactive ions within ceramic granules to trigger living tissue regeneration. Preclinical and clinical studies have shown that strontium is a safe and effective divalent metal ion for preventing osteoporosis, which has led to its incorporation in calcium phosphate-based ceramics. The local release of strontium ions during degradation results in moderate concentrations that trigger osteogenesis with few systemic side effects. Moreover, strontium has been proven to generate a favorable immune environment and promote early angiogenesis at the implantation site. Herein, the important aspects of strontium-enriched calcium phosphate bioceramics (Sr-CaPs), and how Sr-CaPs affect the osteogenic microenvironment, are described.
Collapse
Affiliation(s)
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | | | | | | | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|