1
|
Anton PE, Twardy S, Nagpal P, Moreno JA, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL. Suppression of NF-κB/NLRP3 by nanoligomer therapy mitigates ethanol and advanced age-related neuroinflammation. J Leukoc Biol 2025; 117:qiaf024. [PMID: 40036603 PMCID: PMC12022636 DOI: 10.1093/jleuko/qiaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/02/2025] [Indexed: 03/06/2025] Open
Abstract
Binge alcohol use is increasing among aged adults (>65 yr). Alcohol-related toxicity in aged adults is associated with neurodegeneration; yet, the molecular underpinnings of this age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod-like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators; yet, the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18 to 20 mo) female C57BL/6N mice compared with young (3 to 4 mo). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared with young. Using a NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are driven by NF-κB and NLRP3. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aging populations.
Collapse
Affiliation(s)
- Paige E Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Shannon Twardy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Matthew A Burchill
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | - Nicolas Busquet
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Michael Mesches
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Elizabeth J Kovacs
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Veterans' Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, United States
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Risen S, Sharma S, Gilberto VS, Brindley S, Aguilar M, Brown JM, Chatterjee A, Moreno JA, Nagpal P. Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs. ACS Pharmacol Transl Sci 2024; 7:3439-3451. [PMID: 39539269 PMCID: PMC11555505 DOI: 10.1021/acsptsci.4c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
Immune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids can offer limited relief for systemic inflammation for some organs, many patients never achieve remission, and such drugs do not cross the blood-brain barrier, making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Recent studies have also shown that targeting inflammasomes and specific immune targets can be beneficial for these diseases. Furthermore, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated as NI112) can be therapeutic for several neurodegenerative diseases. Here, we show safety-toxicity studies, followed by pharmacokinetics and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI112. We conducted studies using four different routes of administration: intravenous, subcutaneous, intraperitoneal, and intranasal, and identified the drug concentration over time using inductively coupled plasma mass spectrometry in the blood serum, the brain (including different brain regions), and other target organs such as liver, kidney, and colon. Our results indicate that the Nanoligomer cocktail has a strong safety profile and shows high biodistribution (F ∼ 0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum of ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and prediction of therapeutic dosage between different routes of administration.
Collapse
Affiliation(s)
- Sydney Risen
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Vincenzo S. Gilberto
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mikayla Aguilar
- Department
of Clinical Sciences and Brain Research Center, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Julie A. Moreno
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| |
Collapse
|
3
|
Sharma S, Gilberto VS, Rask J, Chatterjee A, Nagpal P. Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids. ACS Chem Neurosci 2024; 15:3009-3021. [PMID: 39084211 DOI: 10.1021/acschemneuro.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Vincenzo S Gilberto
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Jon Rask
- NASA Ames Research Center, Moffett Field, California, California 94035, United States
| | - Anushree Chatterjee
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| |
Collapse
|
4
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578493. [PMID: 38370618 PMCID: PMC10871285 DOI: 10.1101/2024.02.03.578493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
|
6
|
Sharma S, Risen S, Gilberto VS, Boland S, Chatterjee A, Moreno JA, Nagpal P. Targeted-Neuroinflammation Mitigation Using Inflammasome-Inhibiting Nanoligomers is Therapeutic in an Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Chem Neurosci 2024; 15:1596-1608. [PMID: 38526238 DOI: 10.1021/acschemneuro.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sydney Risen
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sean Boland
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| |
Collapse
|
7
|
Risen SJ, Boland SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting Neuroinflammation by Pharmacologic Downregulation of Inflammatory Pathways Is Neuroprotective in Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:1533-1547. [PMID: 38507813 DOI: 10.1021/acschemneuro.3c00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Sydney J Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sean W Boland
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Grace M Weisman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Payton M Shirley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arielle J D Hay
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Amelia D Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephanie McGrath
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Anton PE, Nagpal P, Moreno J, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL. NF-κB/NLRP3 Translational Inhibition by Nanoligomer Therapy Mitigates Ethanol and Advanced Age-Related Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582114. [PMID: 38464118 PMCID: PMC10925165 DOI: 10.1101/2024.02.26.582114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.
