1
|
Yang S, Huang Y, Lv Y. Construction of Mg 2+ loaded multifunctional casein phosphopeptide/alendronate sodium antioxidative coating for repairing osteoporotic fracture. Int J Biol Macromol 2025; 305:141333. [PMID: 39984098 DOI: 10.1016/j.ijbiomac.2025.141333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Owning to seriously impaired capacity of bone regeneration, the repair of osteoporotic bone defect remains a major clinical challenge in orthopedics. For titanium mesh scaffolds of skull repair, to construct bio-coatings targeting the pathological environment of osteoporosis is significant. Here, tannic acid (TA)/casein phosphopeptide (CPP) based layer-by-layer (LBL) self-assembled coating that loaded with anti-osteoporotic alendronate sodium (AS) and bioactive Mg2+ were prepared. The TA/CPP based LBL coatings showed good antioxidative function to effectively clear ABTS+• free radicals (scavenging rate of 64.29 ± 20.21 %) and inhibited the production of reactive oxygen species (ROS) in bone marrow mesenchymal stem cells (BMSCs) under oxidative stress conditions. All the LBL coatings exhibited good blood compatibility, and promoted early adhesion of BMSCs without affecting cell proliferation. In particular, the (TA/CPP-AS NPs)4 + Mg2+coatings had both good alkaline phosphatase (ALP) activity and in vitro osteogenic mineralization, and could effectively promote the migration of human umbilical vein endothelial cells (HUVECs). In 8-weeks in vivo implantation experiments of osteoporotic skull defects, AS and Mg2+ loaded LBL coating showed significant formation of new bone tissue. The study on the integrated system of antioxidative coating with bisphosphonates and active metal ions will serve as a promising strategy for osteoporotic bone defect repair.
Collapse
Affiliation(s)
- Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province 430200, China
| | - Yuhua Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province 430200, China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province 430200, China.
| |
Collapse
|
2
|
Calazans Neto JV, Valente MLDC, Reis ACD. Effect of pores on cell adhesion to additively manufactured titanium implants: A systematic review. J Prosthet Dent 2025; 133:990-997. [PMID: 37353409 DOI: 10.1016/j.prosdent.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
STATEMENT OF PROBLEM Titanium dental implants produced by additive manufacturing have pores that, depending on their size and quantity, may improve osteogenic cell adhesion without impairing mechanical properties. A systematic review of in vitro studies on this topic is lacking. PURPOSE The purpose of this systematic review was to answer the question "What is the influence of pores on osteogenic cell adhesion on titanium surfaces produced by additive manufacturing?". MATERIAL AND METHODS The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 standards and registered in the Open Science Framework (OSF) (osf.io/baw59). A manual search of published articles without language or time restrictions was conducted in November 2022 in the electronic databases PubMed, Scopus, ScienceDirect, Embase, and in the nonpeer-reviewed literature via Google Scholar. RESULTS A total of 1338 initial results were found, and after removing duplicates and applying eligibility criteria, 13 articles were included in this review that, according to the Joanna Briggs Institute (JBI) tool, presented a low risk of bias. Pores with larger diameters provide greater a surface area that favors cell filopodia adhesion and has interconnection that optimizes the transport of nutrients and oxygen and bone cell activity. CONCLUSIONS The presence of pores on the surface of titanium produced by additive manufacturing increases the adhesion, migration, proliferation, and viability of osteogenic cells.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Mariana Lima da Costa Valente
- Post-Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil.
| |
Collapse
|
3
|
Ngau SM, Cheah KH, Wong VL, Khiew PS, Lim SS. 3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response. Int J Biol Macromol 2025; 296:139652. [PMID: 39793825 DOI: 10.1016/j.ijbiomac.2025.139652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds. nHA, synthesized via wet chemical precipitation, had a particle size of 28 nm and exhibited low crystallinity, as confirmed by X-ray diffraction. PEGDA-chitosan-nHA scaffolds underwent post-curing and 70 % ethanol leaching treatment. The presence of chitosan and nHA in the composite scaffolds was confirmed by their characteristic peaks. TGA analyses further verified nHA content correlating to the intended amount. The scaffolds featured interconnected pores ranging from 2891 to 3382 μm and porosities between 35 and 56 %. The swelling percentage and compressive modulus were reported at ~71-93 % and 0.52-1.18 MPa, respectively. Notably, PEGDA-chitosan-nHA scaffolds showed enhanced in vitro efficacy than pure PEGDA scaffolds, by promoting better MG63 cell adhesion (p < 0.05), higher proliferation and alkaline phosphatase (ALP) activity, particularly in scaffolds with 20 wt% chitosan across all incubation periods in cell proliferation and early osteoblast differentiation studies. These findings suggest that PEGDA-chitosan-nHA scaffolds have promising potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shannen Marcus Ngau
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Kean How Cheah
- School of Aerospace, Faculty of Science and Engineering, University of Nottingham Ningbo China, China
| | - Voon Loong Wong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900 Sepang, Malaysia
| | - Poi Sim Khiew
- Centre of Nanotechnology and Advanced Materials, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
4
|
Emanuelli L, Babaei M, De Biasi R, du Plessis A, Trivisonno A, Agostinacchio F, Motta A, Benedetti M, Pellizzari M. Optimising β-Ti21S Alloy Lattice Structures for Enhanced Femoral Implants: A Study on Mechanical and Biological Performance. MATERIALS (BASEL, SWITZERLAND) 2025; 18:170. [PMID: 39795817 PMCID: PMC11722399 DOI: 10.3390/ma18010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress. This research examines the manufacturability and quasi-static mechanical behaviour of two auxetic bow-tie (AUX 2.5 and AUX 3.5) and two TPMS structures (TPMS 2.5 and TPMS 1.5) in β-Ti21S alloy produced via laser powder bed fusion. Micro-CT reveals printability issues in TPMS 1.5, affecting pore size and reducing fatigue resistance compared to TPMS 2.5. AUX 3.5's low stiffness matches cancellous bone but shows insufficient yield strength and fatigue resistance for femoral implants. Biological tests confirm non-toxicity and enhanced cell activity in β-Ti21S structures. The study concludes that the β-Ti21S alloy, especially with TPMS 2.5 structures, demonstrates promising mechanical and biological properties for femoral implants. However, challenges like poor printability in TPMS 1.5 are acknowledged and should be addressed in future research.
Collapse
Affiliation(s)
- Lorena Emanuelli
- INSTM Operative Center, University of Trento, 38122 Trento, Italy;
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
| | - Melika Babaei
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
- BIOTech Research Center, University of Trento, 38123 Trento, Italy
| | - Raffaele De Biasi
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
| | - Anton du Plessis
- Research Group 3D Innovation, Stellenbosch University, Stellenbosch 7602, South Africa;
- Object Research Systems, Montreal, QC H3C 1M4, Canada
| | | | - Francesca Agostinacchio
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
- BIOTech Research Center, University of Trento, 38123 Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
- BIOTech Research Center, University of Trento, 38123 Trento, Italy
| | - Matteo Benedetti
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
| | - Massimo Pellizzari
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; (M.B.); (R.D.B.); (F.A.); (A.M.); (M.P.)
| |
Collapse
|
5
|
Cheng XQ, Xu W, Shao LH, Shen HQ, Liu HW. Enhanced osseointegration and antimicrobial properties of 3D-Printed porous titanium alloys with copper-strontium doped calcium silicate coatings. J Biomater Appl 2025; 39:607-619. [PMID: 39325858 DOI: 10.1177/08853282241287916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The 3D printing of porous titanium scaffolds reduces the elastic modulus of titanium alloys and promotes osteogenic integration. However, due to the biological inertness of titanium alloy materials, the implant-bone tissue interface is weakly bonded. A calcium silicate (CS) coating doped with polymetallic ions can impart various biological properties to titanium alloy materials. In this study, CuO and SrO binary-doped CS coatings were prepared on the surface of 3D-printed porous titanium alloy scaffolds using atmospheric plasma spraying and characterized by SEM, EDS, and XRD. Both CuO and SrO were successfully incorporated into the CS coating. The in vivo osseointegration evaluation of the composite coating-modified 3D-printed porous titanium alloy scaffolds was conducted using a rabbit bone defect model, showing that the in vivo osseointegration of 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy was improved. The in vitro antimicrobial properties of the 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy were evaluated through bacterial platform coating, co-culture liquid absorbance detection, and crystal violet staining experiments, demonstrating that the composite coating exhibited good antimicrobial properties. In conclusion, the composite scaffold possesses both osteointegration-promoting and antimicrobial properties, indicating a broad potential for clinical applications.
