1
|
Sun J, Song S. Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2024; 28:44. [PMID: 39781566 PMCID: PMC11709447 DOI: 10.1007/s10404-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing in vitro BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.
Collapse
Affiliation(s)
- Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, and BIO5 Institute, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| |
Collapse
|
2
|
Moyer J, Wilson MW, Sorrentino TA, Santandreu A, Chen C, Hu D, Kerdok A, Porock E, Wright N, Ly J, Blaha C, Frassetto LA, Fissell WH, Vartanian SM, Roy S. Renal Embolization-Induced Uremic Swine Model for Assessment of Next-Generation Implantable Hemodialyzers. Toxins (Basel) 2023; 15:547. [PMID: 37755973 PMCID: PMC10536310 DOI: 10.3390/toxins15090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Reliable models of renal failure in large animals are critical to the successful translation of the next generation of renal replacement therapies (RRT) into humans. While models exist for the induction of renal failure, none are optimized for the implantation of devices to the retroperitoneal vasculature. We successfully piloted an embolization-to-implantation protocol enabling the first implant of a silicon nanopore membrane hemodialyzer (SNMHD) in a swine renal failure model. Renal arterial embolization is a non-invasive approach to near-total nephrectomy that preserves retroperitoneal anatomy for device implants. Silicon nanopore membranes (SNM) are efficient blood-compatible membranes that enable novel approaches to RRT. Yucatan minipigs underwent staged bilateral renal arterial embolization to induce renal failure, managed by intermittent hemodialysis. A small-scale arteriovenous SNMHD prototype was implanted into the retroperitoneum. Dialysate catheters were tunneled externally for connection to a dialysate recirculation pump. SNMHD clearance was determined by intermittent sampling of recirculating dialysate. Creatinine and urea clearance through the SNMHD were 76-105 mL/min/m2 and 140-165 mL/min/m2, respectively, without albumin leakage. Normalized creatinine and urea clearance measured in the SNMHD may translate to a fully implantable clinical-scale device. This pilot study establishes a path toward therapeutic testing of the clinical-scale SNMHD and other implantable RRT devices.
Collapse
Affiliation(s)
- Jarrett Moyer
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Mark W. Wilson
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Thomas A. Sorrentino
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Ana Santandreu
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Caressa Chen
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Dean Hu
- Outset Medical, San Jose, CA 95134, USA
| | | | - Edward Porock
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Nathan Wright
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Jimmy Ly
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Charles Blaha
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Lynda A. Frassetto
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - William H. Fissell
- Silicon Kidney, San Ramon, CA 94583, USA
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shant M. Vartanian
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Shuvo Roy
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| |
Collapse
|
3
|
Li H, Shang Y, Feng Q, Liu Y, Chen J, Dong H. A novel bioartificial pancreas fabricated via islets microencapsulation in anti-adhesive core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Bioact Mater 2023; 27:362-376. [PMID: 37180642 PMCID: PMC10172916 DOI: 10.1016/j.bioactmat.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Islets transplantation is a promising treatment for type 1 diabetes mellitus. However, severe host immune rejection and poor oxygen/nutrients supply due to the lack of surrounding capillary network often lead to transplantation failure. Herein, a novel bioartificial pancreas is constructed via islets microencapsulation in core-shell microgels and macroencapsulation in a hydrogel scaffold prevascularized in vivo. Specifically, a hydrogel scaffold containing methacrylated gelatin (GelMA), methacrylated heparin (HepMA) and vascular endothelial growth factor (VEGF) is fabricated, which can delivery VEGF in a sustained style and thus induce subcutaneous angiogenesis. In addition, islets-laden core-shell microgels using methacrylated hyaluronic acid (HAMA) as microgel core and poly(ethylene glycol) diacrylate (PEGDA)/carboxybetaine methacrylate (CBMA) as shell layer are prepared, which provide a favorable microenvironment for islets and simultaneously the inhibition of host immune rejection via anti-adhesion of proteins and immunocytes. As a result of the synergistic effect between anti-adhesive core-shell microgels and prevascularized hydrogel scaffold, the bioartificial pancreas can reverse the blood glucose levels of diabetic mice from hyperglycemia to normoglycemia for at least 90 days. We believe this bioartificial pancreas and relevant fabrication method provide a new strategy to treat type 1 diabetes, and also has broad potential applications in other cell therapies.
