1
|
Verma S, Sharma PK, Malviya R, Das S. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Curr Pharm Biotechnol 2024; 25:1939-1951. [PMID: 38251702 DOI: 10.2174/0113892010275613231120031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024]
Abstract
Aerogels are the 3D network of organic, inorganic, composite, layered, or hybrid-type materials that are used to increase the solubility of Class 1 (low solubility and high permeability) and Class 4 (poor solubility and low permeability) molecules. This approach improves systemic drug absorption due to the alveoli's broad surface area, thin epithelial layer, and high vascularization. Local therapies are more effective and have fewer side effects than systemic distribution because inhalation treatment targets the specific location and raises drug concentration in the lungs. The present manuscript aims to explore various aspects of aerogel formulations for pulmonary targeted delivery of active pharmaceutical agents. The manuscript also discusses the safety, efficacy, and regulatory aspects of aerogel formulations. According to projections, the global respiratory drug market is growing 4-6% annually, with short-term development potential. The proliferation of literature on pulmonary medicine delivery, especially in recent years, shows increased interest. Aerogels come in various technologies and compositions, but any aerogel used in a biological system must be constructed of a material that is biocompatible and, ideally, biodegradable. Aerogels are made via "supercritical processing". After many liquid phase iterations using organic solvents, supercritical extraction, and drying are performed. Moreover, the sol-gel polymerization process makes inorganic aerogels from TMOS or TEOS, the less hazardous silane. The resulting aerogels were shown to be mostly loaded with pharmaceutically active chemicals, such as furosemide-sodium, penbutolol-hemisulfate, and methylprednisolone. For biotechnology, pharmaceutical sciences, biosensors, and diagnostics, these aerogels have mostly been researched. Although aerogels are made of many different materials and methods, any aerogel utilized in a biological system needs to be made of a substance that is both biocompatible and, preferably, biodegradable. In conclusion, aerogel-based pulmonary drug delivery systems can be used in biomedicine and non-biomedicine applications for improved sustainability, mechanical properties, biodegradability, and biocompatibility. This covers scaffolds, aerogels, and nanoparticles. Furthermore, biopolymers have been described, including cellulose nanocrystals (CNC) and MXenes. A safety regulatory database is necessary to offer direction on the commercialization potential of aerogelbased formulations. After that, enormous efforts are discovered to be performed to synthesize an effective aerogel, particularly to shorten the drying period, which ultimately modifies the efficacy. As a result, there is an urgent need to enhance the performance going forward.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sanjita Das
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
3
|
Souto-Lopes M, Fernandes MH, Monteiro FJ, Salgado CL. Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4483. [PMID: 37374666 PMCID: PMC10305395 DOI: 10.3390/ma16124483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation methods have been increasingly improved to overcome the difficulties in balancing the need for an open highly porous and hierarchically organized microstructure with compression resistance to withstand bone physiological loads, especially in wet conditions. Moreover, these improved aerogel scaffolds have been implanted in vivo in critical bone defects, in order to test their bone regeneration potential. This review addresses recently published studies on aerogel composite (organic/inorganic)-based scaffolds, having in mind the various cutting-edge technologies and raw biomaterials used, as well as the improvements that are still a challenge in terms of their relevant properties. Finally, the lack of 3D in vitro models of bone tissue for regeneration studies is emphasized, as well as the need for further developments to overcome and minimize the requirement for studies using in vivo animal models.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Bonelab–Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária da Universidade do Porto, 4200-393 Porto, Portugal
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, 4169-007 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200–072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Király G, Egu JC, Hargitai Z, Kovács I, Fábián I, Kalmár J, Szemán-Nagy G. Mesoporous Aerogel Microparticles Injected into the Abdominal Cavity of Mice Accumulate in Parathymic Lymph Nodes. Int J Mol Sci 2021; 22:9756. [PMID: 34575919 PMCID: PMC8465913 DOI: 10.3390/ijms22189756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mesoporous aerogel microparticles are promising drug delivery systems. However, their in vivo biodistribution pathways and health effects are unknown. Suspensions of fluorescein-labeled silica-gelatin hybrid aerogel microparticles were injected into the peritoneum (abdominal cavity) of healthy mice in concentrations of 52 and 104 mg kg-1 in a 3-week-long acute toxicity experiment. No physiological dysfunctions were detected, and all mice were healthy. An autopsy revealed that the aerogel microparticles were not present at the site of injection in the abdominal cavity at the end of the experiment. The histological study of the liver, spleen, kidneys, thymus and lymphatic tissues showed no signs of toxicity. The localization of the aerogel microparticles in the organs was studied by fluorescence microscopy. Aerogel microparticles were not detected in any of the abdominal organs, but they were clearly visible in the cortical part of the parathymic lymph nodes, where they accumulated. The accumulation of aerogel microparticles in parathymic lymph nodes in combination with their absence in the reticuloendothelial system organs, such as the liver or spleen, suggests that the microparticles entered the lymphatic circulation. This biodistribution pathway could be exploited to design passive targeting drug delivery systems for flooding metastatic pathways of abdominal cancers that spread via the lymphatic circulation.
Collapse
Affiliation(s)
- Gábor Király
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| | - John Chinonso Egu
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Zoltán Hargitai
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovács
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - István Fábián
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - József Kalmár
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Gábor Szemán-Nagy
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| |
Collapse
|
5
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
6
|
Zheng L, Zhang S, Ying Z, Liu J, Zhou Y, Chen F. Engineering of Aerogel-Based Biomaterials for Biomedical Applications. Int J Nanomedicine 2020; 15:2363-2378. [PMID: 32308388 PMCID: PMC7138623 DOI: 10.2147/ijn.s238005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Biomaterials with porous structure and high surface area attract growing interest in biomedical research and applications. Aerogel-based biomaterials, as highly porous materials that are made from different sources of macromolecules, inorganic materials, and composites, mimic the structures of the biological extracellular matrix (ECM), which is a three-dimensional network of natural macromolecules (e.g., collagen and glycoproteins), and provide structural support and exert biochemical effects to surrounding cells in tissues. In recent years, the higher requirements on biomaterials significantly promote the design and development of aerogel-based biomaterials with high biocompatibility and biological activity. These biomaterials with multilevel hierarchical structures display excellent biological functions by promoting cell adhesion, proliferation, and differentiation, which are critical for biomedical applications. This review highlights and discusses the recent progress in the preparation of aerogel-based biomaterials and their biomedical applications, including wound healing, bone regeneration, and drug delivery. Moreover, the current review provides different strategies for modulating the biological performance of aerogel-based biomaterials and further sheds light on the current status of these materials in biomedical research.
Collapse
Affiliation(s)
- Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Shaodi Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Zhengran Ying
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Yinghong Zhou
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD4059, Australia
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou510140, People’s Republic of China
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD4000, Australia
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD4000, Australia
| |
Collapse
|