Collapse
Affiliation(s)
- Xin Qi Cheng
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Xu
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Long Hui Shao
- Department of Orthopedics, The Fifth People's Hospital of Ningxia, Shizuishan, China
| | - Hua Qiao Shen
- Graduate School, Dalian Medical University, Dalian, China
| | - Hong Wei Liu
- Department of Orthopaedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
6
|
Chen C, Fan H, Chen G, Li Z, Wang P, Wang F. Innovative 3D-printed porous TC4 prosthesis with nano-thin tantalum coating for treating complex wrist bone defects: A preliminary report of 3 cases. J Orthop Surg (Hong Kong) 2025; 33:10225536251335363. [PMID: 40264372 DOI: 10.1177/10225536251335363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Background: Bone defects pose a significant orthopedic challenge, impacting millions of patients worldwide annually. In our prior research, we innovatively applied magnetron sputtering (MSP) technology to prepare nano thin amorphous tantalum (Ta) coatings on titanium alloy (Ti - 6Al - 4V, TC4) substrate, achieving exceptional interfacial adhesion, comprehensive coverage, and notable biological attributes. The purpose of this study is to investigate the clinical outcomes of TC4-based Ta-coated implants in addressing wrist bone defects, thereby offering valuable insights for future clinical applications. Methods: A prospective observational study was conducted from October 2023 to December 2024 to assess the clinical efficacy of TC4-based Ta-coated implants. Three patients, comprising two males and one females, were included and underwent personalized prosthesis design and surgical implantation in accordance with established protocols. Postoperative assessments were conducted utilizing the Visual Analogue Scale (VAS), and Cooney modification of the Green and O'Brien score to gauge the patients' symptomatic relief and functional recovery. Additionally, regular imaging follow-ups were implemented to monitor the progress and outcomes. Results: All three patients underwent surgery successfully. As of the latest follow-up, all patients exhibited significant improvements in pain symptoms (assessed using VAS scores) and functional outcomes. No patients experienced serious complications such as infection, prosthesis loosening, or vascular and nerve damage. Conclusion: This study confirmed the clinical efficacy of customized TC4-based Ta-coated implants in the treatment of wrist bone defects. The nanoscale Ta coating significantly enhances the bone integration ability, thereby effectively improving clinical outcomes. This innovative approach not only demonstrates the potential to overcome the inherent drawbacks of conventional titanium alloys and pure Ta but also offers a highly prospective solution for the treatment of complex wrist bone defects. Future research should be directed towards enhancing manufacturing processes and undertaking more extensive clinical trials for providing evidence-based guidance for clinical applications.
Collapse
Affiliation(s)
- Chang Chen
- Center for Joint Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
- Chongqing Municipal Science and Technology Bureau Key Laboratory of Precision Medicine in Joint Surgery, Chongqing, China
- Chongqing Municipal Education Commission Key Laboratory of Joint Biology, Chongqing, China
| | - Huaquan Fan
- Center for Joint Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Ge Chen
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Puquan Wang
- Center for Joint Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Fuyou Wang
- Department of Traditional Chinese Medicine Rehabilitation, Jiangbei Branch of The First Hospital Affiliated to Army Medical University (Third Military Medical University), Chongqing, P.R. China
| |
Collapse
|
7
|
Shao YF, Wang H, Zhu Y, Peng Y, Bai F, Zhang J, Zhang KQ. Hydroxyapatite/Silk Fibroin Composite Scaffold with a Porous Structure and Mechanical Strength Similar to Cancellous Bone by Electric Field-Induced Gel Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60977-60991. [PMID: 39453828 DOI: 10.1021/acsami.4c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Repair and regeneration of bone tissue defects is a multidimensional process that has been highly challenging to date. The artificial bone scaffold materials, which play a core role, still face the conflict that a biofriendly porous structure will reduce the mechanical performance and accelerate degradation. Herein, a multistage porous structured hydroxyapatite (HA)/silk fibroin (SF) composite scaffold (e-HA/SF) was successfully constructed by cleverly utilizing electric field-induced gel technology. The results indicated that the prepared e-HA/SF scaffolds possess biomimetic hierarchical porous structures with a suitable porosity similar to that of cancellous bone. The HA nanocrystals were uniformly encapsulated in the three-dimensional space of the composite scaffold, thus endowing the e-HA/SF composite scaffolds with an enhanced mechanical performance. Notably, the maximum compression stress and Young's modulus of e-HA/SF-2 scaffolds can reach 24.66 ± 0.88 and 28.91 ± 3.19 MPa, respectively, which are equivalent to those of cancellous bone. Such mechanical performance enhancement was previously unattainable through conventional freeze-drying strategies. Moreover, the introduction of bioactive nano-HA can trigger the optimal cell response in both static and dynamic cell culture experiments in vitro. The e-HA/SF composite scaffold developed in this study can better balance the conflict between the porous structure and mechanical and degradation properties of porous scaffolds.
Collapse
Affiliation(s)
- Yun-Fei Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yiran Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yu Peng
- College of Advanced Material Engineering, Jiaxing Nanhu University, Jiaxing 314001, P. R. China
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Wang K, Zhou H, Wang H, Li B, Liang C. Bone ingrowth induced by gelatin/chitosan internal matrix of 3DP Ti6Al4V scaffold. BIOMATERIALS ADVANCES 2024; 164:213993. [PMID: 39151271 DOI: 10.1016/j.bioadv.2024.213993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Regarding its structural and mechanical adaptability to bone defects, 3D printed (3DP) Ti6Al4V scaffolds are widely used in orthopedics now, purposed to restore the function and mechanical stability of impaired bone. In scaffold fabrication, surface modification is acknowledged as a reliable strategy to enhance the interface interaction between 3DP Ti6Al4V scaffold and bone. Despite its advantage in bone-Ti6Al4V bonding improvement, surface modification lacks the ability to induce bone in-growth efficiently as expected. As an attempt to overcome this challenge, in the current work the inner voids of 3DP Ti6Al4V scaffold were occupied by a gelatin/chitosan porous matrix, purposed to act as a platform for guiding bone ingrowth. Firstly, the gelatin/chitosan matrix was prepared via freeze-drying using genipin as a crosslinker, resulting in a trabecular bone-like interconnected porous network characterized with a gelatin/chitosan ratio dependent swelling capability, degradation and model anti-bacterial drug release behavior. Besides of that, gelatin in the matrix was witnessed to accelerate biomineralization in simulated body fluid. Secondly, a formulated gelatin/chitosan matrix was embedded into 3DP Ti6Al4V scaffold to generate a composite scaffold capable of inducing bone in-growth. The followed studies showed gelatin/chitosan matrix can endow the scaffold with good biological and sustained drug release properties, along with minimal change to the compressive strength of the scaffold. The in vivo experiment results revealed that after 4 weeks of implantation, more new bone formation was witnessed in the inner structure of the composite scaffold than the 3DP Ti6Al4V scaffold, with the average bone volume fraction (BV/TV) value increased from 24.09 % to 46.08 %, the average trabecular bone thickness (Tb. Th) value increased from 0.118 mm to 0.278 mm. Therefore, it was confirmed an inner matrix in 3DP Ti6Al4V scaffold played an essential role in guiding bone in-growth.
