1
|
Zhang C, Li Y, Overton EN, Seyedsayamdost MR. Peptide surfactants with post-translational C-methylations that promote bacterial development. Nat Chem Biol 2025:10.1038/s41589-025-01882-8. [PMID: 40263466 DOI: 10.1038/s41589-025-01882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporins is widespread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Rodriguez Carrero RJ, Lloyd CT, Borkar J, Nath S, Mirica LM, Nair S, Booker SJ, Metcalf W. Genetic and biochemical characterization of a radical SAM enzyme required for post-translational glutamine methylation of methyl-coenzyme M reductase. mBio 2025; 16:e0354624. [PMID: 39772843 PMCID: PMC11796369 DOI: 10.1128/mbio.03546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. In vitro data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR in vivo when expressed in Methanosarcina acetivorans, an organism that does not normally possess this PTM. M. acetivorans strains expressing MgmA showed small, but significant, reductions in growth rates and yields on methylotrophic substrates. Structural characterization of the Ni(II) form of Gln-methylated M. acetivorans MCR revealed no significant differences in the protein fold between the modified and unmodified enzyme; however, the purified enzyme contained the heterodisulfide reaction product, as opposed to the free cofactors found in eight prior M. acetivorans MCR structures, suggesting that substrate/product binding is altered in the modified enzyme. Structural characterization of MgmA revealed a fold similar to other B12-dependent rSAMs, with a wide active site cleft capable of binding an McrA peptide in an extended, linear conformation.IMPORTANCEMethane plays a key role in the global carbon cycle and is an important driver of climate change. Because MCR is responsible for nearly all biological methane production and most anoxic methane consumption, it plays a major role in setting the atmospheric levels of this important greenhouse gas. Thus, a detailed understanding of this enzyme is critical for the development of methane mitigation strategies.
Collapse
Affiliation(s)
| | - Cody T. Lloyd
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janhavi Borkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Shounak Nath
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Satish Nair
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Squire J. Booker
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Howard Hughes Medical Institute, Pennsylvania State University, University Park, Pennsylvania, USA
| | - William Metcalf
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
3
|
Wang B, Solinski AE, Radle MI, Peduzzi OM, Knox HL, Cui J, Maurya RK, Yennawar NH, Booker SJ. Structural Evidence for DUF512 as a Radical S-Adenosylmethionine Cobalamin-Binding Domain. ACS BIO & MED CHEM AU 2024; 4:319-330. [PMID: 39712206 PMCID: PMC11659888 DOI: 10.1021/acsbiomedchemau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/24/2024]
Abstract
Cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes constitute a large subclass of radical SAM (RS) enzymes that use Cbl to catalyze various types of reactions, the most common of which are methylations. Most Cbl-dependent RS enzymes contain an N-terminal Rossmann fold that aids Cbl binding. Recently, it has been demonstrated that the methanogenesis marker protein 10 (Mmp10) requires Cbl to methylate an arginine residue in the α-subunit of methyl coenzyme M reductase. However, Mmp10 contains a Cbl-binding domain in the C-terminal region of its primary structure that does not share significant sequence similarity with canonical RS Cbl-binding domains. Bioinformatic analysis of Mmp10 identified DUF512 (Domain of Unknown Function 512) as a potential Cbl-binding domain in RS enzymes. In this paper, four randomly selected DUF512-containing proteins from various organisms were overexpressed, purified, and shown to bind Cbl. X-ray crystal structures of DUF512-containing proteins from Clostridium sporogenes and Pyrococcus furiosus were determined, confirming their C-terminal Cbl-binding domains. The structure of the DUF512-containing protein from C. sporogenes is the first of an RS enzyme containing a PDZ domain. Its RS domain has an unprecedented β3α4 core, whereas most RS enzymes adopt a (βα)6 core. The DUF512-containing protein from P. furiosus has no PDZ domain, but its RS domain also has an uncommon (βα)5 core.
