1
|
Wu S, Liao K, Chen J, Li F. Dual approach: micellar delivery of chlorambucil prodrug with concurrent glutathione depletion and GST inhibition for enhanced anticancer activity. NANOTECHNOLOGY 2024; 35:345601. [PMID: 38788695 DOI: 10.1088/1361-6528/ad501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Although chlorambucil (CHL) is a long-established anticancer drug, the drug failure of CHL, mediated by the intracellular defense system consisting of glutathione (GSH) and GSH S-transferase pi (GST-pi), has significantly limited the application of CHL. To overcome this issue, we first designed a GSH-responsive small-molecule prodrug (EA-SS-CHL) by combining CHL and ethacrynic acid (EA). Subsequently, drug-loaded nanoparticles (ECPP) were formed by the self-assembly between EA-SS-CHL and amphiphilic PEG-PDLLA to improve the water solubility of the prodrug and its ability to target tumor sites. Upon exposure to high intracellular GSH concentration, EA-SS-CHL gradually degrades, leading to the release of EA and CHL. The presence of EA facilitates the depletion of GSH and inhibition of GST-pi, ultimately attenuating the detoxification of the intracellular defense system to CHL. Cytotoxicity studies and apoptosis assays demonstrate that ECPP exhibits higher therapeutic efficiency than CHL. Additionally,in vivotumor suppression effects and biocompatibility provide further evidence for the superiority of ECPP. This work presents a promising strategy to enhance the efficacy of CHL in cancer therapy.
Collapse
Affiliation(s)
- Shaojie Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Kuofei Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiamin Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
2
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Kong X, He Z, Zhang Y, Fang Y, Liu D, Wu H, Ji J, Xi Y, Ye L, Yang X, Zhai G. Intelligent Self-amplifying Ferroptosis-inducible nanoplatform for enhanced tumor microenvironment reconstruction and combination therapy. CHEMICAL ENGINEERING JOURNAL 2023; 468:143729. [DOI: 10.1016/j.cej.2023.143729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Wu H, Liu L, Ma M, Zhang Y. Modulation of blood-brain tumor barrier for delivery of magnetic hyperthermia to brain cancer. J Control Release 2023; 355:248-258. [PMID: 36736432 DOI: 10.1016/j.jconrel.2023.01.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is the most invasive brain tumor and remains lack of effective treatment. The existence of blood-brain tumor barrier (BBTB) constitutes the greatest barrier to non-invasive delivery of therapeutic agents to tumors in the brain. Here, we propose a novel approach to specifically modulate BBTB and deliver magnetic hyperthermia in a systemic delivery mode for the treatment of GBM. BBTB modulation is achieved by targeted delivering fingolimod to brain tumor region via dual redox responsive PCL-SeSe-PEG (poly (ε-caprolactone)-diselenium-poly (ethylene glycol)) polymeric nanocarrier. As an antagonist of sphingosine 1-phosphate receptor-1 (S1P1), fingolimod potently inhibits the barrier function of BBB by blocking the binding of sphingosine 1-phosphate (S1P) to S1P1 in endothelial cells. We found that the modulated BBTB showed slight expression level of tight junction proteins, allowing efficient accumulation of zinc- and cobalt- doped iron oxide nanoclusters (ZnCoFe NCs) with enhanced magnetothermal conversion efficiency into tumor tissues through the paracellular pathway. As a result, the co-delivery of heat shock protein 70 inhibitor VER-155008 with ZnCoFe NCs could realize synergistic magnetic hyperthermia effects upon exposure to an alternating current magnetic field (ACMF) in both GL261 and U87 brain tumor models. This modulation approach brings new ideas for the treatment of central nervous system diseases that require delivery of therapeutic agents across the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Haoan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226000, PR China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
