1
|
Wnętrzak A, Chachaj-Brekiesz A, Dynarowicz-Latka P. Floating Films of Biological Importance at the Liquid-Gas Interface: Langmuir Monolayer Approach. Methods Mol Biol 2025; 2908:239-262. [PMID: 40304914 DOI: 10.1007/978-1-0716-4434-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Langmuir films are monolayers of water-insoluble molecules formed on aqueous subphases due to the forces of self-assembly. The increased interest in Langmuir monolayers is primarily related to their use as models of biological membranes. The possibility of studying the incorporation and behavior of bioactive compounds (i.e., drugs) in the mem0brane structure seems to be particularly important. The Langmuir technique enables the investigation of such aspects as orientation of molecules at the interface and interactions with lipids present in membranes. Here, we present the research methodology on an example of a chain-oxidized cholesterol derivative using Langmuir monolayers: from single-component to mixed films. The protocol also describes the application of related complementary in situ techniques, such as Brewster angle microscopy (BAM; film texture imaging), electric surface potential change (ΔV measurements), and polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS; IR spectra).
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | | |
Collapse
|
2
|
Li P, Feder‐Kubis J, Kunigkeit J, Zielińska‐Błajet M, Brunner E, Grothe J, Kaskel S. Bioactive Ion-Confined Ultracapacitive Memristors with Neuromorphic Functions. Angew Chem Int Ed Engl 2024; 63:e202412674. [PMID: 39292967 PMCID: PMC11627131 DOI: 10.1002/anie.202412674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
The field of bioinspired iontronics, bridging electronic devices and ionic systems, has multiple biological applications. Carbon-based ultracapacitive devices hold promise for controlling bioactive ions via electric double layers due to their high-surface-area and biocompatible porous carbon electrodes. However, the interplay between complex bioactive ions and porous carbons remains unclear due to the variety of structures of bioactive ions present in biological systems. Herein, we investigate the adsorption behavior of a series of bioactive ammonium-based cations with varying alkyl chain lengths in nanoporous carbons. We find that strong physisorption results from the synergistic hydrophobic interaction and electrostatic attraction between porous carbons (with a negative zeta potential) and bioactive cations. Bioactive cations with varying alkyl chain lengths can be irreversibly physically adsorbed and confined within nanoporous carbons resulting in anion enrichment and depletion during electric polarization. This situation, in turn, results in a characteristic memristive behavior in all-carbon capacitive ionic memristor devices. Our findings highlight the relationship between the resistance state of the memristor and ion adsorption mechanisms in all-carbon capacitive devices, which hold potential for future transmitter delivery, biointerfacing, and neuromorphic devices.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Joanna Feder‐Kubis
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
- Faculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 27Wrocław50-370Poland
| | - Jonas Kunigkeit
- Bioanalytical ChemistryTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Mariola Zielińska‐Błajet
- Faculty of ChemistryWrocław University of Science and TechnologyWybrzeże Wyspiańskiego 27Wrocław50-370Poland
| | - Eike Brunner
- Bioanalytical ChemistryTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Julia Grothe
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Stefan Kaskel
- Inorganic Chemistry Center ITechnische Universität DresdenBergstrasse 6601069DresdenGermany
- Fraunhofer IWSWinterbergstrasse 2801277DresdenGermany
| |
Collapse
|
3
|
Wnętrzak A, Szymczuk D, Chachaj-Brekiesz A, Dynarowicz-Latka P, Lupa D, Lipiec EW, Laszuk P, Petelska AD, Markiewicz KH, Wilczewska AZ. Lithocholic acid-based oligomers as drug delivery candidates targeting model of lipid raft. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184294. [PMID: 38316379 DOI: 10.1016/j.bbamem.2024.184294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
This study presents a new approach to designing a lithocholic acid functionalized oligomer (OLithocholicAA-X) that can be used as a drug carrier with additional, beneficial activity. Namely, this novel oligomer can incorporate an anti-cancer drug due to the application of an effective backbone as its component (lithocholic acid) alone is known to have anticancer activity. The oligomer was synthesized and characterized in detail by nuclear magnetic resonance, attenuated total reflectance Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermal analysis, and mass spectrometry analysis. We selected lipid rafts as potential drug carrier-membrane binding sites. In this respect, we investigated the effects of OLithocholicAA-X on model lipid raft of normal and altered composition, containing an increased amount of cholesterol (Chol) or sphingomyelin (SM), using Langmuir monolayers and liposomes. The surface topography of the studied monolayers was additionally investigated by atomic force microscopy (AFM). The obtained results showed that the investigated oligomer has affinity for a system that mimics a normal lipid raft (SM:Chol 2:1). On the other hand, for systems with an excess of SM or Chol, thermodynamically unfavorable fluidization of the films occurs. Moreover, AFM topographies showed that the amount of SM determines the bioavailability of the oligomer, causing fragmentation of its lattice.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Szymczuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Dawid Lupa