Collapse
Affiliation(s)
- Bo Wang
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy E. Solinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew I. Radle
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Olivia M. Peduzzi
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiayuan Cui
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ravi K. Maurya
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neela H. Yennawar
- The
Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Howard
Hughes Medical Institute, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Zhang C, Seyedsayamdost MR. Widespread Peptide Surfactants with Post-translational C-methylations Promote Bacterial Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576971. [PMID: 38328144 PMCID: PMC10849626 DOI: 10.1101/2024.01.23.576971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions, and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein, we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporin is wide-spread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
5
|
Deng WH, Liao RZ. Sequential C-H Methylation Catalyzed by the B 12 -Dependent SAM Enzyme TokK: Comprehensive Theoretical Study of Selectivities. Chemistry 2023; 29:e202202995. [PMID: 36321632 DOI: 10.1002/chem.202202995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
TokK is a B12 -dependent radical SAM enzyme involved in the biosynthesis of the β-lactam antibiotic asparenomycin A. It can catalyze three methylations on different sp3 -hybridized carbon positions to introduce an isopropyl side chain at the β-lactam ring of pantetheinylated carbapenem. Herein, we report a quantum chemical study of the reaction mechanism of TokK. A stepwise ''push-pull'' radical relay mechanism is proposed for each methylation: a 5'-deoxyadenosine radical first abstracts a hydrogen atom from the substrate in the active site, then methylcobalamin directionally donates a methyl group to the substrate. More importantly, calculations were able to uncover the origin of observed chemoselectivity and stereoselectivity for the first methylation and regioselectivity for the following two methylations. Further detailed distortion/interaction analysis can help to unravel the main factors controlling the selectivities. Our findings of sequential methylations by TokK could have profound implications for studying other B12 -dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Booker SJ, Lloyd CT. Twenty Years of Radical SAM! The Genesis of the Superfamily. ACS BIO & MED CHEM AU 2022; 2:538-547. [PMID: 37101427 PMCID: PMC10114671 DOI: 10.1021/acsbiomedchemau.2c00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Squire J Booker
- Departments of Chemistry, and of Biochemistry and Molecular Biology, and the Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cody T Lloyd
- Departments of Chemistry, and of Biochemistry and Molecular Biology, and the Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Kudo F, Minato A, Sato S, Nagano N, Maruyama C, Hamano Y, Hashimoto J, Kozone I, Shin-Ya K, Eguchi T. Mechanism of S-Adenosyl-l-methionine C-Methylation by Cobalamin-dependent Radical S-Adenosyl-l-methionine Methylase in 1-Amino-2-methylcyclopropanecarboxylic Acid Biosynthesis. Org Lett 2022; 24:8975-8979. [PMID: 36458844 DOI: 10.1021/acs.orglett.2c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The radical S-adenosyl-l-methionine (SAM) methylase Orf29 catalyzes the C-methylation of SAM in the biosynthesis of 1-amino-2-methylcyclopropanecarboxylic acid. Here, we determined that the methylation product is (4″R)-4″-methyl-SAM. Furthermore, we found that the 5'-deoxyadenosyl radical generated by Orf29 abstracts the pro-R hydrogen atom from the C-4″ position of SAM to generate the radical intermediate, which reacts with methylcobalamin to give (4″R)-4″-methyl-SAM. Consequently, the Orf29-catalyzed C-methylation was confirmed to proceed with retention of configuration.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| | - Atsushi Minato
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| | - Shusuke Sato
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| | - Nayuta Nagano
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| | - Chitose Maruyama
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Yoshida-Gun, Fukui 910-1195, Japan
| | - Yoshimitsu Hamano
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Yoshida-Gun, Fukui 910-1195, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
8
|
Mathur Y, Hazra AB. Methylations in vitamin B 12 biosynthesis and catalysis. Curr Opin Struct Biol 2022; 77:102490. [PMID: 36371846 DOI: 10.1016/j.sbi.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research, Pune, India. https://twitter.com/yaminipmathur
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
9
|
Nie L, Wei T, Cao M, Lyu Y, Wang S, Feng Z. Biosynthesis of coelulatin for the methylation of anthraquinone featuring HemN-like radical S-adenosyl-L-methionine enzyme. Front Microbiol 2022; 13:1040900. [PMID: 36466681 PMCID: PMC9714029 DOI: 10.3389/fmicb.2022.1040900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Bacterial aromatic polyketides are usually biosynthesized by the type II polyketide synthase (PKS-II) system. Advances in deoxyribonucleic acid (DNA) sequencing, informatics, and biotechnologies have broadened opportunities for the discovery of aromatic polyketides. Meanwhile, metagenomics is a biotechnology that has been considered as a promising approach for the discovery of novel natural products from uncultured bacteria. Here, we cloned a type II polyketide biosynthetic gene cluster (BGC) from the soil metagenome, and the heterologous expression of this gene cluster in Streptomyces coelicolor M1146 resulted in the production of three anthraquinones, two of which (coelulatins 2 and 3) had special hydroxymethyl and methyloxymethyl modifications at C2 of the polyketide scaffold. Gene deletion and in vitro biochemical characterization indicated that the HemN-like radical S-adenosyl-L-methionine (SAM) enzyme CoeI exhibits methylation and is involved in C2 modification.
