1
|
Sethi V, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Infection-Resistant Polypropylene Hernia Mesh: Vision & Innovations. ACS APPLIED BIO MATERIALS 2025; 8:1797-1819. [PMID: 39943674 DOI: 10.1021/acsabm.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The surgical repair of hernias, a prevalent condition affecting millions worldwide, has traditionally relied on polypropylene (PP) mesh due to its favorable mechanical properties and biocompatibility. However, postoperative infections remain a significant complication, underscoring the need for the development of infection-resistant hernia meshes. This study provides a comprehensive analysis of current advancements and innovative strategies aimed at enhancing the infection resistance of PP mesh. It presents an overview of various research efforts focused on the integration of antimicrobial agents, surface modifications, and the development of bioactive coatings to prevent bacterial colonization and biofilm formation. Additionally, the synergistic effects of novel material designs and the role of nanotechnology in optimizing the anti-infective properties of PP mesh are explored. Recent clinical outcomes and in vitro studies are critically examined, highlighting challenges and potential future directions in the development of next-generation hernia meshes. Emphasis is placed on the importance of interdisciplinary approaches in advancing surgical materials with the ultimate goal of improving patient outcomes in hernia repair.
Collapse
Affiliation(s)
- Vipula Sethi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Histopathology and Transfusion Medicine, Jay Prabha Medanta Hospital, Patna 800020, Bihar, India
| | - Samrat Mukhopadhyay
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Wang X, Wang G, Wang J, Xue J, Liu G, Fan C. Catechol-rich gelatin microspheres as restorative medical implants intended for inhibiting seroma formation and promoting wound healing. Mater Today Bio 2024; 29:101313. [PMID: 39534679 PMCID: PMC11554634 DOI: 10.1016/j.mtbio.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Seroma formation and poor wound healing are common complications of many surgeries that create anatomical dead space (i.e., mastectomy), often causing tissue infection and even necrosis. Although negative pressure drainage and tissue adhesives are investigated to alleviate fluid accumulation post-surgery, however, their therapeutic efficacy remains unsatisfactory in most cases. Herein, the catechol-rich chemically crosslinked gelatin microspheres (ca-CGMSs) have been developed as biodegradable reconstructive implants for preventing seroma formation and concurrently promoting subcutaneous wound healing. Compared with the most representative hydrogel adhesive, i.e. commercial porcine fibrin sealant (PFS), the loosely packed ca-CGMSs with diameters range from 50 to 350 μm, provide numerous cell-adhesive interfaces and interconnected macro-pores for enhanced cell adhesion, proliferation and migration. Subcutaneous embedding trials show the in situ swelling aggregation and wet tissue adhesion of ca-CGMSs as well as their capacity in recruiting autologous cells in rat mastectomy models. The trials in rabbit mastectomy models demonstrate that, compared with PFS gluing, the implanted dried ca-CGMSs not only significantly inhibit seroma formation, but also achieve enhanced wound healing by inducing the formation of vascularized neo-tissue. The ca-CGMSs show a great potential to be the next-generation of restorative materials for both preventing seroma formation and healing subcutaneous wounds.
Collapse
Affiliation(s)
- Xinping Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Guoqing Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao Medical College, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Jianfei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266000, Shandong, PR China
| | - Gaoli Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao Medical College, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, Shandong, PR China
| |
Collapse
|
3
|
Poos SEM, Hermans BP, van Goor H, Ten Broek RPG. Animal models for preventing seroma after surgery: a systematic review and meta-analysis. Lab Anim 2024; 58:530-544. [PMID: 39233578 DOI: 10.1177/00236772241273010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Novel interventions for seroma prevention are urgently needed in clinical practice. Animal models are pivotal tools for testing these interventions; however, a significant translational gap persists between clinical and animal model outcomes. This systematic review aims to assess the methodological characteristics and quality of animal models utilized for seroma prevention. A meta-analysis was performed to estimate the expected seroma incidence rate for control groups and determine the effect size of typical interventions. We systematically retrieved all studies describing animal models in which seroma formation was induced. Methodological characteristics, risks of bias, and study quality were assessed. Seroma volume and -incidence data were used for the meta-analysis. In total, 55 studies were included, with 42 eligible for meta-analysis. Rats (69%) were the most frequently used species, with mastectomy (50%) being the predominant surgical procedure in these models. Despite significant risks of bias across all studies, an improving trend in reporting quality per decade was observed. The meta-analysis revealed an average seroma incidence of 90% in typical control groups. The average intervention halved the seroma incidence (RR = 0.49; CI 0.35, 0.70) and significantly reduced seroma volume (SMD = -3.31; CI -4.21, -2.41), although notable heterogeneity was present. In conclusion, animal models for seroma prevention exhibit methodological flaws and multiple risks of bias. Implementing sufficiently powered positive and negative control groups could improve the internal validity of these models. More research is needed for further development of animal seroma models.