Collapse
Affiliation(s)
- Kexin Wang
- School of Materials Sciences and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Huan Zhou
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Hongshui Wang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Baoe Li
- School of Materials Sciences and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunyong Liang
- School of Materials Sciences and Engineering, Hebei University of Technology, Tianjin 300130, China; Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China; Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Research Center for Photonics Technology, Quanzhou Normal University, Quanzhou 362046, China.
| |
Collapse
|
9
|
Idaszek J, Wysocki B, Ura-Bińczyk E, Dobkowska A, Nowak W, Yamamoto A, Sulka GD, Święszkowski W. Graded or random - Effect of pore distribution in 3D titanium scaffolds on corrosion performance and response of hMSCs. BIOMATERIALS ADVANCES 2024; 163:213955. [PMID: 38986318 DOI: 10.1016/j.bioadv.2024.213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Researchers agree that the ideal scaffold for tissue engineering should possess a 3D and highly porous structure, biocompatibility to encourage cell/tissue growth, suitable surface chemistry for cell attachment and differentiation, and mechanical properties that match those of the surrounding tissues. However, there is no consensus on the optimal pore distribution. In this study, we investigated the effect of pore distribution on corrosion resistance and performance of human mesenchymal stem cells (hMSC) using titanium scaffolds fabricated by laser beam powder bed fusion (PBF-LB). We designed two scaffold architectures with the same porosities (i.e., 75 %) but different distribution of pores of three sizes (200, 500, and 700 μm). The pores were either grouped in three zones (graded, GRAD) or distributed randomly (random, RAND). Microfocus X-ray computed tomography revealed that the chemically polished scaffolds had the porosity of 69 ± 4 % (GRAD) and 71 ± 4 % (RAND), and that the GRAD architecture had the higher surface area (1580 ± 101 vs 991 ± 62 mm2) and the thinner struts (221 ± 37 vs 286 ± 14 μm). The electrochemical measurements demonstrated that the apparent corrosion rate of chemically polished GRAD scaffold decreased with the immersion time extension, while that for polished RAND was increased. The RAND architecture outperformed the GRAD one with respect to hMSC proliferation (over two times higher although the GRAD scaffolds had 85 % higher initial cell retention) and migration from a monolayer. Our findings demonstrate that the pore distribution affects the biological properties of the titanium scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- J Idaszek
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - B Wysocki
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - E Ura-Bińczyk
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - A Dobkowska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | - W Nowak
- Cardinal Stefan Wyszynski University in Warsaw, Multidisciplinary Research Center, Dziekanow Lesny, Poland
| | - A Yamamoto
- National Institute for Materials Science, Research Center for Macromolecules and Biomaterials, Tsukuba, Japan
| | - G D Sulka
- Jagiellonian University, Faculty of Chemistry, Department of Physical Chemistry and Electrochemistry, Gronostajowa 2, 30387 Krakow, Poland
| | - W Święszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
10
|
Zhao B, Wang H, Liu C, Liu H, Zhao X, Sun Z, Hu M. A preliminary study of the mechanical properties of 3D-printed personalized mesh titanium alloy prostheses and repair of hemi-mandibular defect in dogs. J Biomed Mater Res B Appl Biomater 2024; 112:e35466. [PMID: 39223742 DOI: 10.1002/jbm.b.35466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
This study is a preliminary investigation exploring the mechanical properties of three-dimensional (3D)-printed personalized mesh titanium alloy prostheses and the feasibility of repairing hemi-mandibular defects. The ANSYS 14.0 software and selective laser melting (SLM) were used to produce personalized mesh titanium alloy scaffolds. Scaffolds printed using different parameters underwent fatigue property tests and scanning electron microscopy (SEM) of the fracture points. Models of hemi-mandibular defects (encompassing the temporomandibular joint) were created using beagle dogs. Freeze-dried allogeneic mandibles or 3D-printed personalized mesh titanium alloy prostheses were used for repair. Gross observation, computed tomography (CT), SEM, and histological examinations were used to compare the two repair methods. The prostheses with filament diameters of 0.5 and 0.7 mm could withstand 14,000 times and >600,000 cycles of alternating stresses, respectively. The truss-structure scaffold with a large aperture and large aperture ratio could withstand roughly 250,000 cycles of alternating forces. The allogeneic mandible graft required intraoperative shaping, while the 3D-printed mesh titanium alloy prostheses were personalized and did not require intraoperative shaping. The articular disc on the non-operated sides experienced degenerative changes. No liver and kidney toxicity was observed in the two groups of animals. The 3D-printed mesh titanium alloy prostheses could effectively restore the shape of the mandibular defect region and reconstruct the temporomandibular joint.
Collapse
Affiliation(s)
- Bingjing Zhao
- Department of Stomatology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hong Wang
- Department of Stomatology, The Second Affiliated Stomatological Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Changkui Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Shanxi, Xi'an, China
| | - Huawei Liu
- Department of Stomatology, General Hospital of the PLA, Beijing, China
| | - Xiaowen Zhao
- Shenzhen Excellent Technology Research Institute, Shenzhen, Guangdong, China
| | - Zenghui Sun
- Zhong An Tai Hua Medical Academy, Beijing, China
| | - Min Hu
- Department of Stomatology, General Hospital of the PLA, Beijing, China
| |
Collapse
|
11
|
Binobaid A, Guner A, Camilleri J, Jiménez A, Essa K. A 3D printed ultra-short dental implant based on lattice structures and ZIRCONIA/Ca 2SiO 4 combination. J Mech Behav Biomed Mater 2024; 155:106559. [PMID: 38657285 DOI: 10.1016/j.jmbbm.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Additive Manufacturing (AM) enables the generation of complex geometries and controlled internal cavities that are so interesting for the biomedical industry due to the benefits they provide in terms of osseointegration and bone growth. These technologies enable the manufacturing of the so-called lattice structures that are cells with different geometries and internal pores joint together for the formation of scaffold-type structures. In this context, the present paper analyses the feasibility of using diamond-type lattice structures and topology optimisation for the re-design of a dental implant. Concretely, a new ultra-short implant design is proposed in this work. For the manufacturing of the implant, digital light processing additive manufacturing technique technology is considered. The implant was made out of Nano-zirconia and Nano-Calcium Silicate as an alternative material to the more common Ti6Al4V. This material combination was selected due to the properties of the calcium-silicate that enhance bone ingrowth. The influence of different material combination ratios and lattice pore sizes were analysed by means of FEM simulation. For those simulations, a bio-material bone-nanozirconia model was considered that represents the final status after the bone is integrated in the implant. Results shows that the mechanical properties of the biocompatible composite employed were suitable for dental implant applications in dentistry. Based on the obtained results it was seen that those designs with 400 μm and 500 μm pore sizes showed best performance and led to the required factor of safety.
Collapse
Affiliation(s)
- Ahmed Binobaid
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK; Lecturer, Dental Biomaterials, Restorative and Prosthodontic Dental Sciences Department, School of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs Riyadh, P.O. Box 24264, Riyadh, 11486, Kingdom of Saudi Arabia
| | - Ahmet Guner
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | | | - Amaia Jiménez
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Manuel de Lardizábal 15, 20018, San Sebastián, Spain.
| | - Khamis Essa
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
12
|
Calazans Neto JV, Reis ACD, Valente MLDC. Influence of building direction on physical and mechanical properties of titanium implants: A systematic review. Heliyon 2024; 10:e30108. [PMID: 38774089 PMCID: PMC11106820 DOI: 10.1016/j.heliyon.2024.e30108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
The objective of the systematic review is to find an answer to a question: "What is the influence of the building direction of titanium implants produced by additive manufacturing on their physical and mechanical properties?" This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the Open Science Framework (OSF) (osf.io/rdc84). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on February 17th, 2024. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: In vitro studies that evaluated the influence of the impression direction of titanium implants produced by additive manufacturing on their physical and mechanical properties were selected. Articles were excluded that (1) did not use additive technology to obtain the implants, 2) used surfaces other than titanium, 3) did not evaluate the direction of impression, 4) Studies with only in vivo analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports, and personal opinions.). In the initial search, 581 results were found. Of this total, 108 were excluded for duplication and, after applying the eligibility criteria, 16 articles were included in the present review. The risk of bias was analyzed using the RoBDEMAT. The risk of bias was analyzed using the RoBDEMAT. In addition, the coefficient of interagreement of the reviewers (Cohen's Kappa) and the certainty of evidence by GRADE were analyzed. In general, different impression angles showed variations in the physical and mechanical characteristics of the groups evaluated, including roughness, tensile strength, hardness, and modulus of elasticity. While some impression orientations resulted in greater strength or hardness, others showed greater elasticity or lower surface roughness. These findings suggest that print orientation plays a significant role in determining material properties. It can be concluded that printing directions influence the physical and mechanical properties of titanium implants and the studies included showed that the 0°, 45°, and 90° directions are the most evaluated as they present lower probabilities of structural anisotropies and provide better results in their roughness, hardness, tensile and compressive strength.