5
|
Nanomodulation and nanotherapeutics of tumor-microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Cao H, Lu Q, Wei H, Zhang S. Phosphorylcholine zwitterionic shell-detachable mixed micelles for enhanced cancerous cellular uptakes and increased DOX release. J Mater Chem B 2022; 10:5624-5632. [PMID: 35815797 DOI: 10.1039/d2tb01061e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To further enhance the cancerous cellular uptakes and increase the drug release of the drug loaded micelles, herein, we fabricated a series of mixed micelles with different mass ratios using two amphiphilic copolymers P(DMAEMA-co-MaPCL) and PCL-SS-PMPC. The mixed micelles showed a prolonged circulation time due to the zwitterionic shells in a physiological environment (pH 7.4). In addition, because of the protonation of tertiary amine groups in PDMAEMA and the breakage of the disulfide bond in PMPC-SS-PCL in a tumor microenvironment, the mixed micelles aggregated, which led to enhanced cancerous cellular penetration and increased DOX release. Moreover, cytotoxicity assay showed that the mixed micelles had good biocompatibility to L929, HeLa and MCF-7 cells, even at a concentration of up to 1 mg mL-1. Furthermore, enhanced antitumour activity and cellular uptake of HeLa and MCF-7 cells were detected after loading with DOX, which was determined by confocal laser scanning microscopy (CLSM) and flow cytometry (FC), especially for the DOX@MIX 3 micelles (20% mass ratio of the P(DMAEMA-co-MaPCL)). Therefore, the mixed strategy provides a simple and efficient ways to promote anticancer drug delivery.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| |
Collapse
|
7
|
ZLM-7 Blocks Breast Cancer Progression by Inhibiting MDM2 via Upregulation of 14-3-3 Sigma. Pharmaceuticals (Basel) 2022; 15:ph15070874. [PMID: 35890172 PMCID: PMC9321038 DOI: 10.3390/ph15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.
Collapse
|
8
|
Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. Int J Pharm 2022; 619:121716. [PMID: 35367586 DOI: 10.1016/j.ijpharm.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.
Collapse
Affiliation(s)
- Lijing Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyuan Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Wei Feng Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Zhu D, Li Y, Zhang Z, Xue Z, Hua Z, Luo X, Zhao T, Lu C, Liu Y. Recent advances of nanotechnology-based tumor vessel-targeting strategies. J Nanobiotechnology 2021; 19:435. [PMID: 34930293 PMCID: PMC8686559 DOI: 10.1186/s12951-021-01190-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects. ![]()
Collapse
Affiliation(s)
- Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021; 338:367-393. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The two major challenges in cancer treatment include lack of early detection and ineffective therapies with various side effects. Angiogenesis is the key process in the growth, survival, invasiveness, and metastasis of many of cancerous tumors. Imaging of the angiogenesis could lead to diagnosis of tumors in the early stage and evaluation of the therapeutic responses. Angiogenic blood vessels express specific molecular markers different from normal blood vessels (in level or kind). This fact would make the tumor vasculature a suitable site to target therapeutics and imaging agents within the tumor. Surface modified nanoparticles using peptide ligands with high binding affinity to the vasculature markers, provide efficient delivery of therapeutic and imaging agents, while avoiding undesirable side effects. In this review, we discuss discoveries of various tumor targeting peptides useful for tumor angiogenesis imaging and targeted therapy with emphasis on surface modified nanomedicines using vasculature targeting peptides.
