1
|
Huang Y, Peng S, Chen Y, Chu B. Agarose Hydrogels for Bone Tissue Engineering, from Injectables to Bioprinting. Gels 2025; 11:255. [PMID: 40277691 DOI: 10.3390/gels11040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
A great interest in agarose, with many health-promoting and gel properties, has been registered, especially in the field of bone regeneration and repair. Agarose and its major bioactive compounds are involved in biological activities such as inflammation, cell adhesion and proliferation, and the promotion of tissue repair. Due to its unique physical properties like gelation and solubility, agarose is increasingly utilized in the medical industry. The aim of this review is to present an overview of the applications of agarose hydrogels in bone tissue engineering, introducing agarose and its modified products as innovative solutions for bone regeneration. Additionally, the injectability of agarose hydrogels and their applications in bioprinting are also summarized. Data indicate that agarose will play an increasing role in current and future global medical sectors.
Collapse
Affiliation(s)
- Yibin Huang
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Siyuan Peng
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifan Chen
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Bin Chu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute, Tsinghua University, Shenzhen 518057, China
| |
Collapse
|
2
|
Chi J, Wang S, Ju R, Li S, Liu C, Zou M, Xu T, Wang Y, Jiang Z, Yang C, Han B. Repair effects of thermosensitive hydrogels combined with iPSC-derived corneal endothelial cells on rabbit corneal endothelial dysfunction. Acta Biomater 2025; 191:216-232. [PMID: 39551331 DOI: 10.1016/j.actbio.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Considering the limitations of human corneal endothelial cell proliferation as well as the severe shortage of corneal donations, it is imperative to develop improved methods of corneal endothelial cell transplantation. The purpose of this study was to construct a modified corneal endothelial cell transplantation approach using thermosensitive hydrogels combined with induced pluripotent stem cells (iPSCs)-derived human corneal endothelial cells (hCECs). In this study, thermosensitive hydrogels hydroxypropyl chitin/carboxymethyl chitosan (HPCH/CMCS) were fabricated, and their hydrogels properties and biocompatibility were investigated. Our results demonstrated that HPCH/CMCS hydrogels exhibited superior transparency, appropriate mechanical properties and favorable biocompatibility. A two-step induction method of small molecule compounds was employed, by which iPSCs were differentiated into hCECs via neural crest cells (NCCs). Additionally, a rabbit corneal endothelial dysfunction model was established in vivo, aiming to evaluate the safety and effectiveness of the combined method. Slit lamp microscope results indicated that significant transparency improvement could be noted in HPCH/CMCS/hCECs group (P = 0.006), whereas the corneal transparency was not homogeneous in different areas. Moreover, histological examinations and immunofluorescence analysis revealed that HPCH/CMCS/hCECs group showed a higher density of corneal endothelial cells and positive expressions of related markers. This study may provide ideas and experimental basis for the combined application of hydrogels and iPSC-derived corneal endothelial cells for corneal endothelial dysfunction. STATEMENT OF SIGNIFICANCE: Corneal transplantation is the most effective treatment for corneal endothelial dysfunction, which is challenged by issues such as corneal donor shortages and immune rejection. In this study, we proposed a combined transplantation method of cells and hydrogels for corneal endothelial dysfunction. We modified the protocols to obtain corneal endothelial cells from iPSCs by a two-step induction method. Besides, thermosensitive hydrogels with satisfactory biocompatibility and degradability were fabricated as fixation and support carriers of iPSC-derived corneal endothelial cells for in vivo transplantation. Experimental results demonstrated that this method could locally repair corneal endothelial dysfunction in rabbits, with the repaired corneas expressing relevant markers. This study presented a preliminary attempt to combine hydrogels and cells for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shanshan Li
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Mingyu Zou
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chaozhong Yang
