1
|
Mao X, Liu Y, Qiao C, Sun Y, Zhao Z, Liu J, Zhu L, Zeng H. Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications. Adv Colloid Interface Sci 2025; 338:103398. [PMID: 39823917 DOI: 10.1016/j.cis.2025.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter-/intra-molecular interactions act as "sewing threads", connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.
Collapse
Affiliation(s)
- Xiaohui Mao
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Yujie Liu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, 510700 Guangzhou, PR China
| | - Liping Zhu
- College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
2
|
Xu G, Xiao L, Guo P, Wang Y, Ke S, Lyu G, Ding X, Lu Q, Kaplan DL. Silk Nanofiber Scaffolds with Multiple Angiogenic Cues to Accelerate Wound Regeneration. ACS Biomater Sci Eng 2023; 9:5813-5823. [PMID: 37710361 DOI: 10.1021/acsbiomaterials.3c01023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Niches with multiple physical and chemical cues can influence the fate of cells and tissues in vivo. Simulating the in vivo niche in the design of bioactive materials is a challenge, particularly to tune multiple cues simultaneously in the same system. Here, an assembly strategy was developed to regulate multiple cues in the same scaffold based on the use of two silk nanofiber components that respond differently during the fabrication processes. An aqueous solution containing the two components, amorphous silk nanofibers (ASNFs) and β-sheet-rich silk nanofibers (BSNFs), was sequentially treated with an electrical field and freeze-drying processes where the BSNFs oriented to the electrical field, while the ASNFs formed stable porous structures during the lyophilization process to impact the mechanical properties. Bioactive cargo, such as deferoxamine (DFO), was loaded on the BSNFs to enrich cell responses with the scaffolds. The in vitro results revealed that the loaded DFO and the anisotropic structures with improved mechanical properties resulted in better vascularization than those of the scaffolds without the anisotropic features. The multiple cues in the scaffolds provided angiogenic niches to accelerate wound healing.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Kanda College of Nanjing Medical University, Lianyungang 222061, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Peng Guo
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Yuanyuan Wang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lyu
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Xiangsheng Ding
- Department of Burns, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Abstract
Many soft tissues of the human body possess hierarchically anisotropic structures, exhibiting orientation-specific mechanical properties and biological functionality. Hydrogels have been proposed as promising scaffold materials for tissue engineering applications due to their water-rich composition, excellent biocompatibility, and tunable physico-chemical properties. However, conventional hydrogels with homogeneous structures often exhibit isotropic properties that differ from those of biological tissues, limiting their further application. Recently, magnetically anisotropic hydrogels containing long-range ordered magneto-structures have attracted widespread interest owing to their highly controllable assembly strategy, rapid magnetic responsiveness and remote spatiotemporal regulation. In this review, we summarize the latest progress of magnetically anisotropic hydrogels for tissue engineering. The fabrication strategy of magnetically anisotropic hydrogels from magnetic nanofillers with different dimensions is systemically introduced. Then, the effects of magnetically anisotropic cues on the physicochemical properties of hydrogels and the cellular biological behavior are discussed. And the applications of magnetically anisotropic hydrogels in the engineering of different tissues are emphasized. Finally, the current challenges and the future perspectives for magnetically anisotropic hydrogels are presented.
Collapse
Affiliation(s)
- Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Hou J, Ding Z, Zheng X, Shen Y, Lu Q, Kaplan DL. Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair. Adv Healthc Mater 2023:e2203050. [PMID: 36841910 DOI: 10.1002/adhm.202203050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.