Collapse
Affiliation(s)
- Elham Seyyednia
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
12
|
Zhao D, Huang X, Zhang Z, Ding J, Cui Y, Chen X. Engineered nanomedicines for tumor vasculature blockade therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1691. [PMID: 33480163 DOI: 10.1002/wnan.1691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Tumor vasculature blockade therapy (TVBT), including angiogenesis inhibition, vascular disruption, and vascular infarction, provides a promising treatment modality for solid tumors. However, low selectivity, drug resistance, and possible severe side effects have limited the clinical transformation of TVBT. Engineered nanoparticles offer potential solutions, including prolonged circulation time, targeted transportation, and controlled release of TVBT agents. Moreover, engineered nanomedicines provide a promising combination platform of TVBT with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, ultrasound therapy, and gene therapy. In this article, we offer a comprehensive summary of the current progress of engineered nanomedicines for TVBT and also discuss current deficiencies and future directions for TVBT development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xu Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
13
|
Hao Y, Chen Y, He X, Yu Y, Han R, Li Y, Yang C, Hu D, Qian Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001853. [PMID: 33101874 PMCID: PMC7578901 DOI: 10.1002/advs.202001853] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Indexed: 02/05/2023]
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) has promising potential in the synergistic treatment of cancer. However, chemotherapy and photodynamic synergistic therapy are impeded by uncontrolled chemotherapeutics release behavior, targeting deficiencies, and hypoxia-associated poor PDT efficacy in solid tumors. Here, a platinum nanozyme (PtNP) loaded reactive oxygen species (ROS)-responsive prodrug nanoparticle (CPT-TK-HPPH/Pt NP) is created to overcome these limitations. The ROS-responsive prodrug consists of a thioketal bond linked with camptothecin (CPT) and photosensitizer-2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH). The PtNP in CPT-TK-HPPH/Pt NP can efficiently catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen to relieve hypoxia. The production of oxygen can satisfy the consumption of HPPH under 660 nm laser irradiation to attain the on-demand release of CPT and ensure enhanced photodynamic therapy. As a tumor diagnosis agent, the results of photoacoustic imaging and fluorescence imaging for CPT-TK-HPPH/Pt NP exhibit desirable long circulation and enhanced in vivo targeting. CPT-TK-HPPH/Pt NPs effectively inhibit tumor proliferation and growth in vitro and in vivo. CPT-TK-HPPH/Pt NP, with its excellent ROS-responsive drug release behavior and enhanced PDT efficiency can serve as a new cancer theranostic agent, and will further promote the research of chemophotodynamic synergistic cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yongyang Yu
- Department of Gastrointestinal SurgeryWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| |
Collapse
|
14
|
Hao Y, Chen Y, He X, Yang F, Han R, Yang C, Li W, Qian Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 2020; 5:542-552. [PMID: 32346657 PMCID: PMC7176747 DOI: 10.1016/j.bioactmat.2020.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence of skin cancer is rising along with the rapid population aging in recent years. Traditional therapies, such as surgical treatment, radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, may accompany serious side effects, limiting their clinical benefits. According to the biological characteristics of skin cancer, we have already established two kinds of synergetic systems of photothermal therapy (microneedle) and chemotherapy, containing gold nanorods (GNR). Although the microneedle system exhibited great potential for skin cancer treatment, the system could be still improved further. So, we designed a near-infrared light-responsive 5-fluorouracil (5-Fu) and indocyanine green (ICG) loaded monomethoxy-poly (ethylene glycol)-polycaprolactone (MPEG-PCL) nanoparticle (5-Fu-ICG-MPEG-PCL), and then 5-Fu-ICG-MPEG-PCL was integrated with a hyaluronic acid dissolvable microneedle system (HA MN) to get 5-Fu-ICG-MPEG-PCL loaded HA MN for treating skin cancers, including human epidermoid cancer and melanoma. In this system, hyaluronic acid, the microneedle carrier, possesses good skin penetration ability and is approved by FDA as a pharmaceutical adjuvant; 5-Fu is recommended by FDA for skin cancer treatment; ICG, a photothermal agent, possesses a strong photothermal ability and is approved by FDA for its use in the human body. We hypothesized that 5-Fu-ICG-MPEG-PCL could be delivered by the dissolvable microneedle through the skin, and the release behavior of the drug in the nanoparticle could be controlled by near-infrared light for achieving a single-dose cure of skin cancer, improving the cure rate of skin cancer and providing a new idea and possibility for the clinical treatment of skin cancer.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - YuWen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - XinLong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - RuXia Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - ChengLi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Wei Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
15
|
Karatoprak GŞ, Küpeli Akkol E, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications. Molecules 2020; 25:E2560. [PMID: 32486408 PMCID: PMC7321081 DOI: 10.3390/molecules25112560] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Combretastatins are a class of closely related stilbenes (combretastatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C) and macrocyclic lactones (combretastatins D) found in the bark of Combretum caffrum (Eckl. & Zeyh.) Kuntze, commonly known as the South African bush willow. Some of the compounds in this series have been shown to be among the most potent antitubulin agents known. Due to their structural simplicity many analogs have also been synthesized. Combretastatin A4 phosphate is the most frequently tested compounds in preclinical and clinical trials. It is a water-soluble prodrug that the body can rapidly metabolize to combretastatin A4, which exhibits anti-tumor properties. In addition, in vitro and in vivo studies on combretastatins have determined that these compounds also have antioxidant, anti-inflammatory and antimicrobial effects. Nano-based formulations of natural or synthetic active agents such as combretastatin A4 phosphate exhibit several clear advantages, including improved low water solubility, prolonged circulation, drug targeting properties, enhanced efficiency, as well as fewer side effects. In this review, a synopsis of the recent literature exploring the combretastatins, their potential effects and nanoformulations as lead compounds in clinical applications is provided.