Collapse
Affiliation(s)
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Xu H, Zhang Y, Zhang Y, Zhao Z, Xue T, Wang J, Li M, Zhao S, Zhang H, Ding Y. 3D bioprinting advanced biomaterials for craniofacial and dental tissue engineering – A review. MATERIALS & DESIGN 2024; 241:112886. [DOI: 10.1016/j.matdes.2024.112886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Xu C, Xu Y, Chen H, Han Q, Wu W, Zhang L, Liu Q, Wang J, Ren L. Novel-Ink-Based Direct Ink Writing of Ti6Al4V Scaffolds with Sub-300 µm Structural Pores for Superior Cell Proliferation and Differentiation. Adv Healthc Mater 2024; 13:e2302396. [PMID: 38180708 DOI: 10.1002/adhm.202302396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Ti6Al4V scaffolds with pore sizes between 300 and 600 µm are deemed suitable for bone tissue engineering. However, a significant proportion of human bone pores are smaller than 300 µm, playing a crucial role in cell proliferation, differentiation, and bone regeneration. Ti6Al4V scaffolds with these small-sized pores are not successfully fabricated, and their cytocompatibility remains unknown. The study presents a novel ink formula specifically tailored for fabricating Ti6Al4V scaffolds featuring precise and unobstructed sub-300 µm structural pores, achieved by investigating the rheological properties and printability of five inks containing 60-77.5 vol% Ti6Al4V powders and bisolvent binders. Ti6Al4V scaffolds with 50-600 µm pores are fabricated via direct ink writing and subjected to in vitro assays with MC3T3-E1 and bone marrow mesenchymal stem cells. The 100 µm pore-sized scaffolds exhibit the highest cell adhesion and proliferation capacity based on live/dead assay, FITC-phalloidin/4',6-diamidino-2-phenylindole staining, and cell count kit 8 assay. The alizarin red staining, real-time quantitative PCR assay, and immunocytochemical staining demonstrate the superior osteogenic differentiation potential of 100 and 200 µm pore-sized scaffolds. The importance of sub-300 µm structrual pores is highlighted, redefining the optimal pore size for Ti6Al4V scaffolds and advancing bone tissue engineering and clinical medicine development.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Yan Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Hao Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Lu Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Qingping Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
15
|
Shi Q, Chen J, Chen J, Liu Y, Wang H. Application of additively manufactured bone scaffold: a systematic review. Biofabrication 2024; 16:022007. [PMID: 38507799 DOI: 10.1088/1758-5090/ad35e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.
Collapse
Affiliation(s)
- Qianyu Shi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Junsheng Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yanfeng Liu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Hongze Wang
- School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Dai H, Wang J, Zhang H, Zhao J. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Front Bioeng Biotechnol 2024; 12:1342340. [PMID: 38567086 PMCID: PMC10986186 DOI: 10.3389/fbioe.2024.1342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haidong Dai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
17
|
Haitao X, Siyuan L, Sutong G, Yu G, Peirong X, Ling W, Yujian D, Dehong F. Preparation of Cu 2+/TA/HAP composite coating with anti-bacterial and osteogenic potential on 3D-printed porous Ti alloy scaffolds for orthopedic applications. Open Life Sci 2024; 19:20220826. [PMID: 38465344 PMCID: PMC10921476 DOI: 10.1515/biol-2022-0826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 03/12/2024] Open
Abstract
Because of stress shielding effects, traditional titanium (Ti) alloy scaffolds have a high elastic modulus, which might promote looseness and bone disintegration surrounding the implant, increasing the likelihood of a second surgery. In contrast, 3D-printed porous Ti alloy scaffolds can reduce the scaffold weight while enhancing biocompatibility. Further, these scaffolds' porous nature allows bone tissue ingrowth as well as strong pore connectivity, which can improve nutrient absorption. Nevertheless, bare Ti alloy implants may fail because of inadequate bone integration; hence, adding a coating on the implant surface is an effective technique for improving implant stability. In this study, a composite coating comprising hydroxyapatite (HAP), chitosan (CS), tannic acid (TA) and copper ions (Cu2+) (Cu2+/TA/HAP composite coating) was prepared on the surface of 3D printed porous Ti alloy scaffolds using electrophoretic deposition. Using the standard plate count method, Live/Dead bacteria staining assay, FITC Phalloidin and 4',6-diamidino-2-phenylindole staining assay, and live/dead staining of cells we determined that the composite coating has better antibacterial properties and cytocompatibility as well as lower cytotoxicity. The Alkaline Phosphatase assay revealed that the coating results showed good osteogenesis potential. Overall, the composite coatings produced in this investigation give new potential for the application of Ti alloys in clinics.
Collapse
Affiliation(s)
- Xu Haitao
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Li Siyuan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi214000, Jiangsu, China
| | - Guo Sutong
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Guo Yu
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Xu Peirong
- Wuxi No. 5 People’s Hospital, Wuxi214000, Jiangsu, China
| | - Wang Ling
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Ding Yujian
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Feng Dehong
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| |
Collapse
|
18
|
Askari M, Jadid Tavaf M, Ghorbani M, Yazdanian M, Moghaddam MM. Electrospun Propolis-coated PLGA Scaffold Enhances the Osteoinduction of Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:94-102. [PMID: 36999189 DOI: 10.2174/1574888x18666230330104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Major injuries that are caused by trauma and cancer can not be repaired through bone remodeling. The goal of bone regeneration by tissue engineering approaches is to fabricate bone implants in order to restore bone structure and functions. The use of stem cells and polymer scaffolds provides the conditions for tissue regeneration based on tissue engineering. OBJECTIVE This study aimed to fabricate a combined matrix of poly(lactide-co-glycolide) (PLGA) and propolis extract, which is a mixture of pollen and beeswax collected by bees from certain plants and has long been used in traditional herbal medicine, to promote the osteogenic differentiation of human adipose- derived mesenchymal stem cells (AD-MSCs). METHODS The scaffold was fabricated through electrospinning and was immersed in a propolis extract solution. Then, AD-MSCs were cultured and differentiated into the osteogenic lineage. The cell viability on the scaffold was evaluated by MTT assay. Osteogenic differentiation of the seeded stem cells was detected by evaluating calcium content, alkaline phosphatase (ALP) activity, and the expression of bonespecific genes. RESULTS The viability of cells was not affected by propolis-coated and uncoated fabricated scaffolds, while higher calcium content, ALP activity, and expression of RUNX-2, type I collagen, osteocalcin, and osteonectin were observed in cells differentiated on propolis-coated PLGA scaffold on days 7, 14, and 21 of differentiation compared to PLGA scaffold. CONCLUSION The results of this study showed that the presence of propolis in the scaffold could lead to better cell attachment and strengthen the osteoinduction process in stem cells.
Collapse
Affiliation(s)
- Mohammad Askari
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Jadid Tavaf
- Department of Hematology, Tarbiat Modarres University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Liu Y, Chen C, Liang T, Wang Y, Zhao R, Li G, Bai C, Wu Y, Yu F, Sheng L, Zhang R, Zhao Y. In vitro long-term antibacterial performance and mechanism of Zn-doped micro-arc oxidation coatings. Colloids Surf B Biointerfaces 2024; 233:113634. [PMID: 37956591 DOI: 10.1016/j.colsurfb.2023.113634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Micro-arc oxidation (MAO) coatings containing 2.86 wt%, 5.83 wt% and 8.81 wt% Zn (Zn-2.86 wt%, Zn-5.83 wt% and Zn-8.81 wt%) were separately fabricated on Ti6Al4V alloys using EDTA-ZnNa2 electrolytes. In vitro antibacterial examination exhibits that the antibacterial rates of Zn-2.86 wt%, Zn-5.83 wt% and Zn-8.81 wt% against Staphylococcus aureus (S. aureus) are 76.0 %, 100.0 % and 99.2 %, respectively. Reactive oxygen species (ROS) level of MAO samples is significantly higher than that of the untreated Ti6Al4V. Zn-containing coatings especially Zn-5.83 wt% induces the strongest oxidative stress on S. aureus due to relatively high released Zn2+ concentration. Moreover, qPCR analysis shows that MAO samples inhibit the icaADBC transcription and result in the down-regulation of PIA production, thereby mitigating biofilm formation. After immersion in simulated body fluid (SBF) for 3, 8 and 14 d, the antibacterial rate of Zn-5.83 wt% is 84.7 %, 63.2 % and 12.5 % respectively, and ROS level of MAO samples is also significantly higher than that of the untreated Ti6Al4V even after 14 d of immersion, suggesting that the antibacterial performance of MAO samples can last a relatively long immersion period and exhibit large application potential in orthopedic clinic.