Collapse
Affiliation(s)
- Steven E M Poos
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bob P Hermans
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Harry van Goor
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
4
|
Nißler R, Dennebouy L, Gogos A, Gerken LRH, Dommke M, Zimmermann M, Pais MA, Neuer AL, Matter MT, Kissling VM, de Brot S, Lese I, Herrmann IK. Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311115. [PMID: 38556634 DOI: 10.1002/smll.202311115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich, 8008, Switzerland
| | - Lena Dennebouy
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Maximilian Dommke
- Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Monika Zimmermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Michael A Pais
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, 3010, Switzerland
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Martin T Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, 3012, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, 3010, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich, 8008, Switzerland
| |
Collapse
|
5
|
Pais MA, Papanikolaou A, Hoyos IA, Nißler R, De Brot S, Gogos A, Rieben R, Constantinescu MA, Matter MT, Herrmann IK, Lese I. Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats. Front Bioeng Biotechnol 2024; 12:1363126. [PMID: 38532882 PMCID: PMC10963406 DOI: 10.3389/fbioe.2024.1363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy.
Collapse
Affiliation(s)
- Michael-Alexander Pais
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Athanasios Papanikolaou
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Arenas Hoyos
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Robert Nißler
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Simone De Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Alexander Gogos
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mihai A. Constantinescu
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin T. Matter
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Inge K. Herrmann
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Moncure P, Millstone JE, Laaser JE. Role of Ligand Shell Density in the Diffusive Behavior of Nanoparticles in Hydrogels. J Phys Chem B 2023; 127:9366-9377. [PMID: 37857360 PMCID: PMC10626584 DOI: 10.1021/acs.jpcb.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Indexed: 10/21/2023]
Abstract
The diffusion coefficients of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) with different effective grafting densities were measured in polyacrylamide hydrogels. The NP core size was held constant, and the NPs were functionalized with mixtures of short oligomeric ligands (254 Da PEGSH) and longer (either 1 or 2 kDa PEGSH) ligands. The ratio of short and long ligands was varied such that the grafting density of the high-molecular-weight (MW) ligand ranged from approximately 1 to 100 high-MW ligands/NP. The diffusion coefficients of the NPs were then measured in gels with varying average mesh sizes. The measured diffusion coefficients decreased with higher MW ligand density. Interestingly, the diffusion coefficients for NPs with high effective grafting densities were well-predicted by their hydrodynamic diameters, but the diffusion coefficients for NPs with low effective grafting densities were higher than expected from their hydrodynamic diameters. These results suggest that crowding in the NP ligand shell influences the mechanism of diffusion, with lower grafting densities allowing ligand chain relaxations that facilitate movement through the gel. This work brings new insights into the factors that dictate how NPs move through hydrogels and will inform the development of models for applications such as drug delivery in complex viscoelastic biological materials.