Collapse
Affiliation(s)
- Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Julie Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Matthew A. Burchill
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Nicolas Busquet
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Michael Mesches
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Elizabeth J. Kovacs
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Veterans’ Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
9
|
Akhilesh, Uniyal A, Mehta A, Tiwari V. Combination chemotherapy in rodents: a model for chemotherapy-induced neuropathic pain and pharmacological screening. Metab Brain Dis 2024; 39:43-65. [PMID: 37991674 DOI: 10.1007/s11011-023-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) remains a therapeutic challenge, with no US-FDA approved drugs or effective treatments available. Despite significant progress in unravelling the pathophysiology of CINP, the clinical translation of this knowledge into tangible outcome remains elusive. Here, we employed behavioural and pharmacological approaches to establish and validate a novel combination-based chemotherapeutic model of peripheral neuropathy. Male Sprague Dawley rats were subjected to chemotherapy administration followed by assessment of pain behaviour at different time-points post-chemotherapy. Paclitaxel-treated animals displayed an enhanced thermal and mechanical hypersensitivity from day four onwards which continued till day thirty-five post last paclitaxel injection. Notably, rats subjected to combination chemotherapy, displayed prolonged hypersensitivity that emerged on day four and persisted until day fifty-six. RT-PCR analysis revealed significant upregulation in DRG and spinal mRNA expressions of TRP channels (TRPA1, TRPV1, & TRPM8), pro-inflammatory cytokines (TNF-α & IL-1β) and neuropeptides, Substance P and CGRP in both the pain models. Interestingly, the combination chemotherapy model demonstrated a significant increase in DRG and spinal NR2B expressions compared to rats solely treated with paclitaxel. Pharmacological investigations revealed that gabapentin treatment substantially mitigates pain hypersensitivity in both the combined chemotherapy and paclitaxel-administered groups, with the simultaneous reversal of cellular and molecular changes observed in the lumbar DRG and spinal cord of rats. The findings from this study suggests that combination chemotherapy model exhibits heightened and prolonged hypersensitivity in comparison to the conventional paclitaxel-induced neuropathic pain model. This model not only recapitulates clinical biomarkers of neuropathy but also presents a potential alternative platform for screening analgesic drugs targeted at CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Anuj Mehta
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Chen Y, Zhang Y, Luo S, Yang X, Liu C, Zhang Q, Liu Y, Zhang X. Foldback-crRNA-Enhanced CRISPR/Cas13a System (FCECas13a) Enables Direct Detection of Ultrashort sncRNA. Anal Chem 2023; 95:15606-15613. [PMID: 37824705 DOI: 10.1021/acs.analchem.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The CRISPR/Cas13a system has promising applications in clinical small noncoding RNA (sncRNA) detection because it is free from the interference of genomic DNA. However, detecting ultrashort sncRNAs (less than 20 nucleotides) has been challenging because the Cas13a nuclease requires longer crRNA-target RNA hybrids to be activated. Here, we report the development of a foldback-crRNA-enhanced CRISPR/Cas13a (FCECas13a) system that overcomes the limitations of the current CRISPR/Cas13a system in detecting ultrashort sncRNAs. The FCECas13a system employs a 3'-terminal foldback crRNA that hybridizes with the target ultrashort sncRNA, forming a double strand that "tricks" the Cas13a nuclease into activating the HEPN structural domain and generating trans-cleavage activity. The FCECas13a system can accurately detect miRNA720 (a sncRNA currently known as tRNA-derived small RNA), which is only 17 nucleotides long and has a concentration as low as 15 fM within 20 min. This FCECas13a system opens new avenues for ultrashort sncRNA detection with significant implications for basic biological research, disease prognosis, and molecular diagnosis.
Collapse
Affiliation(s)
- Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yibin Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Siyuan Luo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Xinyao Yang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| |
Collapse
|
11
|
McCollum C, Courtney CM, O’Connor NJ, Aunins TR, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and Biodistribution of Nanoligomers Targeting the SARS-CoV-2 Genome for the Treatment of COVID-19. ACS Biomater Sci Eng 2023; 9:1656-1671. [PMID: 36853144 PMCID: PMC10000012 DOI: 10.1021/acsbiomaterials.2c00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen
R. McCollum
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Nolan J. O’Connor
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department
of Microbiology, New York University Langone, New York, New York 10016, United States
| | - Keegan L. Rogers
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| | - Anushree Chatterjee
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| |
Collapse
|
12
|
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int J Mol Sci 2023; 24:ijms24021232. [PMID: 36674746 PMCID: PMC9860923 DOI: 10.3390/ijms24021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.