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey;
| | - Hilal Bardakcı
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B 2020; 8:2990-3004. [PMID: 32211649 DOI: 10.1039/c9tb02957e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anti-vascular agents (AVAs) are a class of promising therapeutic agents with tumor vasculature targeting properties, which can be divided into two types: anti-angiogenic agents (AAAs, inhibit angiogenesis factors) and vascular disrupting agents (VDAs, disrupt established tumor vasculature). AVAs exhibit an enhanced anti-cancer effect by cutting off the oxygen and nutrition supplement channels of tumors. However, the intrinsic drawbacks, such as poor hydrophilicity, undesirable membrane permeability and inferior tumor targeting ability, discount their anti-vascular efficacy. Fortunately, the development of nanotechnology has brought an opportunity for efficient delivery of AVAs to tumour sites with great therapeutic efficacy. The works summarized in this review will provide an understanding of recent advances of anti-vascular nano agents (AVNAs) with a goal to define the mechanism of anti-vascular-based cancer therapy and discuss the challenges and opportunities of AVNAs for clinical translation.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | | | | | | | | |
Collapse
|
17
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z, Chen X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900327. [PMID: 31380170 PMCID: PMC6662090 DOI: 10.1002/advs.201900327] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Indexed: 05/16/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential for cancer treatment. Poly(l-glutamic acid)-combretastatin A4 conjugate (PLG-CA4) is a novel class of VDAs. Though it has notable antitumor activity, it can induce host immune responses that promote tumor growth. Here, PLG-CA4 induces the polarization of tumor-associated macrophages (TAMs) toward the M2-like phenotype in 4T1 metastatic breast cancer (Control 30% vs PLG-CA4 53%; p < 0.05). Compared to the monotherapy of PLG-CA4, inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) attenuates the immunosuppressive effect of PLG-CA4 treatment by decreasing the number of M2-like TAMs (2.0 × 104 to 1.5 × 104 per tumor) and potential enhancement of cytotoxic T lymphocyte (3.0 × 104 to 5.7 × 104 per tumor). Importantly, PI3Kγ inhibitor synergizing with PLG-CA4 significantly extends the mean survival time from 52 days in monotherapy-treated mice to 61.8 days. Additionally, the combination of PLG-CA4 and PI3Kγ inhibitor improves the tumor therapeutic effect of NLG919, an inhibitor of immune checkpoint indoleamine 2,3-dioxygenase (IDO). As far as it is known, this is the first demonstrated study that VDAs induce the reshaping of macrophages to the M2-like phenotype. The findings also indicate a potential therapeutic strategy of the combination VDAs with an accurate immune modifier in the tumor to reverse the immune resistance.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Na Shen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Linlin Liu
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| |
Collapse
|
18
|
Li D, Song Y, He J, Zhang M, Ni P. Polymer-Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomater Sci Eng 2019; 5:2307-2315. [PMID: 33405781 DOI: 10.1021/acsbiomaterials.9b00301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Click chemistry has increasing applications of the development of polymer materials and modification of drug carriers. The amino-yne click polymerization reacts quickly at room temperature without catalyst, and the enamine bond (-ena-) gained from the reaction is sensitive to acid and can be used to prepare stimulus-responsive