Collapse
Affiliation(s)
- Paige
J. Moncure
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E. Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Mason IT, Rose HJ, Williamson SF, Jowsey AT, Gorman SJ, Chittock HD, Wong CC, Dheda AJ, Turner SB, Park YE, Kollmetz T, Sonis JM, Kamm JL, May BC. Evaluation of Tissue Apposition and Seroma Prevention in an Ovine Model of Surgical Dead Space Using a Novel Air-Purged Vacuum Closure System. EPLASTY 2022; 22:e46. [PMID: 36408121 PMCID: PMC9643872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Postoperative complications associated with seroma formation resulting from surgical dead space continue to present a challenge in modern surgery. There is an unmet need for new technologies that address surgical dead space as well as prevent seroma formation and associated downstream postoperative complications. METHODS The novel implantable tissue apposition and drainage system ENIVO was developed and tested in a bilateral ovine external abdominal oblique (EAO) resection model of surgical dead space. The ENIVO system is a portable powered pump and wound interface featuring air-purged vacuum closure (APVC) that delivers a sustained level of vacuum pressure (80 and 100 mmHg) to the treatment site with an intermittent burst of sterile filtered air through the implanted wound interface. Seroma area, seroma volume, and drain migration were assessed at postoperative days 7 and 14, and all animals were euthanized at day 28 with gross assessment of treatment efficacy including the presence of residual seroma and tissue apposition. RESULTS The bilateral model created relatively uniform defects of ~120 cm2 following excision of ~30 to 50 g of EAO muscle. Median seroma area of ENIVO-treated defects was statistically smaller than standard of care (SoC)-treated defects at days 7 and 14. Median seroma volume at 14 days was significantly reduced in ENIVO-treated defects relative to SoC-treated defects [1.3 (IQR 0.0-79.5) mL and 188.5 (IQR 27.6-342.9) mL, respectively]. At postoperative day 28, 40% (n = 4/10) of SoC defects showed a residual seroma, whereas in contrast, none of the ENIVO-treated defects showed signs of a residual seroma. Median tissue apposition scoring was higher in the ENIVO treatment group [3 (IQR 3-3)] compared with the SoC group [3 (IQR 0-3)]. CONCLUSIONS The ENIVO system represents a new approach to dead space management and seroma prevention and was shown to outperform a SoC surgical drain in a challenging large defect model of surgical dead space management and seroma prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - J Lacy Kamm
- Vet Associates Equine, Auckland, New Zealand
| | | |
Collapse
|
8
|
Papanikolaou A, Minger E, Pais MA, Constantinescu M, Olariu R, Grobbelaar A, Lese I. Management of Postoperative Seroma: Recommendations Based on a 12-Year Retrospective Study. J Clin Med 2022; 11:jcm11175062. [PMID: 36078992 PMCID: PMC9457167 DOI: 10.3390/jcm11175062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Seroma formation is a serious postoperative complication. Since the management algorithms available in the literature are scarce, we aimed to analyze our experience with postoperative seroma in order to identify indicators for revisional surgery and propose recommendations for management. Methods: This retrospective study included all patients with postoperative seroma treated in a tertiary university hospital from 2008 to 2020. Patients’ demographics, medical history, and seroma treatment details were recorded and analyzed. Results: Overall, 156 patients were included: 41% were initially treated through needle aspiration, with 61% eventually undergoing surgical treatment for postoperative seroma. Comorbidities, such as heart failure and coronary heart disease, were significantly associated with an increased need for revisional surgery (p < 0.05). Both a duration of >40 days of repeated needle aspirations and drain re-insertions were significantly correlated with an increased risk for revisional surgery (p < 0.05). Conclusion: Patients requiring seroma aspiration should be counseled on surgical treatment sooner rather than later, as prolonged aspiration time (over 40 days) greatly increases the risk of surgical revision. Moreover, the reinsertion of a drain should only be used as a temporizing measure, at most, and patients requiring a drain to control the size of the seroma should promptly be scheduled for a surgical revision.
Collapse
Affiliation(s)
- Athanasios Papanikolaou
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Eliane Minger
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Michael-Alexander Pais
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| | - Mihai Constantinescu
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Radu Olariu
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Adriaan Grobbelaar
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
9
|
Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite-bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022; 12:21079-21091. [PMID: 35919836 PMCID: PMC9305725 DOI: 10.1039/d2ra02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.
Collapse
Affiliation(s)
- Estelle Palierse
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Maïlie Roquart
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| |
Collapse
|