1
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
2
|
Gong Y, Yuan W, Zhang P, Zheng K, Zhang Q, Ding C. A tumor targeted antifouling upconversion nanoplatform for fluorescence imaging and precise photodynamic therapy triggered by NIR laser. Anal Chim Acta 2023; 1274:341561. [PMID: 37455079 DOI: 10.1016/j.aca.2023.341561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Photodynamic therapy (PDT) has been considered as a promising treatment in the biomedical field because of low toxicity to normal tissues and minor trauma area. However, the PDT effect of materials is greatly affected by many factors, such as nonspecific adsorption and poor light penetration, etc. In this work, an intelligent nano platform has been constructed based on upconversion nanoparticles (UCNPs) loaded with a large amount of photosensitizers Ce6, which could specifically light up tumor tissues and stimulate the production of reactive oxygen species (ROS) under 980 nm near-infrared (NIR) irradiation, exhibiting a conspicuous imaging and therapeutic effect of PDT treatment for deep tumors. An excellent anti-fouling performance in complex biological substrate was obtained upon the judicious introduction of anti-fouling peptide, which also contributed to the improved PDT efficiency. In addition, the specificity of nanoplatform to malignant breast cancer cells was realized by modification of polypeptide targeting for HER2. This anti-fouling nanoplatform provided an original paradigm for the development of fluorescence imaging and PDT for deep tumor tissue with high targeting and therapeutic efficacy, promising to be used in the early therapy of malignant breast cancer specifically.
Collapse
Affiliation(s)
- Yan Gong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Wei Yuan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China; Shandong Key Laboratory of Biochemical Analysis, Qingdao, 266042, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao, 266042, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Wu Y, Wang W, Yu Z, Yang K, Huang Z, Chen Z, Yan X, Hu H, Wang Z. Mushroom-brush transitional conformation of mucus-inert PEG coating improves co-delivery of oral liposome for intestinal metaplasia therapy. BIOMATERIALS ADVANCES 2022; 136:212798. [PMID: 35929326 DOI: 10.1016/j.bioadv.2022.212798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The blocking of gastric mucosal intestinal metaplasia (IM) has been considered to be the pivotal method to control the occurrence of gastric cancer. However, there is still a lack of effective therapeutic agent. Here, we developed mucus-penetrating liposome system by covering surface with polyethylene glycol (PEG) chains (hydrophilic and electroneutral mucus-inert material) to co-delivery candidate drugs combination. Then studied the impact on the transmucus performance of different conformations, which were constructed by controlling the density of PEG chains on the surface. The results showed that the particle size of 5%PEG-Lip was less than 120 nm, the polydispersity index was less than 0.3, and the surface potential tended to be neutral. The D value (long chain spacing) of 5% PEG-Lip was 3.25 nm, which was close to the RF value (diameter of spherical PEG long chain group without external force interference) of 3.44 nm, and the L value (extended length) was slightly larger than 3.44 nm. In this case, PEG showed mushroom-brush transitional conformation on the surface of liposomes. This conformation was not only promoted stable delivery, but also shielded the capture of mucus more favorably, leading to a more unrestricted transportation in mucus. The further in vivo experimental results demonstrated the rapid distribution of liposomes, which gradually appeared both in the superficial and deep glandular of mucosa and gland cells at 1 h and absorbed into the cell cytoplasm at 6 h. The 5% PEG-Lip with the mushroom-brush transitional configuration recalled abnormal organ index and improved inflammation and intestinal metaplasia. The modified PEG conformation assay presented here was more suitable for liposomes. This PEG-modified liposome system has potential of mucus-penetrating and provides a strategy for local treatment of gastric mucosal intestinal metaplasia.