Collapse
Affiliation(s)
- Jianwen Hou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China.,Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, 222023, P. R. China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
5
|
Wang X, Liu K, Fu S, Wu X, Xiao L, Yang Y, Zhang Z, Lu Q. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2023; 6:74-82. [PMID: 36603189 DOI: 10.1021/acsabm.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transdermal drug delivery is an attractive option for multiple disease therapies as it reduces adverse reactions and improves patient compliance. Water-dispersible β-sheet rich silk nanofiber carriers have hydrophobic properties that benefit transdermal delivery but still show inferior transdermal capacities. Thus, hydrophobic silk nanofibers were fabricated to fine-tune their size and endow them with desirable transdermal delivery capacities. Silk nanocarrier length was shortened from 2000 nm to approximately 40 nm after ultrasonic treatment. In vitro human skin and in vivo animal studies revealed different transdermal behaviors for silk nanocarriers at different nanosizes. Silk nanocarriers passed slowly through the corneum without destroying the corneum structure. Improved transdermal capacity was achieved for smaller size carriers. Both hydrophilic and hydrophobic drugs could be loaded onto silk nanocarriers, suggesting a promising future for different disease therapies. No cytotoxicity and skin irritation were identified for silk nanocarriers, which strengthened their superiority as transdermal carriers. Therefore, silk nanocarriers <100 nm may promote the percutaneous absorption of active cargos for disease therapy and cosmetic applications.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Xiaoqian Wu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| |
Collapse
|
6
|
Tian KK, Huang SC, Xia XX, Qian ZG. Fibrous Structure and Stiffness of Designer Protein Hydrogels Synergize to Regulate Endothelial Differentiation of Bone Marrow Mesenchymal Stem Cells. Biomacromolecules 2022; 23:1777-1788. [PMID: 35312276 DOI: 10.1021/acs.biomac.2c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation remains a challenge due to the inherent difficulties in making mimetic hydrogels with well-defined compositions, tunable stiffness, and structures. Here, we present two series of fibrous and porous hydrogels with tunable stiffness based on genetically engineered resilin-silk-like and resilin-like protein polymers. Using these hydrogels as substrates, the mechanoresponses of bone marrow mesenchymal stem cells to stiffness and fibrous structure were systematically studied. For both hydrogel series, increasing compression modulus from 8.5 to 14.5 and 23 kPa consistently promoted cell proliferation and differentiation. Nonetheless, the promoting effects were more pronounced on the fibrous gels than their porous counterparts at all three stiffness levels. More interestingly, even the softest fibrous gel (8.5 kPa) allowed the stem cells to exhibit higher endothelial differentiation capability than the toughest porous gel (23 kPa). The predominant role of fibrous structure on the synergistic regulation of endothelial differentiation was further explored. It was found that the stiffness signal activated Yes-associated protein (YAP), the main regulator of endothelial differentiation, via spreading of focal adhesions, whereas fibrous structure reinforced YAP activation by promoting the maturation of focal adhesions and associated F-actin alignment. Therefore, our results shed light on the interplay of physical cues in regulating stem cells and may guide the fabrication of designer proteinaceous matrices toward regenerative medicine.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
7
|
Wu L, Tian K, Ding Z, Zhao T, Zhang X, Cheng W, Gao S, Lu Q, Kaplan DL. MSC‐Laden Composite Hydrogels for Inflammation and Angiogenic Regulation for Skin Flap Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lijun Wu
- Department of Plastic and Cosmetic Surgery The Second Affiliated Hospital of Soochow University Soochow University Suzhou 215004 P. R. China
| | - Kai Tian
- Department of Plastic and Cosmetic Surgery The Second Affiliated Hospital of Soochow University Soochow University Suzhou 215004 P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery The Second Affiliated Hospital of Soochow University Soochow University Suzhou 215004 P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Weinan Cheng
- Department of Orthopedics School of Medicine The First Affiliated Hospital of Xiamen University Xiamen University Xiamen 361000 P. R. China
| | - Suyue Gao
- Department of Dermatology and Cosmetic Surgery The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou 215002 P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - David L. Kaplan
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
8
|
Gao X, Cheng W, Zhang X, Zhou Z, Ding Z, Zhou X, Lu Q, Kaplan DL. Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3701-3715. [PMID: 35006667 DOI: 10.1021/acsami.1c19229] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scarless spinal cord regeneration remains a challenge due to the complicated microenvironment at lesion sites. In this study, the nerve growth factor (NGF) was immobilized in silk protein nanofiber hydrogels with hierarchical anisotropic microstructures to fabricate bioactive systems that provide multiple physical and biological cues to address spinal cord injury (SCI). The NGF maintained bioactivity inside the hydrogels and regulated the neuronal/astroglial differentiation of neural stem cells. The aligned microstructures facilitated the migration and orientation of cells, which further stimulated angiogenesis and neuron extensions both in vitro and in vivo. In a severe rat long-span hemisection SCI model, these hydrogel matrices reduced scar formation and achieved the scarless repair of the spinal cord and effective recovery of motor functions. Histological analysis confirmed the directional regenerated neuronal tissues, with a similar morphology to that of the normal spinal cord. The in vitro and in vivo results showed promising utility for these NGF-laden silk hydrogels for spinal cord regeneration while also demonstrating the feasibility of cell-free bioactive matrices with multiple cues to regulate endogenous cell responses.