- School of Medicine, Heze Medical College, Heze 274046, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Girard VD, Chaussé J, Borduas M, Dubuc É, Iorio-Morin C, Brisebois S, Vermette P. In Vitro and In Vivo Biocompatibility of Bacterial Cellulose. J Biomed Mater Res B Appl Biomater 2024; 112:e35488. [PMID: 39360852 DOI: 10.1002/jbm.b.35488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/13/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Bacterial cellulose is a unique biomaterial produced by various species of bacteria that offers a range of potential applications in the biomedical field. To provide a cost-effective alternative to soft-tissue implants used in cavity infills, remodeling, and subdermal wound healing, in vitro cytotoxicity and in vivo biocompatibility of native bacterial cellulose were investigated. Cytotoxicity was assessed using a metabolic assay on Swiss 3T3 fibroblasts and INS-1832/13 rat insulinoma. Results showed no cytotoxicity, whether the cells were seeded over or under the bacterial cellulose scaffolds. Biocompatibility was performed on Sprague-Dawley rats (males and females, 8 weeks old) by implanting bacterial cellulose membranes subcutaneously for 1 or 12 weeks. The explanted scaffolds were then sliced and stained with hematoxylin and eosin for histological characterization. The first series of results revealed acute and chronic inflammation persisting over 12 weeks. Examination of the explants indicated a high number of granulocytes within the periphery of the bacterial cellulose, suggesting the presence of endotoxins within the membrane, confirmed by a Limulus amebocyte lysate test. This discovery motivated the development of non-pyrogenic bacterial cellulose scaffolds. Following this, a second series of animal experiments was done, in which materials were implanted for 1 or 2 weeks. The results revealed mild inflammation 1 week after implantation, which then diminished to minimal inflammation after 2 weeks. Altogether, this study highlights that unmodified, purified native bacterial cellulose membranes may be used as a cost-effective biomedical device provided that proper endotoxin clearance is achieved.
Collapse
Affiliation(s)
- Vincent-Daniel Girard
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
- AxCell Laboratories, Québec, Canada
| | - Jérémie Chaussé
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
- AxCell Laboratories, Québec, Canada
| | - Martin Borduas
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
- Department of Pathology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, Canada
| | - Émile Dubuc
- Department of Pathology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, Canada
| | - Christian Iorio-Morin
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
- Department of Surgery, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, Canada
| | - Simon Brisebois
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
- Department of Surgery, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Québec, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada
| |
Collapse
|
5
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Hong SJ, Kim DH, Ryoo JH, Park SM, Kwon HC, Keum DH, Shin DM, Han SG. Influence of Gelatin on Adhesion, Proliferation, and Adipogenic Differentiation of Adipose Tissue-Derived Stem Cells Cultured on Soy Protein-Agarose Scaffolds. Foods 2024; 13:2247. [PMID: 39063331 PMCID: PMC11276222 DOI: 10.3390/foods13142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Scaffolds play a key role in cultured meat production by providing an optimal environment for efficient cell attachment, growth, and development. This study investigated the effects of gelatin coating on the adhesion, proliferation, and adipogenic differentiation of adipose tissue-derived stem cells (ADSCs) cultured on soy protein-agarose scaffolds. Gelatin-coated scaffolds were prepared using 0.5% and 1.0% (w/v) gelatin solutions. The microstructure, water absorption rate, mechanical strength, cytotoxicity, cell adhesion, proliferation, and differentiation capabilities of the scaffolds were analyzed. Field emission scanning electron microscopy revealed the porous microstructure of the scaffolds, which was suitable for cell growth. Gelatin-coated scaffolds exhibited a significantly higher water absorption rate than that of non-coated scaffolds, indicating increased hydrophilicity. In addition, gelatin coating increased the mechanical strength of the scaffolds. Gelatin coating did not show cytotoxicity but significantly enhanced cell adhesion and proliferation. The gene expression levels of peroxisome proliferator-activated receptor gamma, CCAT/enhancer-binding protein alpha, and fatty acid-binding protein 4 were upregulated, and lipid accumulation was increased by gelatin coating. These findings suggest that gelatin-coated scaffolds provide a supportive microenvironment for ADSC growth and differentiation, highlighting their potential as a strategy for the improvement of cultured meat production and adipose tissue engineering.
Collapse
Affiliation(s)
- Seong-Joon Hong
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Do-Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Ji-Hwan Ryoo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Su-Min Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Dong-Hyun Keum
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| | - Dong-Min Shin
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea;
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.H.); (D.-H.K.); (J.-H.R.); (S.-M.P.); (H.-C.K.); (D.-H.K.)
| |
Collapse
|
7
|
Metem V, Thonglam J, Juncheed K, Khangkhamano M, Kwanyuang A, Meesane J. Tissue-mimicking composite barrier membranes to prevent abdominal adhesion formation after surgery. J Mech Behav Biomed Mater 2024; 152:106417. [PMID: 38281440 DOI: 10.1016/j.jmbbm.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.