Collapse
Affiliation(s)
- Yuzhi Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changtian Chen
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Tao Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rongfang Zhao
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Guoqiang Li
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Chunguang Bai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Yuxi Wu
- Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
| | - Fanglei Yu
- Zhejiang Canwell Medical Co., Ltd, Jinhua 321000, China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Rongfa Zhang
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Ying Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Li Y, Zhou Z, He Y. Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:65. [PMID: 38203919 PMCID: PMC10779822 DOI: 10.3390/ma17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Titanium alloy has the advantages of high specific strength, good corrosion resistance, and biocompatibility and is widely used in marine equipment, biomedicine, aerospace, and other fields. However, the application of titanium alloy in special working conditions shows some shortcomings, such as low hardness and poor wear resistance, which seriously affect the long life and safe and reliable service of the structural parts. Tribocorrosion has been one of the research hotspots in the field of tribology in recent years, and it is one of the essential factors affecting the application of passivated metal in corrosive environments. In this work, the characteristics of the marine and human environments and their critical tribological problems are analyzed, and the research connotation of tribocorrosion of titanium alloy is expounded. The research status of surface protection technology for titanium alloy in marine and biological environments is reviewed, and the development direction and trends in surface engineering of titanium alloy are prospected.
Collapse
Affiliation(s)
- Yang Li
- School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China;
| | - Zelong Zhou
- School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China;
| | - Yongyong He
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zhang Y, Cheng Z, Liu Z, Shen X, Cai C, Li M, Luo Z. Functionally Tailored Metal-Organic Framework Coatings for Mediating Ti Implant Osseointegration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303958. [PMID: 37705110 PMCID: PMC10582459 DOI: 10.1002/advs.202303958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Owing to their mechanical resilience and non-toxicity, titanium implants are widely applied as the major treatment modality for the clinical intervention against bone fractures. However, the intrinsic bioinertness of Ti and its alloys often impedes the effective osseointegration of the implants, leading to severe adverse complications including implant loosening, detachment, and secondary bone damage. Consequently, new Ti implant engineering strategies are urgently needed to improve their osseointegration after implantation. Remarkably, metalorganic frameworks (MOFs) are a class of novel synthetic material consisting of coordinated metal species and organic ligands, which have demonstrated a plethora of favorable properties for modulating the interfacial properties of Ti implants. This review comprehensively summarizes the recent progress in the development of MOF-coated Ti implants and highlights their potential utility for modulating the bio-implant interface to improve implant osseointegration, of which the discussions are outlined according to their physical traits, chemical composition, and drug delivery capacity. A perspective is also provided in this review regarding the current limitations and future opportunities of MOF-coated Ti implants for orthopedic applications. The insights in this review may facilitate the rational design of more advanced Ti implants with enhanced therapeutic performance and safety.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Zhuo Cheng
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine CentreDepartment of OrthopaedicsXinqiao HospitalArmy Medical UniversityChongqing400038China
| | - Xinkun Shen
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Chunyuan Cai
- Department of OrthopaedicsRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Menghuan Li
- School of Life ScienceChongqing UniversityChongqing400044China
| | - Zhong Luo
- School of Life ScienceChongqing UniversityChongqing400044China
| |
Collapse
|
22
|
Asbai-Ghoudan R, Nasello G, Pérez MÁ, Verbruggen SW, Ruiz de Galarreta S, Rodriguez-Florez N. In silico assessment of the bone regeneration potential of complex porous scaffolds. Comput Biol Med 2023; 165:107381. [PMID: 37611419 DOI: 10.1016/j.compbiomed.2023.107381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Mechanical environment plays a crucial role in regulating bone regeneration in bone defects. Assessing the mechanobiological behavior of patient-specific orthopedic scaffolds in-silico could help guide optimal scaffold designs, as well as intra- and post-operative strategies to enhance bone regeneration and improve implant longevity. Additively manufactured porous scaffolds, and specifically triply periodic minimal surfaces (TPMS), have shown promising structural properties to act as bone substitutes, yet their ability to induce mechanobiologially-driven bone regeneration has not been elucidated. The aim of this study is to i) explore the bone regeneration potential of TPMS scaffolds made of different stiffness biocompatible materials, to ii) analyze the influence of pre-seeding the scaffolds and increasing the post-operative resting period, and to iii) assess the influence of patient-specific parameters, such as age and mechanosensitivity, on outcomes. To perform this study, an in silico model of a goat tibia is used. The bone ingrowth within the scaffold pores was simulated with a mechano-driven model of bone regeneration. Results showed that the scaffold's architectural properties affect cellular diffusion and strain distribution, resulting in variations in the regenerated bone volume and distribution. The softer material improved the bone ingrowth. An initial resting period improved the bone ingrowth but not enough to reach the scaffold's core. However, this was achieved with the implantation of a pre-seeded scaffold. Physiological parameters like age and health of the patient also influence the bone regeneration outcome, though to a lesser extent than the scaffold design. This analysis demonstrates the importance of the scaffold's geometry and its material, and highlights the potential of using mechanobiological patient-specific models in the design process for bone substitutes.
Collapse
Affiliation(s)
- Reduan Asbai-Ghoudan
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain.
| | - Gabriele Nasello
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, 50018, Zaragoza, Spain
| | - Stefaan W Verbruggen
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK; Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, S1 3JD, UK
| | - Sergio Ruiz de Galarreta
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain
| | - Naiara Rodriguez-Florez
- Department of Mechanical Engineering and Materials, Universidad de Navarra, TECNUN Escuela de Ingenieros, Paseo Manuel de Lardizabal, 13, 20018, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
23
|
Liang W, Zhou C, Zhang H, Bai J, Jiang B, Jiang C, Ming W, Zhang H, Long H, Huang X, Zhao J. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng 2023; 17:56. [PMID: 37644461 PMCID: PMC10466721 DOI: 10.1186/s13036-023-00371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The use of biodegradable polymers for treating bone-related diseases has become a focal point in the field of biomedicine. Recent advancements in material technology have expanded the range of materials suitable for orthopaedic implants. Three-dimensional (3D) printing technology has become prevalent in healthcare, and while organ printing is still in its early stages and faces ethical and technical hurdles, 3D printing is capable of creating 3D structures that are supportive and controllable. The technique has shown promise in fields such as tissue engineering and regenerative medicine, and new innovations in cell and bio-printing and printing materials have expanded its possibilities. In clinical settings, 3D printing of biodegradable metals is mainly used in orthopedics and stomatology. 3D-printed patient-specific osteotomy instruments, orthopedic implants, and dental implants have been approved by the US FDA for clinical use. Metals are often used to provide support for hard tissue and prevent complications. Currently, 70-80% of clinically used implants are made from niobium, tantalum, nitinol, titanium alloys, cobalt-chromium alloys, and stainless steels. However, there has been increasing interest in biodegradable metals such as magnesium, calcium, zinc, and iron, with numerous recent findings. The advantages of 3D printing, such as low manufacturing costs, complex geometry capabilities, and short fabrication periods, have led to widespread adoption in academia and industry. 3D printing of metals with controllable structures represents a cutting-edge technology for developing metallic implants for biomedical applications. This review explores existing biomaterials used in 3D printing-based orthopedics as well as biodegradable metals and their applications in developing metallic medical implants and devices. The challenges and future directions of this technology are also discussed.
Collapse
Grants
- (LGF22H060023 to WQL) Public Technology Applied Research Projects of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2022KY433 to WQL, 2023KY1303 to HGL) Medical and Health Research Project of Zhejiang Province
- (2021FSYYZY45 to WQL) Research Fund Projects of The Affiliated Hospital of Zhejiang Chinese Medicine University
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022C31034 to CZ, 2023C31019 to HJZ) Science and Technology Project of Zhoushan
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
- (2022ZB380 to JYZ, 2023016295 to WYM, 2023007231 to CYJ ) Traditional Chinese Medicine Science and Technology Projects of Zhejiang Province
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000 China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 China
| | - Chanyi Jiang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Zhoushan, 316000 Zhejiang Province P.R. China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000 Zhejiang Province China
| |
Collapse
|
24
|
Functionalization of 3D-Printed Titanium Scaffolds with Elastin-like Recombinamers to Improve Cell Colonization and Osteoinduction. Pharmaceutics 2023; 15:pharmaceutics15030872. [PMID: 36986732 PMCID: PMC10055514 DOI: 10.3390/pharmaceutics15030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.