Collapse
|
13
|
Sharma S, Borski C, Hanson J, Garcia MA, Link CD, Hoeffer C, Chatterjee A, Nagpal P. Identifying an Optimal Neuroinflammation Treatment Using a Nanoligomer Discovery Engine. ACS Chem Neurosci 2022; 13:3247-3256. [PMID: 36410860 DOI: 10.1021/acschemneuro.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1β or IL-1β, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κβ) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κβ (SB.201.17D.8_NF-κβ1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jessica Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| |
Collapse
|
14
|
Ceramella J, Iacopetta D, Sinicropi MS, Andreu I, Mariconda A, Saturnino C, Giuzio F, Longo P, Aquaro S, Catalano A. Drugs for COVID-19: An Update. Molecules 2022; 27:8562. [PMID: 36500655 PMCID: PMC9740261 DOI: 10.3390/molecules27238562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
15
|
Bokhari RS, Beheshti A, Blutt SE, Bowles DE, Brenner D, Britton R, Bronk L, Cao X, Chatterjee A, Clay DE, Courtney C, Fox DT, Gaber MW, Gerecht S, Grabham P, Grosshans D, Guan F, Jezuit EA, Kirsch DG, Liu Z, Maletic-Savatic M, Miller KM, Montague RA, Nagpal P, Osenberg S, Parkitny L, Pierce NA, Porada C, Rosenberg SM, Sargunas P, Sharma S, Spangler J, Tavakol DN, Thomas D, Vunjak-Novakovic G, Wang C, Whitcomb L, Young DW, Donoviel D. Looking on the horizon; potential and unique approaches to developing radiation countermeasures for deep space travel. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:105-112. [PMID: 36336356 DOI: 10.1016/j.lssr.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Future lunar missions and beyond will require new and innovative approaches to radiation countermeasures. The Translational Research Institute for Space Health (TRISH) is focused on identifying and supporting unique approaches to reduce risks to human health and performance on future missions beyond low Earth orbit. This paper will describe three funded and complementary avenues for reducing the risk to humans from radiation exposure experienced in deep space. The first focus is on identifying new therapeutic targets to reduce the damaging effects of radiation by focusing on high throughput genetic screens in accessible, sometimes called lower, organism models. The second focus is to design innovative approaches for countermeasure development with special attention to nucleotide-based methodologies that may constitute a more agile way to design therapeutics. The final focus is to develop new and innovative ways to test radiation countermeasures in a human model system. While animal studies continue to be beneficial in the study of space radiation, they can have imperfect translation to humans. The use of three-dimensional (3D) complex in vitro models is a promising approach to aid the development of new countermeasures and personalized assessments of radiation risks. These three distinct and unique approaches complement traditional space radiation efforts and should provide future space explorers with more options to safeguard their short and long-term health.
Collapse
Affiliation(s)
- Rihana S Bokhari
- Agile Decision Sciences, NRESS, Arlington, VA 22202, United States of America.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, United States of America; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States of America
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - David Brenner
- Columbia University, New York, NY, 10027, United States of America
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Lawrence Bronk
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Xu Cao
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Anushree Chatterjee
- Sachi Bioworks, Louisville, CO 80027, United States of America; University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Delisa E Clay
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | | | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Sharon Gerecht
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America; Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10027 United States of America
| | - David Grosshans
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Fada Guan
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Erin A Jezuit
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, United States of America
| | - Ruth A Montague
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Prashant Nagpal
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Sivan Osenberg
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Luke Parkitny
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America; Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, United States of America; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christopher Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America
| | - Paul Sargunas
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | - Sadhana Sharma
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Jamie Spangler
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | | | - Dilip Thomas
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | | | - Chunbo Wang
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - Luke Whitcomb
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Damian W Young
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dorit Donoviel
- Translational Research Institute for Space Health, Houston, TX 77030, United States of America; Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, United States of America.
| |
Collapse
|