1
|
Mullick P, Das G, Aiyagari R. 2-Dodecylmalonic acid-mediated synthesis of mineralized hydroxyapatite amicable for bone cell growth on orthopaedic implant. J Colloid Interface Sci 2021; 608:2298-2309. [PMID: 34772501 DOI: 10.1016/j.jcis.2021.10.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
The present study illustrates the use of 2-dodecylmalonic acid (MA) as a template in biomineralization-inspired synthesis of hydroxyapatite nanoparticles (HANPs). HANPs synthesized in presence of various concentrations of MA displayed varying particle size and shape. The smallest particle size (22-27 nm) was obtained for MA2-HANP synthesized in presence of 37 µM MA. The critical micelle concentration (CMC) for MA at pH 9.0 relevant for mineralization was ∼35 µM. AFM analysis revealed that at a low concentration of 10 µM and pH 9.0, MA could generate oblong-shaped aggregates. At 40 µM, comparable to the concentration used to generate MA2-HANP, the amphiphile self-assembled to form a spherical soft scaffold, which likely regulated spatial confinement of ions during mineralization and generated small size HANPs. Osteoblast-like MG-63 cells seeded on titanium wire (TW) coated with MA2-HANP-incorporated collagen type I (H-TW) displayed enhanced cell proliferation, high expression of osteogenic differentiation marker genes (Col I, ALP, OCN and Runx2) and copious calcium mineral deposition after 14 days of growth. The nuanced role of the self-assembly process of an amphiphilic template in HANP mineralization unravelled in the present study can guide future scaffold design for biomineralization-inspired synthesis of HANPs tailored for bone tissue engineering applications.
Collapse
Affiliation(s)
- Priya Mullick
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Ramesh Aiyagari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Mullick P, Das G, Aiyagari R. Probiotic bacteria cell surface-associated protein mineralized hydroxyapatite incorporated in porous scaffold: In vitro evaluation for bone cell growth and differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112101. [PMID: 34082927 DOI: 10.1016/j.msec.2021.112101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
There is a high demand for synthesis of biocompatible hydroxyapatite nanoparticle (HANP), which is a key component in bone tissue engineering scaffolds. The present study describes a facile route of HANP synthesis through mineralization of the cell surface-associated protein (CSP) from the human probiotic lactic acid bacteria (LAB) Lactobacillus rhamnosus GG. CSP extract from the LAB (consisting of ~66 kDa, ~47 kDa, ~40 kDa and ~25 kDa protein) was mineralized to yield spindle-shaped HANPs having an average particle length of 371 nm as evidenced in FETEM analysis. CSP-mineralized HANPs (CSP-HANPs) were characterized by FTIR and BET analysis, while XRD and SAED analysis indicated their crystalline nature. Mechanistic studies suggested the key role of ~25 kDa CSP (F4SP) in mineralization. In contrast to CSP-HANPs, F4SP-mineralized crystalline HA was plate-shaped having an average length of 1.68 μm and breadth of 0.95 μm. HANP mineralization at the whole-cell (WC) level resulted in clusters of aggregated HANPs (WC-HANPs) adhering onto L. rhamnosus GG cells as evident in FETEM, FESEM and AFM analysis. FETEM analysis revealed that the desorbed WC-HANPs recovered by cell lysis were needle-shaped, with a particle size distribution of 70-110 nm. Given that CSP-HANPs were non-toxic to cultured HEK 293 cells and osteoblast-like MG-63 cells, chitosan-gelatin (CG) scaffold incorporated with 15% w/v CSP-HANP (H-CG) was generated and tested for bone cell growth. H-CG exhibited a favorable pore size distribution (160-230 μm), overall porosity (~84%) and biodegradation profile. H-CG scaffold was conducive to osteogenesis and rendered enhanced proliferation, alkaline phosphatase (ALP) activity, calcium mineralization and heightened marker gene expression (ALP, Col I, Runx2 and OCN) in seeded MG-63 cells. CSP sourced from a safe probiotic LAB is thus a viable and effective mineralization template for synthesis of biocompatible HANPs that can be leveraged for bone tissue engineering applications.