Collapse
|
25
|
Liu J, Wang K, Li X, Zhang X, Gong X, Zhu Y, Ren Z, Zhang B, Cheng J. Biocompatibility and osseointegration properties of a novel high strength and low modulus β- Ti10Mo6Zr4Sn3Nb alloy. Front Bioeng Biotechnol 2023; 11:1127929. [PMID: 36865033 PMCID: PMC9972097 DOI: 10.3389/fbioe.2023.1127929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction: Ti6Al4V titanium alloy is widely used in producing orthopedic and maxillofacial implants, but drawbacks include high elastic modulus, poor osseointegration performance, and toxic elements. A new medical titanium alloy material with better comprehensive performance is urgently needed in the clinic. Methods: Ti10Mo6Zr4Sn3Nb titanium alloy (referred to as Ti-B12) is a unique medical ß titanium alloy material developed by us. The mechanical properties of Ti-B12 depict that it has advantages, such as high strength, low elastic modulus, and fatigue resistance. In our study, the biocompatibility and osseointegration properties of Ti-B12 titanium alloy are further studied to provide theoretical guidance for its clinical transformation. Results and Discussion: The titanium alloy Ti-B12 displays no significant effect on MC3T3-E1 cell morphology, proliferation, or apoptosis in vitro. Neither Ti-B12 titanium alloy nor Ti6Al4V titanium alloy depicts a significant difference (p > 0.05); Ti-B12 material extract injected into the abdominal cavity of mice does not cause acute systemic toxicity. The skin irritation test and intradermal irritation test reveal that Ti-B12 does not cause skin allergic reactions in rabbits. Compared to Ti6Al4V, Ti-B12 titanium alloy material has more advantages in promoting osteoblast adhesion and ALP secretion (p < 0.05). Although there is no significant difference in OCN and Runx2 gene expression between the three groups on the 7th and 14th days of differentiation induction (p > 0.05), the expression of Ti-B12 group is higher than that of Ti6Al4V group and blank control group. Furthermore, the rabbit in vivo test present that 3 months after the material is implanted in the lateral epicondyle of the rabbit femur, the Ti-B12 material fuses with the surrounding bone without connective tissue wrapping. This study confirms that the new β-titanium alloy Ti-B12 not only has low toxicity and does not cause rejection reaction but also has better osseointegration performance than the traditional titanium alloy Ti6Al4V. Therefore, Ti-B12 material is expected to be further promoted in clinical practice.
Collapse
Affiliation(s)
- Jiantao Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Jiantao Liu, ; Jun Cheng,
| | - Kao Wang
- Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Xingyuan Li
- Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiwei Zhang
- Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xi Gong
- Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yihan Zhu
- Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhiwei Ren
- Department of Orthopedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bin Zhang
- Institute of Translational Medicine, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jun Cheng
- Northwest Institute for Nonferrous Metal Research, Shaanxi Key Laboratory of Biomedical Metal Materials, Xi’an, China,*Correspondence: Jiantao Liu, ; Jun Cheng,
| |
Collapse
|
26
|
Yue J, Han Q, Chen H, Zhang A, Liu Y, Gong X, Wang Y, Wang J, Wu M. Artificial lamina after laminectomy: Progress, applications, and future perspectives. Front Surg 2023; 10:1019410. [PMID: 36816003 PMCID: PMC9932198 DOI: 10.3389/fsurg.2023.1019410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
In clinical practice, laminectomy is a commonly used procedure for spinal decompression in patients suffering from spinal disorders such as ossification of ligamentum flavum, lumbar stenosis, severe spinal fracture, and intraspinal tumors. However, the loss of posterior column bony support, the extensive proliferation of fibroblasts and scar formation after laminectomy, and other complications (such as postoperative epidural fibrosis and iatrogenic instability) may cause new symptoms requiring revision surgery. Implantation of an artificial lamina prosthesis is one of the most important methods to avoid post-laminectomy complications. Artificial lamina is a type of synthetic lamina tissue made of various materials and shapes designed to replace the resected autologous lamina. Artificial laminae can provide a barrier between the dural sac and posterior soft tissues to prevent postoperative epidural fibrosis and paravertebral muscle compression and provide mechanical support to maintain spinal alignment. In this paper, we briefly review the complications of laminectomy and the necessity of artificial lamina, then we review various artificial laminae from clinical practice and laboratory research perspectives. Based on a combination of additive manufacturing technology and finite element analysis for spine surgery, we propose a new designing perspective of artificial lamina for potential use in clinical practice.
Collapse
Affiliation(s)
- Jing Yue
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Zhou X, Sun J, Wo K, Wei H, Lei H, Zhang J, Lu X, Mei F, Tang Q, Wang Y, Luo Z, Fan L, Chu Y, Chen L. nHA-loaded gelatin/alginate hydrogel with combined physical and bioactive features for maxillofacial bone repair. Carbohydr Polym 2022; 298:120127. [DOI: 10.1016/j.carbpol.2022.120127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
|
28
|
Murchio S, Benedetti M, Berto A, Agostinacchio F, Zappini G, Maniglio D. Hybrid Ti6Al4V/Silk Fibroin Composite for Load-Bearing Implants: A Hierarchical Multifunctional Cellular Scaffold. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6156. [PMID: 36079541 PMCID: PMC9458142 DOI: 10.3390/ma15176156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Despite the tremendous technological advances that metal additive manufacturing (AM) has made in the last decades, there are still some major concerns guaranteeing its massive industrial application in the biomedical field. Indeed, some main limitations arise in dealing with their biological properties, specifically in terms of osseointegration. Morphological accuracy of sub-unital elements along with the printing resolution are major constraints in the design workspace of a lattice, hindering the possibility of manufacturing structures optimized for proper osteointegration. To overcome these issues, the authors developed a new hybrid multifunctional composite scaffold consisting of an AM Ti6Al4V lattice structure and a silk fibroin/gelatin foam. The composite was realized by combining laser powder bed fusion (L-PBF) of simple cubic lattice structures with foaming techniques. A combined process of foaming and electrodeposition has been also evaluated. The multifunctional scaffolds were characterized to evaluate their pore size, morphology, and distribution as well as their adhesion and behavior at the metal-polymer interface. Pull-out tests in dry and hydrated conditions were employed for the mechanical characterization. Additionally, a cytotoxicity assessment was performed to preliminarily evaluate their potential application in the biomedical field as load-bearing next-generation medical devices.
Collapse
Affiliation(s)
- Simone Murchio
- Department of Industrial Engineering–DII, University of Trento, 38123 Trento, Italy
- BIOtech Research Center, University of Trento, 38122 Trento, Italy
| | - Matteo Benedetti
- BIOtech Research Center, University of Trento, 38122 Trento, Italy
| | - Anastasia Berto
- BIOtech Research Center, University of Trento, 38122 Trento, Italy
| | - Francesca Agostinacchio
- Department of Industrial Engineering–DII, University of Trento, 38123 Trento, Italy
- BIOtech Research Center, University of Trento, 38122 Trento, Italy
| | | | - Devid Maniglio
- Department of Industrial Engineering–DII, University of Trento, 38123 Trento, Italy
- BIOtech Research Center, University of Trento, 38122 Trento, Italy
| |
Collapse
|
29
|
Fu Y, Wu Q, Yang W, Liu S. Synthesis and Properties of Hydrogels on Medical Titanium Alloy Surface by Modified Dopamine Adhesion. Gels 2022; 8:gels8080458. [PMID: 35892717 PMCID: PMC9331872 DOI: 10.3390/gels8080458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Medical titanium alloy Ti-6Al-4V (TC4) is an ideal surgical implant material for human tissue repair and replacement. TC4 implantation will be in close contact with human soft tissue and has mechanical compatibility problems. In order to solve this problem, the hydrogel was formed on the surface of TC4 by utilizing the adhesion of dopamine, and the storage modulus of the formed hydrogel matched that of human soft tissue. In this paper, the surface of TC4 was first modified with dopamine (DA) and 2-bromoisobutyryl bromide (BIBB). 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA), oligo (ethylene oxide) methacrylate (OEGMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are used as monomers, and methylenebisacrylamide (MBA) is used as cross-linking agent. Thermosensitive hydrogels were formed on the surface of modified TC4 by the ATRP technique. The successful synthesis of initiator and hydrogels on TC4 was demonstrated by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The morphology of the hydrogel was observed by the scanning electron microscope (SEM), and the water absorption and temperature sensitivity were investigated by the swelling property. The thermal and mechanical properties of these gels were measured using thermal analysis system (TAS) and dynamic mechanical analyzer (DMA). The results show that the hydrogel on TC4 has good thermal stability and storage modulus that matches human soft tissue.
