1
|
Imbir G, Trembecka-Wójciga K, Ozga P, Schirhagl R, Mzyk A. Elastic moduli of polyelectrolyte multilayer films regulate endothelium-blood interaction under dynamic conditions. Colloids Surf B Biointerfaces 2023; 225:113269. [PMID: 36963315 DOI: 10.1016/j.colsurfb.2023.113269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A broad spectrum of biomaterials has been explored in order to design cardiovascular implants of sufficient hemocompatibility. Most of them were extensively tested for the ability to facilitate repopulation by patient cells. It was shown that stiffness, surface roughness, or hydrophilicity of polyelectrolyte films have an impact on adhesion, proliferation, and differentiation of cells. At the same time, it is still unknown how these properties influence cell functionality and as a consequence interactions with blood components under dynamic conditions. In this study, we aimed to determine the impact of chemical cross-linking of Chitosan (Chi) and Chrondroitin Sulphate (CS) on endothelium-blood cross-talk. We have found that the morphology of the endothelium monolayer was not altered by changes in coating properties. However, free radical generation by endothelial cells varied depending on the elastic properties of the coating. Simultaneously, we have observed a significant decrease in the level of adhering and circulating active platelets as well as aggregates when the endothelium monolayer was formed on stiffer films than on the other coating variants. Moreover, the same type of films has promoted significantly higher adhesion of blood morphotic elements when they were not functionalized by endothelium. The observed changes in hemocompatibility indicate the importance of a design of coatings that will promote cellularization in vivo in a relatively short time and which will regulate cell function.
Collapse
Affiliation(s)
- Gabriela Imbir
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 152 Radzikowski Street, 31-342 Cracow, Poland.
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
| | - Piotr Ozga
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Aldona Mzyk
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland; Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Mzyk A, Imbir G, Noguchi Y, Sanak M, Major R, Wiecek J, Kurtyka P, Plutecka H, Trembecka-Wójciga K, Iwasaki Y, Ueda M, Kakinoki S. Dynamic in vitro hemocompatibility of oligoproline self-assembled monolayer surfaces. Biomater Sci 2022; 10:5498-5503. [PMID: 35904349 DOI: 10.1039/d2bm00885h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The blood compatibility of self-assembled monolayers (SAMs) of oligoproline, a nonionic antifouling peptide, was investigated using the cone-and-plate assay imitating arterial blood flow conditions. End-capped oligoprolines composed of 6 and 9 proline residues (Pro6 and Pro9) and a Cys residue were synthesized for preparing SAMs (Pro-SAMs) on Au-sputtered glass. The surface of Pro-SAMs indicated hydrophilic property with a smooth topology. The adsorption of blood components and the adhesion of blood cells, including leukocytes and platelets, were strongly suppressed on Pro-SAMs. Moreover, Pro9-SAM did not trigger the activation of platelets (i.e., the conformational change of GPIIb/IIIa and P-selectin (CD62P) expression on platelets and the formation of aggregates). Our results demonstrate that Pro9-SAM completely inhibited acute thrombogenic responses and the activation of platelets under dynamic conditions.
Collapse
Affiliation(s)
- Aldona Mzyk
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland.,Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | - Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Yuri Noguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Skawińska St. 8, 31-066 Cracow, Poland
| | - Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Justyna Wiecek
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Przemyslaw Kurtyka
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University Medical College, Skawińska St. 8, 31-066 Cracow, Poland
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Cracow, Poland
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan.,Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Masato Ueda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Sachiro Kakinoki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. .,Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka, 564-8680, Japan.,Kansai University Medical Polymer Research Center (KUMP-RC), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
3
|
Imbir G, Mzyk A, Trembecka-Wójciga K, Jasek-Gajda E, Plutecka H, Schirhagl R, Major R. Polyelectrolyte Multilayer Films Modification with Ag and rGO Influences Platelets Activation and Aggregate Formation under In Vitro Blood Flow. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E859. [PMID: 32365586 PMCID: PMC7712484 DOI: 10.3390/nano10050859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023]
Abstract
Surface functionalization of materials to improve their hemocompatibility is a challenging problem in the field of blood-contacting devices and implants. Polyelectrolyte multilayer films (PEMs), which can mimic functions and structure of an extracellular matrix (ECM), are a promising solution to the urgent need for functional blood-contacting coatings. The properties of PEMs can be easily tuned in order to provide a scaffold with desired physico-chemical parameters. In this study chitosan/chondroitin sulfate (Chi/CS) polyelectrolyte multilayers were deposited on medical polyurethane. Afterwards PEMs were modified by chemical cross-linking and nanoparticles introduction. Coatings with variable properties were tested for their hemocompatibility in the cone-plate tester under dynamic conditions. The obtained results enable the understanding of how substrate properties modulate PEMs interaction with blood plasma proteins and the morphotic elements.
Collapse
Affiliation(s)
- Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland; (A.M.); (K.T.-W.); (R.M.)
| | - Aldona Mzyk
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland; (A.M.); (K.T.-W.); (R.M.)
- Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands;
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland; (A.M.); (K.T.-W.); (R.M.)
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 7a Kopernika Street, 31-034 Krakow, Poland;
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland;
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands;
| | - Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland; (A.M.); (K.T.-W.); (R.M.)
| |
Collapse
|
4
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|