Collapse
Affiliation(s)
- Priya Mullick
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Ramesh Aiyagari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Tytgat L, Dobos A, Markovic M, Van Damme L, Van Hoorick J, Bray F, Thienpont H, Ottevaere H, Dubruel P, Ovsianikov A, Van Vlierberghe S. High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue Engineering Applications. Biomacromolecules 2020; 21:3997-4007. [PMID: 32841006 PMCID: PMC7556543 DOI: 10.1021/acs.biomac.0c00386] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Agnes Dobos
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Marica Markovic
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Lana Van Damme
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation
pour l’Analyse, la Synthèse et la Protéomique,
USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, 59650 France
| | - Hugo Thienpont
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Dubruel
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Aleksandr Ovsianikov
- 3D Printing
and Biofabrication Group, Institute of Materials
Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Austrian
Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Sandra Van Vlierberghe
- Brussels
Photonics (B-PHOT) − Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
- Polymer
Chemistry & Biomaterials Group − Centre of Macromolecular
Chemistry (CMaC) − Department of Organic and Macromolecular
Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Tytgat L, Markovic M, Qazi TH, Vagenende M, Bray F, Martins JC, Rolando C, Thienpont H, Ottevaere H, Ovsianikov A, Dubruel P, Van Vlierberghe S. Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. J Mater Chem B 2020; 7:3100-3108. [PMID: 31441462 DOI: 10.1039/c8tb03308k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.
Collapse
Affiliation(s)
- Liesbeth Tytgat
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Marica Markovic
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maxime Vagenende
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Fabrice Bray
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - José C Martins
- NMR and Structure Analysis Unit - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, USR 3290 Centre National de la Recherche Scientifique, University of Lille, Villeneuve d'Ascq, France
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium and Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Kara A, Gunes OC, Albayrak AZ, Bilici G, Erbil G, Havitcioglu H. Fish scale/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous composite scaffolds for bone regeneration. J Biomater Appl 2020; 34:1201-1215. [DOI: 10.1177/0885328220901987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Aylin Kara
- Biotechnology and Bioengineering Program, The Graduate School of Engineerıng & Sciences, Izmir Institute of Technology, Izmir, Turkey
| | - Oylum C Gunes
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Aylin Z Albayrak
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Gokcen Bilici
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Guven Erbil
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hasan Havitcioglu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
6
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
7
|
Pawelec KM, Yoon C, Giger RJ, Sakamoto J. Engineering a platform for nerve regeneration with direct application to nerve repair technology. Biomaterials 2019; 216:119263. [PMID: 31220794 DOI: 10.1016/j.biomaterials.2019.119263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
The development of effective treatment options for repair of peripheral nerves is complicated by lack of knowledge concerning the interactions between cells and implants. A promising device, the multichannel scaffold, incorporates microporous channels, aligning glia and directing axonal growth across a nerve gap. To enhance clinical outcomes of nerve repair, a platform, representative of current implant technology, was engineered which 1) recapitulated key device features (porosity and linearity) and 2) demonstrated remyelination of adult neurons. The in vitro platform began with the study of Schwann cells on porous polycaprolactone (PCL) and poly(lactide co-glycolide) (PLGA) substrates. Surface roughness determined glial cell attachment, and an additional layer of topography, 40 μm linear features, aligned Schwann cells and axons. In addition, direct co-culture of sensory neurons with Schwann cells significantly increased neurite outgrowth, compared to neurons cultured alone (naive or pre-conditioned). In contrast to the control substrate (glass), on porous PCL substrates, Schwann cells differentiated into a mature myelinating phenotype, expressing Oct-6, MPZ and MBP. The direct applicability of this platform to nerve implants, including its response to physiological cues, allows for optimization of cell-material interactions, close observation of the regeneration process, and the study of therapeutics, necessary to advance peripheral nerve repair technology.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA
| | - C Yoon
- University of Michigan, Department of Cell and Developmental Biology, Ann Arbor, MI, 48109, USA