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewelina W Lipiec
- Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paulina Laszuk
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
4
|
Wang Q, Wang T, Zhou Y, Gao H. Conversion of fungicide cyprodinil to salts with organic acids: preparation, characterization, advantages. PEST MANAGEMENT SCIENCE 2023; 79:114-124. [PMID: 36100574 DOI: 10.1002/ps.7179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As an effective strategy to improve the basic properties of drugs, salt formation was less used in the field of pesticides than the medicine field. It is worth trying to improve the inherent shortcomings of cyprodinil (high Kow values; polymorphism) in this way to enhance its practicality. RESULTS Eight cyprodinil salts (CYP-Salts) were prepared. The properties of CYP-Salts, including solubility in various solvents, polymorphic behavior, soil absorption, photolysis in aquatic water, in vitro fungicidal activity and curative activity, were assessed. It was observed that compared with those of cyprodinil, CYP-Salts had lower soil adsorption, while also having lower log Kow values and could be more easily photodegraded in water. That is, CYP-Salts have lower impacts on water bodies and aquatic organisms than cyprodinil. Three CYP-Salts showed higher in vitro antifungal activities and curative activity. CYP-Salts have enhanced practicality, as they could avoid possible agglomeration caused by recrystallization. CONCLUSION Salt forming enhanced the properties of Cyprodinil in many aspects. CYP-Salts may potentially become a better substitute for cyprodinil. This study offers a more economical and effective strategy to prepare better alternatives to existing fungicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuxiao Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Tao Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yifei Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haixiang Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Yan J, Zhu Y, Hu G, Liang Q, Ge L, Yang K. Chiral quaternary ammonium ionic liquids derived from natural dehydroabietylamine and their potential application in chiral molecular recognition. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Quintana AA, Sztapka AM, Santos Ebinuma VDC, Agatemor C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew Chem Int Ed Engl 2022; 61:e202205609. [PMID: 35789078 DOI: 10.1002/anie.202205609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/17/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) debuted with a promise of a superior sustainability footprint due to their low vapor pressure. However, their toxicity and high cost compromise this footprint, impeding their real-world applications. Fortunately, their property tunability through a rational selection of precursors, including bioderived ones, provides a strategy to ameliorate toxicity, lower cost, and endow new functions. This Review discusses whether ILs and DESs are sustainable solvents and how they contribute to sustainable chemical processes.
Collapse
Affiliation(s)
| | | | - Valéria de Carvalho Santos Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Patel N, Soni SS, Patel N, Patel K, Patel VK, Sharma D, Panjabi SH. Synthesis, Self-Aggregation, Surface Characteristics, Electrochemical Property, Micelle Size, and Antimicrobial Activity of a Halogen-Free Picoline-Based Surface-Active Ionic Liquid. ACS OMEGA 2022; 7:28974-28984. [PMID: 36033664 PMCID: PMC9404176 DOI: 10.1021/acsomega.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We present a new approach toward the design of a halogen-free picoline-based surface-active ionic liquid (SAIL) (1-octyl-4-methyl pyridinium dodecyl sulfate) [C8γPic]DS consisting of long dodecyl sulfate (DS) as an anion. The surface properties, micellization behavior, and antimicrobial activity in an aqueous solution were investigated using tensiometry, conductometry, and ultraviolet (UV) spectroscopy. Incorporating the DS group in SAIL leads to lower critical micellar concentration (CMC) and enhanced adsorption at the air/water interface of the functionalized ionic liquid compared to the C8-alkyl chain-substituted pyridine ionic liquids. The antimicrobial activity was evaluated against a representative Gram-negative and Gram-positive bacteria panel. Antibacterial activities increased with the alkyl chain length, C8 being the homologous most effective antimicrobial agent. The micelle size of [C8γPic]DS was determined by the dynamic light-scattering (DLS) study. Cyclic voltammetry (CV) measurements have been employed to evaluate the interaction between the SAIL micelle and working electrode, diffusion coefficient, and micelle size of the SAIL solution. The diffusion coefficient explored the correlation of surface properties and the antimicrobial activity of [C8γPic]DS. This halogen-free SAIL is the future of wetting agents and emulsion studies in agriculture due to its small micelle size and surface characteristics.