Collapse
Affiliation(s)
- Varistha Metem
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Kantida Juncheed
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
8
|
Mahmoud DB, Wölk C, Schulz-Siegmund M. Fabrication of 3D Printed, Core-and-Shell Implants as Controlled Release Systems for Local siRNA Delivery. Adv Healthc Mater 2023; 12:e2301643. [PMID: 37712605 DOI: 10.1002/adhm.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
- Department of Pharmaceutics, Egyptian Drug Authority, Giza, 11553, Egypt
| | - Christian Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| |
Collapse
|
9
|
Zheng J, Chen H, Lu C, Yoshitomi T, Kawazoe N, Yang Y, Chen G. 3D culture of bovine articular chondrocytes in viscous medium encapsulated in agarose hydrogels for investigation of viscosity influence on cell functions. J Mater Chem B 2023; 11:7424-7434. [PMID: 37431770 DOI: 10.1039/d3tb01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The mechanical properties of an extracellular microenvironment can affect cell functions. The effects of elasticity and viscoelasticity on cell functions have been extensively studied with hydrogels of tunable mechanical properties. However, investigation of the viscosity effect on cell functions is still very limited and it can be tricky to explore how viscosity affects cells in three-dimensional (3D) culture due to the lack of appropriate tools. In this study, agarose hydrogel containers were prepared and used to encapsulate viscous media for 3D cell culture to investigate the viscosity effect on the functions of bovine articular chondrocytes (BACs). Polyethylene glycol of different molecular weights was used to adjust culture medium viscosity in a large range (72.8-679.2 mPa s). The viscosity affected gene expression and secretion of cartilagenious matrices, while it did not affect BAC proliferation. The BACs cultured in the lower viscosity medium (72.8 mPa s) showed a higher level of cartilaginous gene expression and matrix secretion.
Collapse
Affiliation(s)
- Jing Zheng
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Chengyu Lu
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromoleculaes and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
Ng XY, Peh GSL, Yam GHF, Tay HG, Mehta JS. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int J Mol Sci 2023; 24:12433. [PMID: 37569804 PMCID: PMC10418878 DOI: 10.3390/ijms241512433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal blindness, and the current conventional treatment option is corneal transplantation using a cadaveric donor cornea. However, there is a global shortage of suitable donor graft material, necessitating the exploration of novel therapeutic approaches. A stem cell-based regenerative medicine approach using induced pluripotent stem cells (iPSCs) offers a promising solution, as they possess self-renewal capabilities, can be derived from adult somatic cells, and can be differentiated into all cell types including corneal endothelial cells (CECs). This review discusses the progress and challenges in developing protocols to induce iPSCs into CECs, focusing on the different media formulations used to differentiate iPSCs to neural crest cells (NCCs) and subsequently to CECs, as well as the characterization methods and markers that define iPSC-derived CECs. The hurdles and solutions for the clinical application of iPSC-derived cell therapy are also addressed, including the establishment of protocols that adhere to good manufacturing practice (GMP) guidelines. The potential risks of genetic mutations in iPSC-derived CECs associated with long-term in vitro culture and the danger of potential tumorigenicity following transplantation are evaluated. In all, this review provides insights into the advancement and obstacles of using iPSC in the treatment of corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
| | - Gary S. L. Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, 6614, Pittsburgh, PA 15260, USA
| | - Hwee Goon Tay
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (X.Y.N.); (G.S.L.P.); (G.H.-F.Y.)