Collapse
Affiliation(s)
- Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yulian Shang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yang Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Santandreu AG, Taheri‐Tehrani P, Feinberg B, Torres A, Blaha C, Shaheen R, Moyer J, Wright N, Szot GL, Fissell WH, Vartanian S, Posselt A, Roy S. Characterization of human islet function in a convection-driven intravascular bioartificial pancreas. Bioeng Transl Med 2023; 8:e10444. [PMID: 36925691 PMCID: PMC10013798 DOI: 10.1002/btm2.10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 10/30/2022] [Indexed: 12/23/2022] Open
Abstract
Clinical islet transplantation for treatment of type 1 diabetes (T1D) is limited by the shortage of pancreas donors and need for lifelong immunosuppressive therapy. A convection-driven intravascular bioartificial pancreas (iBAP) based on highly permeable, yet immunologically protective, silicon nanopore membranes (SNM) holds promise to sustain islet function without the need for immunosuppressants. Here, we investigate short-term functionality of encapsulated human islets in an iBAP prototype. Using the finite element method (FEM), we calculated predicted oxygen profiles within islet scaffolds at normalized perifusion rates of 14-200 nl/min/IEQ. The modeling showed the need for minimum in vitro and in vivo islet perifusion rates of 28 and 100 nl/min/IEQ, respectively to support metabolic insulin production requirements in the iBAP. In vitro glucose-stimulated insulin secretion (GSIS) profiles revealed a first-phase response time of <15 min and comparable insulin production rates to standard perifusion systems (~10 pg/min/IEQ) for perifusion rates of 100-200 nl/min/IEQ. An intravenous glucose tolerance test (IVGTT), performed at a perifusion rate of 100-170 nl/min/IEQ in a non-diabetic pig, demonstrated a clinically relevant C-peptide production rate (1.0-2.8 pg/min/IEQ) with a response time of <5 min.
Collapse
Affiliation(s)
- Ana G. Santandreu
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Parsa Taheri‐Tehrani
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Benjamin Feinberg
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Alonso Torres
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Charles Blaha
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| | - Rebecca Shaheen
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Jarrett Moyer
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Nathan Wright
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| | - Gregory L. Szot
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - William H. Fissell
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
- Division of Nephrology and HypertensionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shant Vartanian
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Andrew Posselt
- Department of SurgeryUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
- Silicon Kidney LLCSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Moazenchi M, Sadr Hashemi Nejad A, Izadi M, Khalaj M, Samsonchi Z, Tavakol Rad P, Amini P, Tahamtani Y, Hajizadeh-Saffar E. Comparative Study of The Effects of Confounding Factors on Improving Rat Pancreatic Islet Isolation Yield and Quality. CELL JOURNAL 2022; 24:491-499. [PMID: 36274201 PMCID: PMC9588161 DOI: 10.22074/cellj.2022.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Isolated pancreatic islets are valuable resources for a wide range of research, including cell replacement studies and cell-based platforms for diabetes drug discovery and disease modeling. Islet isolation is a complex and stepwise procedure aiming to obtain pure, viable, and functional islets for in vitro and in vivo studies. It should be noted that differences in rodent strains, gender, weight, and density gradients may affect the isolated islet's properties. We evaluated the variables affecting the rat islet isolation procedure to reach the maximum islet yield and functionality, which would be critical for further studies on islet regenerative biology. MATERIALS AND METHODS The present experimental study compared the yield and purity of isolated islets from nondiabetic rats of two different strains. Next, islet particle number (IPN) and islet equivalent (IEQ) were compared between males and females, and the weight range that yields the highest number of islets was investigated. Moreover, the influence of three different density gradients, namely Histopaque, Pancoll, and Lymphodex, on final isolated islets purity and yield were assessed. Finally, the viability and functionality of isolated islets were measured. RESULTS The IEQ, IPN, and purity of isolated islets in 15 Lister hooded rats (LHRs) were significantly (P≤0.05) higher than those of the other strains. Male LHRs resulted in significantly higher IEQ compared to females (P≤0.05). Moreover, IPN and IEQ did not significantly vary among different weight groups. Also, the utilization of Histopaque and Pancoll leads to higher yield and purity. In vivo assessments of the isolated islets presented significantly reduced blood glucose percentage in the transplanted group on days 2-5 following transplantation. CONCLUSION Based on these results, an optimal protocol for isolating high-quality rat islets with a constant yield, purity, and function has been established as an essential platform for developing diabetes research.
Collapse
Affiliation(s)
- Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute
for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute
for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmoud Izadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute
for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Khalaj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Pouya Tavakol Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Payam Amini
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute
for Stem Cell Biology and Technology, ACECR, Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran,P.O.Box: 16635-148Department of Regenerative MedicineCell Science Research CenterRoyan Institute for Stem Cell
Biology and TechnologyACECRTehranIran
| |
Collapse
|
6
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW There is considerable interest in using macroencapsulation devices as a delivery strategy for transplanting insulin-producing cells. This review aims to summarize recent advances, to highlight remaining challenges, and to provide recommendations for the field. RECENT FINDINGS A variety of new device designs have been reported to improve biocompatibility and to provide protection for islet/beta cells from immune destruction while allowing continuous secretion of insulin. Some of these new approaches are in clinical trials, but more research is needed to determine how sufficient beta-cell mass can be transplanted in a clinically applicable device size, and that insulin is secreted with kinetics that will safely provide adequate controls of glucose levels. Macroencapsulation is a potential solution to transplant beta cells without immunosuppression in diabetes patients, but new strategies must be developed to show that this approach is feasible.
Collapse
Affiliation(s)
- Albert J Hwa
- Joslin Diabetes Center, 1 Joslin Pl, Boston, MA, 02215, USA.
| | - Gordon C Weir
- Joslin Diabetes Center, 1 Joslin Pl, Boston, MA, 02215, USA
| |
Collapse
|