Collapse
Affiliation(s)
- Nidhi
N. Patel
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Saurabh S. Soni
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat388120, India
| | - Niraj Patel
- Organic
Chemistry Department, Institute of Science and Technology for Advanced
Research (ISTAR), CVM University, Vallabh Vidyanagar, Anand, Gujarat 388120, India
| | - Kiran Patel
- Director,
Grow Leaf Biotech Private Limited, Anand, Gujarat 388120, India
| | - Vaibhav K. Patel
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Deep Sharma
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| | - Sanjay H. Panjabi
- Department
of Chemical Sciences, P. D. Patel Institute of Applied Sciences, CHARUSAT University, Changa, Gujarat 388421, India
| |
Collapse
|
8
|
Stachowiak W, Kaczmarek DK, Rzemieniecki T, Niemczak M. Sustainable Design of New Ionic Forms of Vitamin B 3 and Their Utilization as Plant Protection Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8222-8232. [PMID: 35767421 PMCID: PMC9284545 DOI: 10.1021/acs.jafc.2c01807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study demonstrates the utilization of naturally occurring nicotinamide (vitamin B3) in the sustainable synthesis of organic salts with application potential as environmentally friendly agrochemicals. The designed ionic pairs, obtained with high yields, consisted of N-alkylnicotinamide cation and commercially available herbicidal anions: 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA). The study confirmed the strong influence of the length of alkyl chain in products on the physicochemical properties as well as the development of cornflower and oil-seed rape. The majority of tested salts showed significantly better herbicidal activity (by approx. 30-50%) compared to the reference herbicide. Furthermore, N-hexadecylnicotinamide 4-chloro-2-methylphenoxyacetate was significantly more effective than the commercial formulation in the dose-response test. Their negligible vaporization, multiple times lower than that of commonly used dimethylammonium salts, eliminates one of the greatest threats of currently applied plant protection agents. Additionally, the risk of product migration or bioaccumulation in the environment was assessed as extremely low.
Collapse
|
9
|
Agatemor C, Quintana AA, Sztapka LM, Ebinuma VDCS. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: a Fad or the Future? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Agatemor
- University of Miami - Coral Gables Campus: University of Miami Chemistry 1301 Memorial Dr 33146 Coral Gables UNITED STATES
| | - Aline Andrea Quintana
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | - Lani Maria Sztapka
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | | |
Collapse
|
10
|
Abstract
Despite the progress achieved by aqueous biphasic systems (ABSs) comprising ionic liquids (ILs) in extracting valuable proteins, the quest for bio-based and protein-friendly ILs continues. To address this need, this work uses natural organic acids as precursors in the synthesis of four ILs, namely tetrabutylammonium formate ([N4444][HCOO]), tetrabutylammonium acetate ([N4444][CH3COO]), tetrabutylphosphonium formate ([P4444][HCOO]), and tetrabutylphosphonium acetate ([P4444][CH3COO]). It is shown that ABSs can be prepared using all four organic acid-derived ILs paired with the salts potassium phosphate dibasic (K2HPO4) and tripotassium citrate (C6H5K3O7). According to the ABSs phase diagrams, [P4444]-based ILs outperform their ammonium congeners in their ability to undergo liquid–liquid demixing in the presence of salts due to their lower hydrogen-bond acidity. However, deviations to the Hofmeister series were detected in the salts’ effect, which may be related to the high charge density of the studied IL anions. As a proof of concept for their extraction potential, these ABSs were evaluated in extracting human transferrin, allowing extraction efficiencies of 100% and recovery yields ranging between 86 and 100%. To further disclose the molecular-level mechanisms behind the extraction of human transferrin, molecular docking studies were performed. Overall, the salting-out exerted by the salt is the main mechanism responsible for the complete extraction of human transferrin toward the IL-rich phase, whereas the recovery yield and protein-friendly nature of these systems depend on specific “IL-transferrin” interactions.