Collapse
Affiliation(s)
- Xiang Gao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhengyu Zhou
- Laboratory Animal Center, Medical Collagen of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS NANO 2021; 15:14162-14173. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele. The hydrogels enable mouse embryonic stem cells (mESCs) to maintain stemness in vitro in the absence of both leukemia inhibitory factor (LIF) and mouse embryonic fibroblasts (MEFs), two critical factors in the standard protocol for mESC maintenance. The mESCs on hydrogels can achieve superior pluripotency, genetic stability, developmental capacity, and germline transmission to those cultured with the standard protocol. Such biomaterials establish an improved dynamic niche through stimulating the secretion of autocrine factors and are sufficient to maintain the pluripotency and propagation of ESCs. The mESCs on hydrogels are distinct in their expression profiles and more resemble ESCs in vivo. The physical cues can thus initiate a self-sustaining stemness-maintaining program. In addition to providing a relatively simple and low-cost option for expansion and utility of ESCs in biological research and therapeutic applications, this biomimetic material helps gain more insights into the underpinnings of early mammalian embryogenesis.
Collapse
Affiliation(s)
- Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunxiao Liu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Siyuan Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Sixuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qianwen Shang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liyin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute Academy of Science, Beijing 100101, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Casale C, Imparato G, Mazio C, Netti PA, Urciuolo F. Geometrical confinement controls cell, ECM and vascular network alignment during the morphogenesis of 3D bioengineered human connective tissues. Acta Biomater 2021; 131:341-354. [PMID: 34144214 DOI: 10.1016/j.actbio.2021.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022]
Abstract
Engineered tissues featuring aligned ECM possess superior regenerative capabilities for the healing of damaged aligned tissues. The morphofunctional integration in the host's injury site improves if the aligned ECM elicits the unidirectional growth of vascular network. In this work we used a bottom-up tissue engineering strategy to produce endogenous and highly aligned human connective tissues with the final aim to trigger the unidirectional growth of capillary-like structures. Engineered microtissues, previously developed by our group, were casted in molds featured by different aspect ratio (AR) to obtain final centimeter-sized macrotissues differently shaped. By varying the AR from 1 to 50 we were able to vary the final shape of the macrotissues, from square to wire. We demonstrated that by increasing the AR of the maturation space hosting the microtissues, it was possible to control the alignment of the neo-synthesized ECM. The geometrical confinement conditions at AR = 50, indeed, promoted the unidirectional growth and assembly of the collagen network. The wire-shaped tissues were characterized by parallel arrangement of the collagen fiber bundles, higher persistence length and speed of migrating cells and superior mechanical properties than the square-shaped macrotissues. Interestingly, the aligned collagen fibers elicited the unidirectional growth of capillary-like structures. STATEMENT OF SIGNIFICANCE: Alignment of preexisting extracellular matrices by using mechanical cues modulating cell traction, has been widely described. Here, we show a new method to align de novo synthesized extracellular matrix components in bioengineered connective tissues obtained by means of a bottom-up tissue engineering approach. Building blocks are cast in maturation chambers, having different aspect ratios, in which the in vitro morphogenesis process takes place. High aspect ratio chambers (corresponding to wire-shaped tissues) triggered spontaneous alignment of collagenous network affecting cell polarization, migration and tensile properties of the tissue as well. Aligned ECM provided a contact guidance for the formation of highly polarized capillary-like network suggesting an in vivo possible application to trigger fast angiogenesis and perfusion in damaged aligned tissues.
Collapse
|
12
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
13
|
Zhang S, Zhao G, Wang J, Xie C, Liang W, Chen K, Wen Y, Li X. Organic Solvent-Free Preparation of Chitosan Nanofibers with High Specific Surface Charge and Their Application in Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12347-12358. [PMID: 33625203 DOI: 10.1021/acsami.0c21796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of chitosan nanofibers in biological tissue-engineering materials has attracted wide attention. A novel and organic solvent-free method was developed for the fabrication of rootlike chitosan nanofibers (CSNFs) with diameters of 40-250 nm. This method includes three-step mechanical processing of swelling-beating-centrifugation or swelling-beating-homogenization. The obtained nanofibers showed high yields (>95%) and positive specific surface charges (up to +375 μeq/g) and could be uniformly dispersed in the aqueous phase. The unique fiber shape and the good length-to-diameter ratio of CSNFs endowed chitosan nanofiber paper (CSNFP) products with excellent mechanical properties, and the wet tensile strength of the CSNFPs was nearly five times higher than common chitosan films. In addition, the calvaria-derived preosteoblastic cells exhibited a higher adherence efficiency and proliferation on CSNFP than on chitosan films. The chitosan nanofiber scaffold products also benefited the attachment of preosteoblastic cells and allowed them to grow in three dimensions. This method has significant industrial potential for the industrialization of chitosan nanofibers, which may have broad applications in various biomaterials.