Collapse
|
30
|
Sun X, Yang S, Tong S, Guo S. Study on Exosomes Promoting the Osteogenic Differentiation of ADSCs in Graphene Porous Titanium Alloy Scaffolds. Front Bioeng Biotechnol 2022; 10:905511. [PMID: 35733528 PMCID: PMC9207277 DOI: 10.3389/fbioe.2022.905511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Titanium and titanium alloys (Ti6Al4V and Ti) have been widely used in bone tissue engineering to repair maxillofacial bone defects caused by traumas and tumors. However, such materials are also bio-inert, which does not match the elastic modulus of bone. Therefore, different surface modifications have been proposed for clinical application. Based on the use of traditional titanium alloy in the field of bone repair defects, we prepared a compound Gr-Ti scaffold with ADSC-derived Exos. The results showed that Gr-Ti scaffolds have low toxicity and good biocompatibility, which can promote the adhesion and osteogenic differentiation of ADSCs. Exos played a role in promoting osteogenic differentiation of ADSCs: the mRNA levels of RUNX2, ALP, and Osterix in the Gr-Ti/Exos group were significantly higher than those in the Gr-Ti group, which process related to the Wnt signaling pathway. Gr-Ti scaffolds with ADSCs and ADSC-derived Exos successfully repaired rabbit mandibular defects. The bone mineral density and the bending strength of the Gr-Ti/Exos group was significantly higher than that of the Gr-Ti group. This study provides a theoretical basis for the research and development of new clinical bone repair materials.
Collapse
Affiliation(s)
| | | | | | - Shu Guo
- *Correspondence: Shu Guo, ; Shuang Tong,
| |
Collapse
|
31
|
Bläsius F, Delbrück H, Hildebrand F, Hofmann UK. Surgical Treatment of Bone Sarcoma. Cancers (Basel) 2022; 14:cancers14112694. [PMID: 35681674 PMCID: PMC9179414 DOI: 10.3390/cancers14112694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Bone sarcomas are rare primary malignant mesenchymal bone tumors. The three main entities are osteosarcoma, chondrosarcoma, and Ewing sarcoma. While prognosis has improved for affected patients over the past decades, bone sarcomas are still critical conditions that require an interdisciplinary diagnostic and therapeutic approach. While radiotherapy plays a role especially in Ewing sarcoma and chemotherapy in Ewing sarcoma and osteosarcoma, surgery remains the main pillar of treatment in all three entities. After complete tumor resection, the created bone defects need to be reconstructed. Possible strategies are implantation of allografts or autografts including vascularized bone grafts (e.g., of the fibula). Around the knee joint, rotationplasty can be performed or, as an alternative, the implantation of (expandable) megaprostheses can be performed. Challenges still associated with the implantation of foreign materials are aseptic loosening and infection. Future improvements may come with advances in 3D printing of individualized resection blades/implants, thus also securing safe tumor resection margins while at the same time shortening the required surgical time. Faster osseointegration and lower infection rates may possibly be achieved through more elaborate implant surface structures.
Collapse
Affiliation(s)
- Felix Bläsius
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; (F.B.); (H.D.); (F.H.)
- Centre for Integrated Oncology Aachen Bonn Köln Düsseldorf (CIO), 52074 Aachen, Germany
| | - Heide Delbrück
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; (F.B.); (H.D.); (F.H.)
- Centre for Integrated Oncology Aachen Bonn Köln Düsseldorf (CIO), 52074 Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; (F.B.); (H.D.); (F.H.)
- Centre for Integrated Oncology Aachen Bonn Köln Düsseldorf (CIO), 52074 Aachen, Germany
| | - Ulf Krister Hofmann
- Department of Orthopaedic, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; (F.B.); (H.D.); (F.H.)
- Centre for Integrated Oncology Aachen Bonn Köln Düsseldorf (CIO), 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-(0)241-80-89350
| |
Collapse
|
32
|
Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, Lin Y. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23105831. [PMID: 35628638 PMCID: PMC9143187 DOI: 10.3390/ijms23105831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Polylactic acid–glycolic acid (PLGA) has been widely used in bone tissue engineering due to its favorable biocompatibility and adjustable biodegradation. 3D printing technology can prepare scaffolds with rich structure and function, and is one of the best methods to obtain scaffolds for bone tissue repair. This review systematically summarizes the research progress of 3D-printed, PLGA-based scaffolds. The properties of the modified components of scaffolds are introduced in detail. The influence of structure and printing method change in printing process is analyzed. The advantages and disadvantages of their applications are illustrated by several examples. Finally, we briefly discuss the limitations and future development direction of current 3D-printed, PLGA-based materials for bone tissue repair.
Collapse
Affiliation(s)
- Fengbo Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
- Correspondence: (F.S.); (Y.L.); Tel.: +86-010-62773741 (Y.L.)
| | - Xiaodan Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
| | - Hetong Wang
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
| | - Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Jingjing Tian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (C.L.); (Y.Z.); (J.T.)
| | - Yuanhua Lin
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (X.S.); (H.W.)
- Correspondence: (F.S.); (Y.L.); Tel.: +86-010-62773741 (Y.L.)
| |
Collapse
|
33
|
Chen S, Wang Y, Ma J. A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect. J Biomater Appl 2022; 37:344-354. [DOI: 10.1177/08853282221087107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone-like apatite coating fabricated by biomineralization process is a facile way for surface modification of porous scaffolds to improve interfacial behaviors and thus facilitate cell attachment, proliferation, and differentiation for bone tissue engineering. In this study, a Sr-containing calcium phosphate solution was made and used to construct a thick layer of Sr-doped bone-like apatite on the surface of 3D printed scaffolds via biomineralization process. Importantly, Sr-doped bone-like apatite could form and fully cover the 3D printed scaffolds surface in hours. The characterization results indicated that Sr2+ ions successfully replaced Ca2+ ions in bone-like apatite and the molar ratio of Sr/(Ca+Sr) was up to 8.2%. Furthermore, the Sr-doped apatite coating increased the compressive strength and Young’s modulus of composite scaffolds. The compatibility and bioactivity of mineralized scaffolds were evaluated by cell attachment, proliferation, and differentiation of MC3T3-E1 cells. It was found that Sr-doped apatite coating could gradually release Sr2+ ions and further promote cell attachment, proliferation rate, and the expression of alkaline phosphatase activity and osteogenic related genes, such as collagen type I (Col I), Runt-related transcription factor 2 (Runx-2), osteopontin, and osterix. Therefore, the Sr-doped apatite coating fabricated by this facile and rapid biomineralization process offers a new strategy to modify 3D printed porous scaffolds with significantly improved mechanical and biological properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- Shangsi Chen
- Biomedical Engineering, Huazhong Univesity of Science and Technology, Wuhan, China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ma
- Biomedical Engineering, Huazhong Univesity of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Wakamatsu K, Doi K, Kobatake R, Makihara Y, Yoshiga C, Tsuga K. Implant Stability Following Osseointegration of Dental Implants in Bone Sites Reconstructed with Novel Porous Titanium Scaffold. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kaien Wakamatsu
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuya Doi
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yusuke Makihara
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Chihiro Yoshiga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
35
|
Pitton M, Fiorati A, Buscemi S, Melone L, Farè S, Contessi Negrini N. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Front Bioeng Biotechnol 2021; 9:732689. [PMID: 34926414 PMCID: PMC8678092 DOI: 10.3389/fbioe.2021.732689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Buscemi
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy.,Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Novedrate, Italy
| | - Silvia Farè
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, Goyanes A, Gaisford S, Basit AW. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev 2021; 178:113958. [PMID: 34478781 DOI: 10.1016/j.addr.2021.113958] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are under investigation for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery, rehabilitation, or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and opportunities for clinical adoption.