Collapse
Affiliation(s)
- Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Yan
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhanguo Wang
- Collaborative Innovation Laboratory of Metabonomics, Standard Research and Extension Base & Collaborative Innovation Center of Qiang Medicine, School of Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
4
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
5
|
Klimkevicius V, Voronovic E, Jarockyte G, Skripka A, Vetrone F, Rotomskis R, Katelnikovas A, Karabanovas V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J Mater Chem B 2022; 10:625-636. [PMID: 34989749 DOI: 10.1039/d1tb01644j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Evelina Voronovic
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania.,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Greta Jarockyte
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, c.3, LT-10222, Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
6
|
Guo S, Li R, Tian F, Yang X, Wang L, Guan S, Zhou S, Lu J. Carbon-Defect-Driven Boron Carbide for Dual-Modal NIR-II/Photoacoustic Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2021; 7:3370-3378. [PMID: 34120445 DOI: 10.1021/acsbiomaterials.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, tremendous attention has been evoked in the discovery of defect-engineered nanomaterials for near-infrared second window (NIR-II)-driven cancer therapy. Herein, we have constructed a novel type of carbon defects enriched in boron carbide nanomaterial (denoted as B4C@C) through reacting B4C and glucose by a hydrothermal method. The carbon defect concentration in B4C@C has been significantly increased after coating with glucose; thus, B4C@C exhibited a distinct photothermal response under the NIR-II window and the efficiency of photothermal conversion is determined to reach 45.4%, which is higher than the carbon-based nanomaterials in the NIR-II region. Both Raman spectra and X-ray photoelectron spectroscopy (XPS) spectra reveal that B4C@C has rich sp2-hybridized carbon defects and effectively increases the NIR-II window light absorption capacity, thus enhancing the nonradiative recombination rate and improving the NIR-II photothermal effect. Furthermore, the B4C@C nanosheets allows for tumor phototherapy and simultaneous photoacoustic imaging. This work indicates the huge potential of B4C@C as a novel photothermal agent, which might arise much attention in exploring boron-based nanomaterials for the advantage of cancer therapy.
Collapse
Affiliation(s)
- Shuaitian Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Ran Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Fangzhen Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| |
Collapse
|
7
|
Kaur K, Bindra P, Mondal S, Li WP, Sharma S, Sahu BK, Naidu BS, Yeh CS, Gautam UK, Shanmugam V. Upconversion Nanodevice-Assisted Healthy Molecular Photocorrection. ACS Biomater Sci Eng 2021; 7:291-298. [PMID: 33356144 DOI: 10.1021/acsbiomaterials.0c01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mushrooms are rich in ergosterol, a precursor of ergocalciferol, which is a type of vitamin D2. The conversion of ergosterol to ergocalciferol takes place in the presence of UV radiation by the cleavage of the "B-ring" in the ergosterol. As the UV radiation cannot penetrate deep into the tissue, only minimal increase occurs in sunlight. In this study, upconversion nanoparticles with the property to convert deep-penetrating near-infrared radiation to UV radiation have been cast into a disk to use sunlight and emit UV radiation for vitamin D conversion. An engineered upconversion nanoparticle (UCNP) disk with maximum particles and limited clusters demonstrates ∼2.5 times enhanced vitamin D2 conversion.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Pulkit Bindra
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Wei-Peng Li
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Bandana Kumari Sahu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Boddu S Naidu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| |
Collapse
|
8
|
Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 2020; 185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
9
|
Li K, Hong E, Wang B, Wang Z, Zhang L, Hu R, Wang B. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis Photodyn Ther 2018; 25:177-192. [PMID: 30579991 DOI: 10.1016/j.pdpdt.2018.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The detection and treatment of cancer cells at an early stage are crucial for prolonging the survival time and improving the quality of life of patients. Upconversion nanoparticles (UCNPs) have unique physical and chemical advantages and likely provide a platform for detecting and treating cancer cells at an early stage. In this paper, the principle of UCNPs as chemical sensors based on fluorescence resonance energy transfer (FRET) has been briefly introduced. Research progress in such chemical sensors for detecting and analyzing bioactive substances and heavy metal ions at the subcellular level has been summarized. The principle of UCNP-based nanoprobe-targeting of cancer cells has been described. The research progress in using nanocomposites for cancer cell detection, namely cancer cell targeted imaging and tissue staining, has been discussed. In the field of cancer treatment, the principles and research progress of UCNPs in photodynamic therapy and photothermal therapy of cancer cells are systematically discussed. Finally, the prospects for UCNPs and remaining challenges to UCNP application in the field of cancer diagnosis and treatment are briefly described. This review provides powerful theoretical guidance and useful practical information for the research and application of UCNPs in the field of cancer.
Collapse
Affiliation(s)
- Kunmeng Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Bing Wang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Ruixia Hu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Baiqi Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; The Key Laboratory of Environment, Nutrion and Public Health of Tianjin, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|