Collapse
Affiliation(s)
- Sihan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiming Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wenquan Liang
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510500, China
| | - Kebing Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, The Third Affiliated Hospital of Southern Medical University, the Third School of Clinical Medicine, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Ying Wen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China
| |
Collapse
|
14
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
15
|
Pang Z, Pan Z, Ma M, Xu Z, Mei S, Jiang Z, Yin F. Nanostructured Coating of Non-Crystalline Tantalum Pentoxide on Polyetheretherketone Enhances RBMS Cells/HGE Cells Adhesion. Int J Nanomedicine 2021; 16:725-740. [PMID: 33542627 PMCID: PMC7853447 DOI: 10.2147/ijn.s286643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.
Collapse
Affiliation(s)
- Zhiying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| |
Collapse
|
16
|
Zheng X, Ding Z, Cheng W, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Microskin-Inspired Injectable MSC-Laden Hydrogels for Scarless Wound Healing with Hair Follicles. Adv Healthc Mater 2020; 9:e2000041. [PMID: 32338466 PMCID: PMC7473495 DOI: 10.1002/adhm.202000041] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Indexed: 12/20/2022]
Abstract
Scarless skin regeneration with functional tissue remains a challenge for full-thickness wounds. Here, mesenchymal stem cell (MSC)-laden hydrogels are developed for scarless wound healing with hair follicles. Microgels composed of aligned silk nanofibers are used to load MSCs to modulate the paracrine. MSC-laden microgels are dispersed into injectable silk nanofiber hydrogels, forming composites biomaterials containing the cells. The injectable hydrogels protect and stabilize the MSCs in the wounds. The synergistic action of silk-based composite hydrogels and MSCs stimulated angiogenesis and M1-M2 phenotype switching of macrophages, provides a suitable niche for functional recovery of wounds. Compared to skin defects treated with MSC-free hydrogels, the defects treated with the MSC-laden composite hydrogels heal faster and form scarless tissues with hair follicles. Wound healing can be further improved by adjusting the ratio of silk nanofibers and particles and the loaded MSCs, suggesting tunability of the system. To the best of current knowledge, this is the first time scarless skin regeneration with hair follicles based on silk material systems is reported. The improved wound healing capacity of the systems suggests future in vivo studies to compare to other biomaterial systems related to clinical goals in skin regeneration in the absence of scarring.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Qiang Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, P. R. China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214041, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
17
|
Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110626. [DOI: 10.1016/j.msec.2020.110626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/14/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
18
|
Xu G, Ding Z, Lu Q, Zhang X, Zhou X, Xiao L, Lu G, Kaplan DL. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein Cell 2020; 11:267-285. [PMID: 32048173 PMCID: PMC7093350 DOI: 10.1007/s13238-020-00692-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gradient biomaterials are considered as preferable matrices for tissue engineering due to better simulation of native tissues. The introduction of gradient cues usually needs special equipment and complex process but is only effective to limited biomaterials. Incorporation of multiple gradients in the hydrogels remains challenges. Here, beta-sheet rich silk nanofibers (BSNF) were used as building blocks to introduce multiple gradients into different hydrogel systems through the joint action of crosslinking and electric field. The blocks migrated to the anode along the electric field and gradually stagnated due to the solution-hydrogel transition of the systems, finally achieving gradient distribution of the blocks in the formed hydrogels. The gradient distribution of the blocks could be tuned easily through changing different factors such as solution viscosity, which resulted in highly tunable gradient of mechanical cues. The blocks were also aligned under the electric field, endowing orientation gradient simultaneously. Different cargos could be loaded on the blocks and form gradient cues through the same crosslinking-electric field strategy. The building blocks could be introduced to various hydrogels such as Gelatin and NIPAM, indicating the universality. Complex niches with multiple gradient cues could be achieved through the strategy. Silk-based hydrogels with suitable mechanical gradients were fabricated to control the osteogenesis and chondrogenesis. Chondrogenic-osteogenic gradient transition was obtained, which stimulated the ectopic osteochondral tissue regeneration in vivo. The versatility and highly controllability of the strategy as well as multifunction of the building blocks reveal the applicability in complex tissue engineering and various interfacial tissues.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
19
|