Collapse
Affiliation(s)
- Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas D Pollard
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.
| |
Collapse
|
37
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
38
|
Zhao H, Shen S, Zhao L, Xu Y, Li Y, Zhuo N. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. BMC Musculoskelet Disord 2021; 22:734. [PMID: 34452607 PMCID: PMC8401189 DOI: 10.1186/s12891-021-04617-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The repair of large bone defects is a great challenge for orthopedics. Although the development of three-dimensional (3D) printed titanium alloy (Ti6Al4V) implants with optimized the pore structure have effectively promoted the osseointegration. However, due to the biological inertia of Ti6Al4Vsurface and the neglect of angiogenesis, some patients still suffer from postoperative complications such as dislocation or loosening of the prosthesis. METHODS The purpose of this study was to construct 3D printed porous Ti6Al4V scaffolds filled with bone marrow mesenchymal stem cells (BMSC) and endothelial progenitor cells (EPC) loaded hydrogel and evaluate the efficacy of this composite implants on osteogenesis and angiogenesis, thus promoting osseointegration. RESULTS The porosity and pore size of prepared 3D printed porous Ti6Al4V scaffolds were 69.2 ± 0.9 % and 593.4 ± 16.9 μm, respectively, which parameters were beneficial to bone ingrowth and blood vessel formation. The BMSC and EPC filled into the pores of the scaffolds after being encapsulated by hydrogels can maintain high viability. As a cell containing composite implant, BMSC and EPC loaded hydrogel incorporated into 3D printed porous Ti6Al4V scaffolds enhancing osteogenesis and angiogenesis to repair bone defects efficiently. At the transcriptional level, the composite implant up-regulated the expression levels of the osteogenesis-related genes alkaline phosphatase (ALP) and osteocalcin (OCN), and angiogenesis-related genes hypoxia-inducible factor 1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF). CONCLUSIONS Overall, the strategy of loading porous Ti6Al4V scaffolds to incorporate cells is a promising treatment for improving osseointegration.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Shi Shen
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Lu Zhao
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Yulin Xu
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Yang Li
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Naiqiang Zhuo
- Department of Department of Bone and Joint, Affiliated Hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China.
| |
Collapse
|
39
|
Yang J, Li Y, Shi X, Shen M, Shi K, Shen L, Yang C. Design and analysis of three-dimensional printing of a porous titanium scaffold. BMC Musculoskelet Disord 2021; 22:654. [PMID: 34340671 PMCID: PMC8330076 DOI: 10.1186/s12891-021-04520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Objective Mechanic strength, pore morphology and size are key factors for the three-dimensional (3D) printing of porous titanium scaffolds, therefore, developing optimal structure for the 3D printed titanium scaffold to fill bone defects in knee joints is instructive and important. Methods Structural models of titanium scaffolds with fifteen different pore unit were designed with 3D printing computer software; five different scaffold shapes were designed: imitation diamond-60°, imitation diamond-90°, imitation diamond-120°, regular tetrahedron and regular hexahedron. Each structural shape was evaluated with three pore sizes (400, 600 and 800 μm), and fifteen types of cylindrical models (size: 20 mm; height: 20 mm). Autodesk Inventor software was used to determine the strength and safety of the models by simulating simple strength acting on the knee joints. We analyzed the data and found suitable models for the design of 3D printing of porous titanium scaffolds. Results Fifteen different types of pore unit structural models were evaluated under positive pressure and lateral pressure; the compressive strength reduced when the pore size increased. Under torsional pressure, the strengths of the imitation diamond structure were similar when the pore size increased, and the strengths of the regular tetrahedron and regular hexahedron structures reduced when the pore size increased. In each case, the compressive strength of the regular hexahedron structure was highest, that of the regular tetrahedron was second highest, and that of the imitation diamond structure was relatively low. Fifteen types of cylindrical models under a set force were evaluated, and the sequence of comprehensive compressive strength, from strong to weak was: regular hexahedron > regular tetrahedron > imitation diamond-120° > imitation diamond-90° > imitation diamond-60°. The compressive strength of cylinder models was higher when the pore size was smaller. Conclusion The pore size and pore morphology were important factors influencing the compressive strength. The strength of each structure reduced when the pore size (400, 600 and 800 μm) increased. The models of regular hexahedron, regular tetrahedron and imitation diamond-120°appeared to meet the conditions of large pore sizes and high compressive strength.
Collapse
Affiliation(s)
- Jiajie Yang
- Nantong Haimen People's Hospital, 1201 Beijing Road, Haimen District, Nantong City, 226100, Jiangsu Province, China
| | - Yaqiang Li
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 145 Shandong Zhong Lu, Shanghai, 200001, China
| | - Xiaojian Shi
- Nantong Haimen People's Hospital, 1201 Beijing Road, Haimen District, Nantong City, 226100, Jiangsu Province, China
| | - Meihua Shen
- Nantong Haimen People's Hospital, 1201 Beijing Road, Haimen District, Nantong City, 226100, Jiangsu Province, China
| | - Kaibing Shi
- Nantong Haimen People's Hospital, 1201 Beijing Road, Haimen District, Nantong City, 226100, Jiangsu Province, China
| | - Lingjie Shen
- Nantong Haimen People's Hospital, 1201 Beijing Road, Haimen District, Nantong City, 226100, Jiangsu Province, China
| | - Chunxi Yang
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 145 Shandong Zhong Lu, Shanghai, 200001, China.
| |
Collapse
|
40
|
Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 2021; 174:406-424. [PMID: 33951489 DOI: 10.1016/j.addr.2021.04.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.
Collapse
|
41
|
Perier-Metz C, Duda GN, Checa S. Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration - an in silico analysis. Biomech Model Mechanobiol 2021; 20:1723-1731. [PMID: 34097188 PMCID: PMC8450217 DOI: 10.1007/s10237-021-01472-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022]
Abstract
Large bone defects remain a clinical challenge because they do not heal spontaneously. 3-D printed scaffolds are a promising treatment option for such critical defects. Recent scaffold design strategies have made use of computer modelling techniques to optimize scaffold design. In particular, scaffold geometries have been optimized to avoid mechanical failure and recently also to provide a distinct mechanical stimulation to cells within the scaffold pores. This way, mechanical strain levels are optimized to favour the bone tissue formation. However, bone regeneration is a highly dynamic process where the mechanical conditions immediately after surgery might not ensure optimal regeneration throughout healing. Here, we investigated in silico whether scaffolds presenting optimal mechanical conditions for bone regeneration immediately after surgery also present an optimal design for the full regeneration process. A computer framework, combining an automatic parametric scaffold design generation with a mechano-biological bone regeneration model, was developed to predict the level of regenerated bone volume for a large range of scaffold designs and to compare it with the scaffold pore volume fraction under favourable mechanical stimuli immediately after surgery. We found that many scaffold designs could be considered as highly beneficial for bone healing immediately after surgery; however, most of them did not show optimal bone formation in later regenerative phases. This study allowed to gain a more thorough understanding of the effect of scaffold geometry changes on bone regeneration and how to maximize regenerated bone volume in the long term.
Collapse
Affiliation(s)
- Camille Perier-Metz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- MINES ParisTech - PSL Research University, Paris, France
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Bone regeneration is an interdisciplinary complex lesson, including but not limited to materials science, biomechanics, immunology, and biology. Having witnessed impressive progress in the past decades in the development of bone substitutes; however, it must be said that the most suitable biomaterial for bone regeneration remains an area of intense debate. Since its discovery, poly (lactic-co-glycolic acid) (PLGA) has been widely used in bone tissue engineering due to its good biocompatibility and adjustable biodegradability. This review systematically covers the past and the most recent advances in developing PLGA-based bone regeneration materials. Taking the different application forms of PLGA-based materials as the starting point, we describe each form's specific application and its corresponding advantages and disadvantages with many examples. We focus on the progress of electrospun nanofibrous scaffolds, three-dimensional (3D) printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds, and stents prepared by other traditional and emerging methods. Finally, we briefly discuss the current limitations and future directions of PLGA-based bone repair materials. STATEMENT OF SIGNIFICANCE: As a key synthetic biopolymer in bone tissue engineering application, the progress of PLGA-based bone substitute is impressive. In this review, we summarized the past and the most recent advances in the development of PLGA-based bone regeneration materials. According to the typical application forms and corresponding crafts of PLGA-based substitutes, we described the development of electrospinning nanofibrous scaffolds, 3D printed scaffolds, microspheres/nanoparticles, hydrogels, multiphasic scaffolds and scaffolds fabricated by other manufacturing process. Finally, we briefly discussed the current limitations and proposed the newly strategy for the design and fabrication of PLGA-based bone materials or devices.
Collapse
|