1
|
Nakamura K, Di Caprio N, Burdick JA. Engineered Shape-Morphing Transitions in Hydrogels Through Suspension Bath Printing of Temperature-Responsive Granular Hydrogel Inks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410661. [PMID: 39358935 PMCID: PMC11588557 DOI: 10.1002/adma.202410661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Indexed: 10/04/2024]
Abstract
4D printing of hydrogels is an emerging technology used to fabricate shape-morphing soft materials that are responsive to external stimuli for use in soft robotics and biomedical applications. Soft materials are technically challenging to process with current 4D printing methods, which limits the design and actuation potential of printed structures. Here, a simple multi-material 4D printing technique is developed that combines dynamic temperature-responsive granular hydrogel inks based on hyaluronic acid, whose actuation is modulated via poly(N-isopropylacrylamide) crosslinker design, with granular suspension bath printing that provides structural support during and after the printing process. Granular hydrogels are easily extruded upon jamming due to their shear-thinning properties and their porous structure enables rapid actuation kinetics (i.e., seconds). Granular suspension baths support responsive ink deposition into complex patterns due to shear-yielding to fabricate multi-material objects that can be post-crosslinked to obtain anisotropic shape transformations. Dynamic actuation is explored by varying printing patterns and bath shapes, achieving complex shape transformations such as 'S'-shaped and hemisphere structures. Furthermore, stepwise actuation is programmed into multi-material structures by using microgels with varied transition temperatures. Overall, this approach offers a simple method to fabricate programmable soft actuators with rapid kinetics and precise control over shape morphing.
Collapse
Affiliation(s)
- Keisuke Nakamura
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Nikolas Di Caprio
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Jason A. Burdick
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303 USA
| |
Collapse
|
2
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Yang SR, Yeh YY, Yeh YC. Ultrasound-triggered hydrogel formation through thiol-norbornene reactions. Chem Commun (Camb) 2022; 58:1119-1122. [PMID: 34981088 DOI: 10.1039/d1cc04848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasound-initiated thiol-norbornene reaction has been applied to fabricate hydrogels, and the ultrasound conditions in determining the properties of hydrogels have been systematically investigated.
Collapse
Affiliation(s)
- Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ying-Yu Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ding Y, Zhang X, Xu B, Li W. Dendronized Gelatins Showing Both LCST and UCST-type Thermoresponsive Behavior. Polym Chem 2022. [DOI: 10.1039/d2py00118g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modification of natural polymers with stimuli-responsive synthetic moieties witnesses convergences of superior properties from natural polymers and stimuli-responsiveness to generate new intelligent materials. This was usally performed through synthetic polymers...
Collapse
|
6
|
Tasnim T, Adkins MD, Lim T, Feng H, Magda JJ, Shea JE, Agarwal J, Furse CM, Zhang H. Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomed Mater 2021; 16. [PMID: 34492645 DOI: 10.1088/1748-605x/ac246c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
Hydrogel crosslinking by external stimuli is a versatile strategy to control and modulate hydrogel properties. Besides photonic energy, thermal energy is one of the most accessible external stimuli and widely applicable for many biomedical applications. However, conventional thermal crosslinking systems require a relatively high temperature (over 100 °C) to initiate covalent bond formation. To our knowledge, there has not been a thermally tunable hydrogel crosslinking system suitable for biological applications. This work demonstrates a unique approach to utilize temperature sensitive liposomes to control and modulate hydrogel crosslinking over mild temperature range (below 50 °C). Temperature sensitive liposomes were used to control the release of chemical crosslinkers by moderate temperature changes. The thermally controlled crosslinker release resulted in tunable mechanical and transport properties of the hydrogel. No significant inflammable response observed in the histology results ensured the biocompatibility of the liposome-mediated crosslinkable hydrogel. This work opens new opportunities to implement thermal energy system for control and modulate hydrogel properties.
Collapse
Affiliation(s)
- Tasmia Tasnim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Michael D Adkins
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Taehwan Lim
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Haidong Feng
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jules J Magda
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Jill E Shea
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Jayant Agarwal
- Department of Surgery, The University of Utah, Salt Lake City, UT, United States of America
| | - Cynthia M Furse
- Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT, United States of America
| | - Huanan Zhang
- Department of Chemical Engineering, The University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
7
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Dadoo N, Landry SB, Bomar JD, Gramlich WM. Synthesis and Spatiotemporal Modification of Biocompatible and Stimuli-Responsive Carboxymethyl Cellulose Hydrogels Using Thiol-Norbornene Chemistry. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Nayereh Dadoo
- Department of Chemistry; University of Maine; 5706 Aubert Hall Room 154 Orono ME 04469-5706 USA
| | - Samuel B. Landry
- Department of Chemical and Biological Engineering; University of Maine; 5737 Jenness Hall Room 117 Orono ME 04469-5737 USA
| | - Jonathan D. Bomar
- Graduate School of Biomedical Science and Engineering; University of Maine; Orono ME 04469 USA
| | - William M. Gramlich
- Department of Chemistry; University of Maine; 5706 Aubert Hall Room 154 Orono ME 04469-5706 USA
- Graduate School of Biomedical Science and Engineering; University of Maine; Orono ME 04469 USA
| |
Collapse
|