Ding Z, Lu G, Cheng W, Xu G, Zuo B, Lu Q, Kaplan DL. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity. ACS Biomater Sci Eng 2020; 6:2357-2367. [PMID: 33455344 DOI: 10.1021/acsbiomaterials.0c00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple physical cues such as hierarchical microstructures, topography, and stiffness influence cell fate during tissue regeneration. Yet, introducing multiple physical cues to the same biomaterial remains a challenge. Here, a synergistic cross-linking strategy was developed to fabricate protein hydrogels with multiple physical cues based on combinations of two types of silk nanofibers. β-sheet-rich silk nanofibers (BSNFs) were blended with amorphous silk nanofibers (ASNFs) to form composite nanofiber systems. The composites were transformed into tough hydrogels through horseradish peroxidase (HRP) cross-linking in an electric field, where ASNFs were cross-linked with HRP, while BSNFs were aligned by the electrical field. Anisotropic morphologies and higher stiffness of 120 kPa were achieved. These anisotropic hydrogels induced osteogenic differentiation and the aligned aggregation of stem cells in vitro while also exhibiting osteoinductive capacity in vivo. Improved tissue outcomes with the hydrogels suggest promising applications in bone tissue engineering, as the processing strategy described here provides options to form hydrogels with multiple physical cues.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Gang Xu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang 222061, People's Republic of China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Development of chitinous nanofiber-based flexible composite hydrogels capable of cell adhesion and detachment. Polym J 2020. [DOI: 10.1038/s41428-020-0324-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Jiang P, Yan C, Ji Z, Guo Y, Zhang X, Jia X, Wang X, Zhou F. Drawing High-Definition and Reversible Hydrogel Paintings with Grayscale Exposure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42586-42593. [PMID: 31623432 DOI: 10.1021/acsami.9b14342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-definition and arbitrary grayscale hydrogel paintings that can appear reversibly with hydration/dehydration are realized through spatially grayscale exposure. Spatio-temporally grayscale images are used to guide the exposure of a hydrogel processor to dictate the gradient cross-linking density spatially, which thereafter results in the heterogeneity of hydrogels in swelling ratio, mechanical properties, and especially visible light transmittance, leading to swelling-induced patterns by gradient and local visible light scattering difference based on tunable mesh size and microphase separation. The resultant grayscale hydrogel patterns, with visible light transmittance adjustable, are reversible during hydration (in 1-2 s) and dehydration and possess the feature size of 70 μm and more pattern information compared with previous hydrogel patterning. Uniquely, the patterns can be realized not only on the outmost surface of hydrogels as usual but inside. Combining the unique grayscale exposure with three-dimensional printing technology, arbitrary hydrogel patterns that have plenty of details and even vary at different layers are fabricated readily, indicating its broad potential in smart anti-counterfeiting of security field, mechanics, engineering, and many others.
Collapse
Affiliation(s)
- Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Changyou Yan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Yuxiong Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Xiaoqin Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Xin Jia
- School of Chemistry and Chemical Engineering , Shihezi University , Shihezi 832003 , China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
- School of Chemistry and Chemical Engineering , Shihezi University , Shihezi 832003 , China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
22
|
Chen M, Zhang Y, Xie Q, Zhang W, Pan X, Gu P, Zhou H, Gao Y, Walther A, Fan X. Long-Term Bone Regeneration Enabled by a Polyhedral Oligomeric Silsesquioxane (POSS)-Enhanced Biodegradable Hydrogel. ACS Biomater Sci Eng 2019; 5:4612-4623. [DOI: 10.1021/acsbiomaterials.9b00642] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Qing Xie
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Xiuwei Pan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Huifang Zhou
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People’s Republic of China
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 31, Freiburg 79104, Germany
- Freiburg Materials Research Center, Albert-Ludwigs-University Freiburg, Stefan-Meier-Strasse 21, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai 200011, People’s Republic of China
| |
Collapse
|
23
|
Hang Y, Ma J, Li S, Zhang X, Liu B, Ding Z, Lu Q, Chen H, Kaplan DL. Structure–Chemical Modification Relationships with Silk Materials. ACS Biomater Sci Eng 2019; 5:2762-2768. [DOI: 10.1021/acsbiomaterials.9b00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jie Ma
- Department of Burns, Gansu Provincial Hospital, Lanzhou 730000, People’s Republic of China
| | - Siyuan Li
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Bing Liu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pitingolo G, Riaud A, Nastruzzi C, Taly V. Gelatin-Coated Microfluidic Channels for 3D Microtissue Formation: On-Chip Production and Characterization. MICROMACHINES 2019; 10:E265. [PMID: 31010232 PMCID: PMC6523541 DOI: 10.3390/mi10040265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Traditional two-dimensional (2D) cell culture models are limited in their ability to reproduce human structures and functions. On the contrary, three-dimensional (3D) microtissues have the potential to permit the development of new cell-based assays as advanced in vitro models to test new drugs. Here, we report the use of a dehydrated gelatin film to promote tumor cells aggregation and 3D microtissue formation. The simple and stable gelatin coating represents an alternative to conventional and expensive materials like type I collagen, hyaluronic acid, or matrigel. The gelatin coating is biocompatible with several culture formats including microfluidic chips, as well as standard micro-well plates. It also enables long-term 3D cell culture and in situ monitoring of live/dead assays.