- Ophthalmology and Visual Sciences Academic Clinical Program, SingHealth and Duke-NUS Medical School, Singapore 169857, Singapore;
- Centre for Vision Research, DUKE-NUS Medical School, Singapore 169857, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
11
|
Luo X, He X, Zhao H, Ma J, Tao J, Zhao S, Yan Y, Li Y, Zhu S. Research Progress of Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1976. [PMID: 37446492 DOI: 10.3390/nano13131976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Nowadays, treating corneal diseases arising from injury to the corneal endothelium necessitates donor tissue, but these corneas are extremely scarce. As a result, researchers are dedicating significant efforts to exploring alternative approaches that do not rely on donor tissues. Among these, creating a tissue-engineered scaffold on which corneal endothelial cells can be transplanted holds particular fascination. Numerous functional materials, encompassing natural, semi-synthetic, and synthetic polymers, have already been studied in this regard. In this review, we present a comprehensive overview of recent advancements in using polymer biomaterials as scaffolds for corneal endothelium tissue engineering. Initially, we analyze and present the key properties necessary for an effective corneal endothelial implant utilizing polymer biomaterials. Subsequently, we focus on various emerging biomaterials as scaffolds for corneal endothelium tissue engineering. We discuss their modifications (including natural and synthetic composites) and analyze the effect of micro- and nano-topological morphology on corneal endothelial scaffolds. Lastly, we highlight the challenges and prospects of these materials in corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin He
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Jun Ma
- UniSA STEM and Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jie Tao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Songjiao Zhao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Yan Yan
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Yu X, Wang L, He W. Cytophilic Agarose-Epoxide-Amine Cryogels Engineered with Granulated Microstructures. ACS APPLIED BIO MATERIALS 2023; 6:694-702. [PMID: 36695539 DOI: 10.1021/acsabm.2c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inherent cytophobicity of agarose limits its direct use for the growth of anchorage-dependent cells. Here, we report a simple strategy allowing the development of agarose-based hydrogels entailed with both cytophilicity and microstructured morphology. Through the reaction of water-soluble 1,4-butanediol diglycidyl ether (BDDE) with trifunctional polyetheramine Jeffamine T403 in agarose solution followed by cryogelation of the mixtures, a series of macroporous agarose-epoxide-amine cryogels were prepared readily. Results from fluorescent labeling and energy-dispersive X-ray elemental mapping showed the formation of granulated microstructures in the cryogels. Such features closely correlated to the phase separation of BDDE-T403 polymers within the agarose matrix. Cytophilicity of the microstructured cryogels due to the integrated amine moieties was demonstrated through the adhesion of fibroblasts. Functional enrichment of the cryogels was further highlighted by leveraging the granulates as micro-reservoirs for polyphenol proanthocyanidin to enable antioxidation and protection of fibroblasts from H2O2-induced cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Xueying Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Liwei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning116024, China.,School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, China
| |
Collapse
|
13
|
Kaygisiz K, Ender AM, Gačanin J, Kaczmarek LA, Koutsouras DA, Nalakath AN, Winterwerber P, Mayer FJ, Räder HJ, Marszalek T, Blom PWM, Synatschke CV, Weil T. Photoinduced Amyloid Fibril Degradation for Controlled Cell Patterning. Macromol Biosci 2023; 23:e2200294. [PMID: 36281903 DOI: 10.1002/mabi.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adriana M Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmina Gačanin
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Alix Kaczmarek
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dimitrios A Koutsouras
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Abin N Nalakath
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pia Winterwerber
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Paul W M Blom
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
14
|
Lee DH, Lee JH, Pyun YC, Shin ME, Shin EY, Been S, Song JE, Migliaresi C, Motta A, Khang G. Impact of Agarose Hydrogels as Cell Vehicles for Neo Retinal Pigment Epithelium Formation: In Vitro Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Chen S, Qin C, Fang Q, Duo L, Wang M, Deng Z, Chen H, Lin Q. Rapid and Economical Drug-Eluting IOL Preparation via Thermoresponsive Agarose Coating for Effective Posterior Capsular Opacification Prevention. Front Bioeng Biotechnol 2022; 10:930540. [PMID: 35992334 PMCID: PMC9388942 DOI: 10.3389/fbioe.2022.930540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posterior capsular opacification (PCO), the highest incidence complication after cataract surgery, is mainly due to the attachment, proliferation, and migration of the residual lens epithelial cells (LECs). Although the drug-eluting IOLs have been proved to be an effective way to prevent PCO incidence, its preparations are time consuming and require tedious preparation steps. Herein, the thermoreversible agarose is adopted to prepare drug-eluting IOL. Such functional coating can be obtained easily by simple immersion in the antiproliferative drug containing hot agarose and taken out for cooling, which not only does not affect the optical property but also can effectively decrease the PCO incidence after intraocular implantation. As a result, the proposed agarose coating provides a rapid and economical alternative of drug-eluting IOL fabrication for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Chen
- *Correspondence: Hao Chen, ; Quankui Lin,
| | | |
Collapse
|
16
|
Bosch BM, Bosch-Rue E, Perpiñan-Blasco M, Perez RA. Design of functional biomaterials as substrates for corneal endothelium tissue engineering. Regen Biomater 2022; 9:rbac052. [PMID: 35958516 PMCID: PMC9362998 DOI: 10.1093/rb/rbac052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022] Open
Abstract
Corneal endothelium defects are one of the leading causes of blindness worldwide. The actual treatment is transplantation, which requires the use of human cadaveric donors, but it faces several problems, such as global shortage of donors. Therefore, new alternatives are being developed and, among them, cell therapy has gained interest in the last years due to its promising results in tissue regeneration. Nevertheless, the direct administration of cells may sometimes have limited success due to the immune response, hence requiring the combination with extracellular mimicking materials. In this review, we present different methods to obtain corneal endothelial cells from diverse cell sources such as pluripotent or multipotent stem cells. Moreover, we discuss different substrates in order to allow a correct implantation as a cell sheet and to promote an enhanced cell behavior. For this reason, natural or synthetic matrixes that mimic the native environment have been developed. These matrixes have been optimized in terms of their physicochemical properties, such as stiffness, topography, composition and transparency. To further enhance the matrixes properties, these can be tuned by incorporating certain molecules that can be delivered in a sustained manner in order to enhance biological behavior. Finally, we elucidate future directions for corneal endothelial regeneration, such as 3D printing, in order to obtain patient-specific substrates.