| | - R J Giger
- University of Michigan, Department of Cell and Developmental Biology, Ann Arbor, MI, 48109, USA
| | - J Sakamoto
- University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Morejón L, Delgado JA, Antunes Ribeiro A, Varella de Oliveira M, Mendizábal E, García I, Alfonso A, Poh P, van Griensven M, Balmayor ER. Development, Characterization and In Vitro Biological Properties of Scaffolds Fabricated From Calcium Phosphate Nanoparticles. Int J Mol Sci 2019; 20:E1790. [PMID: 30978933 PMCID: PMC6480082 DOI: 10.3390/ijms20071790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023] Open
Abstract
Ceramic materials mimic the mineral composition of native bone and feature osteoconductive properties; they are therefore used to regenerate bone tissue. Much research focuses on increasing the porosity and pore interconnectivity of ceramic scaffolds to increase osteoconductivity, cell migration and cell-cell interaction. We aimed to fabricate biocompatible 3D-scaffolds featuring macro- and microporous calcium phosphates with high pore interconnection. Nanoparticles of hydroxyapatite (HA) and calcium deficient hydroxyapatite (CDHA) were synthesized by wet chemical precipitation. Scaffolds were produced from them by the replication polymeric foam technique. Solid content and sintering temperature were varied. Nanoparticles and scaffolds were characterized regarding morphology, chemical and mineral composition, porosity and mechanical properties. Biocompatibility, cell attachment and distribution were evaluated in vitro with human adipose mesenchymal stem cells. Scaffolds with total porosity of 71%-87%, pores in the range of 280-550 µm and connectivity density up to 43 mm-3 were obtained. Smaller pore sizes were obtained at higher sintering temperature. High solid content resulted in a decrease of total porosity but increased interconnectivity. Scaffolds 50HA/50β-TCP featured superior interconnectivity and mechanical properties. They were bioactive and biocompatible. High HA solid content (40 wt.%) in the HA pure scaffolds was negative for cell viability and proliferation, while in the 50HA/50β-TCP composite scaffolds it resulted more biocompatible.
Collapse
Affiliation(s)
- Lizette Morejón
- Center of Biomaterials, University of Havana, Havan 10400, Cuba.
| | | | | | | | | | - Ibrahim García
- Center of Biomaterials, University of Havana, Havan 10400, Cuba.
| | - Adrián Alfonso
- Center of Biomaterials, University of Havana, Havan 10400, Cuba.
| | - Patrina Poh
- Experimental Trauma Surgery, Dept. Trauma Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Dept. Trauma Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Dept. Trauma Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| |
Collapse
|
9
|
Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. MINERALS 2019. [DOI: 10.3390/min9020068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomineralization is a process in which organic matter and inorganic matter combine with each other under the regulation of living organisms. Because of the biomineralization-induced super survivability and retentivity, biomineralization has attracted special attention from biologists, archaeologists, chemists, and materials scientists for its tracer and transformation effect in rock evolution study and nanomaterials synthesis. However, controlling the biomineralization process in vitro as precisely as intricate biology systems still remains a challenge. In this review, the regulating roles of temperature, pH, and organics in biominerals forming process were reviewed. The artificially introducing and utilization of biomineralization, the bio-inspired synthesis of nanomaterials, in biomedical fields was further discussed, mainly in five potential fields: drug and cell-therapy engineering, cancer/tumor target engineering, bone tissue engineering, and other advanced biomedical engineering. This review might help other interdisciplinary researchers to bionic-manufacture biominerals in molecular-level for developing more applications of biomineralization.
Collapse
|
10
|
Pajovich HT, Banerjee IA. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration. J Funct Biomater 2017; 8:E41. [PMID: 29036882 PMCID: PMC5618292 DOI: 10.3390/jfb8030041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Fucoidan (Fuc), a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel) were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc-Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN) derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc-Gel-MTN assemblies were incubated in simulated body fluid (SBF) to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp). The formed Fuc-Gel-MTN-beta-TCP/HAP scaffolds were found to display an average Young's Modulus value of 0.32 GPa (n = 5) with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc-Gel-MTN-beta-TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering.
Collapse
Affiliation(s)
- Harrison T Pajovich
- Department of Chemistry, Fordham University, 441 E Fordham Rd, Bronx, NY 10458, USA.
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 E Fordham Rd, Bronx, NY 10458, USA.
| |
Collapse
|