Collapse
Affiliation(s)
- Gabriele Pitingolo
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe Labellisée Ligue Nationale Contre le Cancer, 75005 Paris, France.
| | - Antoine Riaud
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe Labellisée Ligue Nationale Contre le Cancer, 75005 Paris, France.
| | - Claudio Nastruzzi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy.
| | - Valerie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe Labellisée Ligue Nationale Contre le Cancer, 75005 Paris, France.
| |
Collapse
|
26
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
27
|
Niu Q, Peng Q, Lu L, Fan S, Shao H, Zhang H, Wu R, Hsiao BS, Zhang Y. Single Molecular Layer of Silk Nanoribbon as Potential Basic Building Block of Silk Materials. ACS NANO 2018; 12:11860-11870. [PMID: 30407791 DOI: 10.1021/acsnano.8b03943] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, nascent silk nanoribbons (SNRs) with an average thickness of 0.4 nm were extracted from natural silkworm silk by partially dissolving degummed silk (DS) in sodium hydroxide (NaOH)/urea solution at -12 °C. In this gentle treatment, the solvent could not destroy the nanofibrillar structure completely, but the chosen conditions would influence the dimensions of resulting SNRs. Molecular dynamics simulations of silk models indicated that the potential of mean force required to break hydrogen bonds between silk fibroin chains was 40% larger than that of van der Waals interactions between β-sheet layers, allowing the exfoliating treatment. It was found that the resulting SNRs contained a single β-sheet layer and amorphous silk fibroin molecules, which could be considered as the basic building block of DS consisting of hierarchical structures. The demonstrated technique for extracting ultrathin SNRs having the height of a single β-sheet layer may provide a useful pathway for creating stronger and tougher silk-based materials and/or adding functionality and durability in materials for various applications. The hierarchical structure model based on SNRs may afford more insight into the structure and property relationship of fabricating silk-based materials.
Collapse
Affiliation(s)
- Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Qingfa Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Li Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Huihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| | - Benjamin S Hsiao
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials , College of Materials Science and Engineering, Donghua University , Shanghai , 201620 , China
| |
Collapse
|
28
|
Wang L, Song D, Zhang X, Ding Z, Kong X, Lu Q, Kaplan DL. Silk-Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior. ACS Biomater Sci Eng 2018; 5:613-622. [PMID: 33405825 DOI: 10.1021/acsbiomaterials.8b01481] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell behavior is dependent in part on chemical and physical cues from the extracellular matrix. Although the influence of various cues on cell behavior has been studied, challenges remain to incorporate multiple cues to matrix systems to optimize and control cell outcomes. Here, aligned silk fibroin (SF)-graphene hydrogels with preferable stiffness were developed through arranging SF nanofibers and SF-modified graphene sheets under an electric field. Different signals, such as bioactive graphene, nanofibrous structure, aligned topography, and mechanical stiffness, were tailored into the hydrogel system, providing niches for nerve cell responses. The desired adhesion, proliferation, differentiation, extensio,n and growth factor secretion of multiple nerve-related cells was achieved on these hydrogels, suggesting strong synergistic action through the combination of different cues. Based on the fabrication strategy, our present study provides a useful materials engineering platform for revealing cooperative influences of different signals on nerve cell behavior, to help in the understanding of cell-biomaterial interactions, with potential toward studies related to nerve regeneration.
Collapse
Affiliation(s)
- Lili Wang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dawei Song
- Tai'an City Central Hospital, Taian, 271000, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangdong Kong
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|