Collapse
|
11
|
Feder-Kubis J, Gardas RL, Geppert-Rybczyńska M. On the Influence of the Menthol Moiety on the Transport Properties of a Homologue Series of Functionalized Bis(trifluoromethylsulfonyl)imide Room-Temperature Ionic Liquids: A Quest for the Structure-Property Relationship. J Phys Chem B 2021; 125:8502-8510. [PMID: 34297553 PMCID: PMC8389901 DOI: 10.1021/acs.jpcb.1c03827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Indexed: 11/29/2022]
Abstract
This study explores the transport properties of bis(trifluoromethylsulfonyl)imide-based ionic liquids with a naturally derived (1R,2S,5R)-(-)-menthol moiety in the cationic part. In particular, we investigated the dependence of the dynamic viscosity and electrical conductivity as functions of the alkyl chain length. An important finding of this study is that both properties show nonmonotonic behavior with respect to the alkyl chain length. The nonmonotonic dependency is an obstacle for establishing the relationships between the structure and transport properties of homologues. To overcome this difficulty, we recommend fast property screening using a theoretical model that we developed, which allows for efficient viscosity prediction by means of the group contribution method. As demonstrated in this study, the model allows for reliable predictions of viscosity in the studied series with an overall relative deviation of less than 8%.
Collapse
Affiliation(s)
- Joanna Feder-Kubis
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Ramesh L. Gardas
- Department
of Chemistry, Indian Institute of Technology
Madras, Chennai, Tamil Nadu 600036, India
| | | |
Collapse
|
12
|
Piosik E, Zaryczniak A, Mylkie K, Ziegler-Borowska M. Probing of Interactions of Magnetite Nanoparticles Coated with Native and Aminated Starch with a DPPC Model Membrane. Int J Mol Sci 2021; 22:5939. [PMID: 34073072 PMCID: PMC8198464 DOI: 10.3390/ijms22115939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air-water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano-bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.
Collapse
Affiliation(s)
- Emilia Piosik
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Aleksandra Zaryczniak
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Kinga Mylkie
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
13
|
Zielińska-Błajet M, Pietrusiak P, Feder-Kubis J. Selected Monocyclic Monoterpenes and Their Derivatives as Effective Anticancer Therapeutic Agents. Int J Mol Sci 2021; 22:4763. [PMID: 33946245 PMCID: PMC8124601 DOI: 10.3390/ijms22094763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Terpenes-a diverse group of secondary metabolites-constitute the largest class of natural products abundant in almost every plant species. The properties of concrete terpenes and essential oils have been intensively studied due to their widespread use in the pharmaceutical, food and cosmetics industries. Despite the popularity of these aromatic compounds, their derivatives, terpenoids, are still not comprehensively characterized despite exhibiting potent bioactive properties. This review aims to assess the anticancer properties of selected monoterpenes including carvone, carvacrol, perillyl alcohol, perillaldehyde, limonene, menthol and their derivatives while also evaluating potential applications as novel anticancer treatments. Special attention is paid to functional groups that improve the bioactivity of monoterpene molecules. This review also covers the therapeutic potential of deep eutectic solvents that contain monoterpene substances. Taken together, the literature supports the use of monoterpene derivatives in the development of new alternatives for disease treatment and prevention.
Collapse
Affiliation(s)
- Mariola Zielińska-Błajet
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | | | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
14
|
Flieger J, Flieger M. Ionic Liquids Toxicity-Benefits and Threats. Int J Mol Sci 2020; 21:E6267. [PMID: 32872533 PMCID: PMC7504185 DOI: 10.3390/ijms21176267] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Michał Flieger
- Medical University of Lublin, Faculty of Medicine, Aleje Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|