Collapse
Affiliation(s)
- Begona M Bosch
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Elia Bosch-Rue
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Marina Perpiñan-Blasco
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Roman A Perez
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| |
Collapse
|
17
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
18
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
19
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
21
|
Firipis K, Boyd-Moss M, Long B, Dekiwadia C, Hoskin W, Pirogova E, Nisbet DR, Kapsa RMI, Quigley AF, Williams RJ. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomater Sci Eng 2021; 7:3340-3350. [PMID: 34125518 DOI: 10.1021/acsbiomaterials.1c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Benjamin Long
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and MicroAnalysis Facility (RMMF), RMIT University, Melbourne, Vic 3000, Australia
| | - William Hoskin
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Elena Pirogova
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra 2601, Australia
| | - Robert M I Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Anita F Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Richard J Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
22
|
Mishan MA, Balagholi S, Chamani T, Feizi S, Soheili ZS, Rezaei Kanavi M. Potential of a novel scaffold composed of human platelet lysate and fibrin for human corneal endothelial cells. Cell Tissue Bank 2021; 23:171-183. [PMID: 33939123 DOI: 10.1007/s10561-021-09931-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been emerged to find innovative solutions for corneal endothelial dysfunction. The aim of this study is to investigate the suitability of a blended scaffold containing human platelet lysate (HPL) and fibrin not only for cultivating human corneal endothelial cells (HCECs) but also for serving as a scaffold for the respected cells. We isolated HCECs from human donors and encapsulated the cells with three concentrations of HPL/Fibrin scaffold, namely HPL/Fibrin 1, HPL/Fibrin 2 and HPL/Fibrin 3, by adding 28.9, 57.8 and 86.7 mg/dl of fibrinogen to HPL to obtain a final percentage of 10, 20 and 30 % of fibrinogen, respectively. SEM imaging and swelling test were done to characterize the scaffolds. Cell viability assay and cell counting were performed on the cells. HCECs were characterized by morphology and immunocytochemistry. SEM imaging on freeze-dried scaffolds showed higher porosity of HPL/Fibrin 1 and HPL/Fibrin 2 than HPL/Fibrin 3, but larger pores were observed only in HPL/Fibrin 1. Cellular attachment and morphology on HPL/Fibrin 1 were appropriate by SEM imaging. A higher swelling rate was observed in HPL/Fibrin 1. After 3 and 5 days, higher numbers of cells were observed specifically in HPL/Fibrin 1. A higher expression of Na+/K+-ATPase, ZO-1 and vimentin proteins was detected in the HPL/Fibrin 1-cultured HCECs as compared with control (no scaffold). HPL/Fibrin can be used as a suitable scaffold for HCECs while preserving the cells viability. Further investigations are necessitated to approve the beneficial effects of the suggested scaffold for delivering and transplantation of cultivated HCECs into the anterior chamber of the eye.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No.23, Paidarfard Street, Boostan 9 Street, Pasdaran Avenue, 1666673111, Tehran, Iran
| | - Sahar Balagholi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Sepehr Feizi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, No.23, Paidarfard Street, Boostan 9 Street, Pasdaran Avenue, 1666673111, Tehran, Iran.
| |
Collapse
|
23
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|