polymeric prodrugs. Herein, we report an alkynyl-terminated polymer containing alternately distributed low molecular weight polyethylene glycol (PEG) and hexamethylenediamino (HMDA) linked by enamine bonds, abbreviated as A-P(PEG-alt-HMDA)-A, which was synthesized within 3 h at 35 °C without catalyst. The polymer was verified to have good water solubility, biocompatibility, and acid-sensitive fracturing. Then, a pH-responsive polymeric prodrug (DOX-ena-PPEG-ena-DOX) was further prepared through the amino-yne click reaction between the alkynyl groups of A-P(PEG-alt-HMDA)-A and the amino group of doxorubicin hydrochloride (DOX·HCl). The resulting prodrug can self-assemble into nanoparticles (NPs) in aqueous solution. The pH responsiveness of the prodrug NPs was demonstrated by a stability experiment of NPs and in vitro drug release behavior measurement. The accumulative release of doxorubicin (DOX) was tested with different pH media, which confirmed that the prodrug NPs could effectively dissociate and release drug under a weak acid microenvironment of lysosome/endosome. Subsequently, we investigated cell cytotoxicity and intracellular uptake of the prodrug. It turned out that the prodrug nanoparticles could be internalized into HeLa cells, release original DOX, and efficiently inhibit the proliferation of cancer cells. These results show that the pH-responsive DOX-ena-PPEG-ena-DOX has the potential for use in cancer therapy.
Collapse
Affiliation(s)
- Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Yue Song
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
19
|
Hu L, Li M, Zhang Z, Shen Y, Guo S. Self-assembly of biotinylated poly(ethylene glycol)-poly(curcumin) for paclitaxel delivery. Int J Pharm 2018; 553:510-521. [DOI: 10.1016/j.ijpharm.2018.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/07/2018] [Indexed: 01/07/2023]
|
20
|
Hu L, Wang Y, Zhang Y, Yang N, Han H, Shen Y, Cui D, Guo S. Angiopep-2 modified PEGylated 2-methoxyestradiol micelles to treat the PC12 cells with oxygen-glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 2018; 171:638-646. [PMID: 30107337 DOI: 10.1016/j.colsurfb.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022]
Abstract
2-Methoxyestradiol (2ME2), as a microtubule and hypoxia-inducible factor-1 (HIF-1) inhibitor, can be used to treat cerebral ischemia-reperfusion (I/R) injury. However, its poor water solubility compromises its efficacy as a neuroprotectant. Herein, we synthesized PEGylated 2ME2 and angiopep-2 capped PEGylated 2ME2 and fabricated angiopep-2 modified PEGylated 2ME2 micelles containing free 2ME2 (ANG-PEG-2ME2/2ME2) via emulsion-solvent evaporation method. The effect of the micelles on ischemia-reoxygenation injury was evaluated by oxygen-glucose deprivation/reoxygenation (OGD/R) models with different degrees of PC12 cell damage. In comparison with free 2ME2, the micelles significantly increased the cell viability, inhibited reactive oxygen species (ROS) generation and apoptosis for PC12 cells with 0.5 and 4 h OGD followed by 24 h reoxygenation. Taken together, the angiopep-2 modified 2ME2-loaded micelles could effectively reduce the injury of PC12 cells induced by OGD/R.
Collapse
Affiliation(s)
- Lijun Hu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yun Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yihui Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huijie Han
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Derong Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Xu H, Chen X, Kaplan D. Preface: Biomaterials Science and Engineering in China Special Issue. ACS Biomater Sci Eng 2018; 4:1926-1927. [PMID: 33445262 DOI: 10.1021/acsbiomaterials.8b00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|