Collapse
Affiliation(s)
- Lishuang Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Wei
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Nguyen TQ, Nicolet Y. Structure and Catalytic Mechanism of Radical SAM Methylases. Life (Basel) 2022; 12:1732. [PMID: 36362886 PMCID: PMC9692996 DOI: 10.3390/life12111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 08/14/2023] Open
Abstract
Methyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5'-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5'-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations.
Collapse
Affiliation(s)
| | - Yvain Nicolet
- Metalloproteins Unit, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
11
|
Sinner EK, Li R, Marous DR, Townsend CA. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2206494119. [PMID: 35969793 PMCID: PMC9407657 DOI: 10.1073/pnas.2206494119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B12-dependent radical S-adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems. Therefore, it is probable that the other two rSAM enzymes have noncanonical functions. Through a series of fermentation and in vitro experiments, we show that ThnL uses radical SAM chemistry to catalyze thioether bond formation between C2 of a carbapenam precursor and pantetheine, uniting initial bicycle assembly common to all carbapenems with later tailoring events unique to complex carbapenems. ThnL also catalyzes reversible thiol/disulfide redox on pantetheine. Neither of these functions has been observed previously in a B12-dependent radical SAM enzyme. ThnL expands the known activity of this subclass of enzymes beyond carbon-carbon bond formation or rearrangement. It is also the only radical SAM enzyme currently known to catalyze carbon-sulfur bond formation with only an rSAM Fe-S cluster and no additional auxiliary clusters.
Collapse
Affiliation(s)
- Erica K. Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Daniel R. Marous
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
12
|
Lichstrahl MS, Townsend CA, Sinner EK. Stereochemical course of cobalamin-dependent radical SAM methylation by TokK and ThnK. RSC Chem Biol 2022; 3:1028-1034. [PMID: 36042702 PMCID: PMC9358933 DOI: 10.1039/d2cb00113f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics for difficult-to-treat infections. An essential step in the biosyntheses of these natural products is stereospecific methylation at C6 and subsequent alkylations by cobalamin-dependent radical SAM methylases such as TokK and ThnK. We have prepared isotopically labeled substrates in a stereospecific manner and found that both homologous enzymes selectively abstract the 6-pro-S hydrogen, followed by methyl transfer to the opposite face to give the (6R)-methyl carbapenam product proceeding, therefore, by inversion of absolute configuration at C6. These data clarify an unexpected ambiguity in the recently solved substrate-bound crystal structure of TokK and have led to a stereochemically complete mechanistic proposal for both TokK and ThnK.
Collapse
Affiliation(s)
- Michael S Lichstrahl
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Erica K Sinner
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| |
Collapse
|
13
|
Wu R, Ding W, Zhang Q. Consecutive Methylation catalyzed by
TsrM
, an atypical Class B radical
SAM
methylase. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Runze Wu
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
14
|
Ulrich EC, Drennan CL. The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts. J Am Chem Soc 2022; 144:5673-5684. [PMID: 35344653 PMCID: PMC8992657 DOI: 10.1021/jacs.1c12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/29/2022]
Abstract
Cobalamin (Cbl)-dependent S-adenosyl-l-methionine (AdoMet) radical methylases are known for their use of a dual cofactor system to perform challenging radical methylation reactions at unactivated carbon and phosphorus centers. These enzymes are part of a larger subgroup of Cbl-dependent AdoMet radical enzymes that also perform difficult ring contractions and radical rearrangements. This subgroup is a largely untapped reservoir of diverse chemistry that requires steady efforts in biochemical and structural characterization to reveal its complexity. In this Perspective, we highlight the significant efforts over many years to elucidate the function, mechanism, and structure of TsrM, an unexpected nonradical methylase in this subgroup. We also discuss recent achievements in characterizing radical methylase subgroup members that exemplify how key tools in mechanistic enzymology are valuable time and again. Finally, we identify recent enzyme activity studies that have made use of bioinformatic analyses to expand our definition of the subgroup. Additional breakthroughs in radical (and nonradical) enzymatic chemistry and challenging transformations from the unexplored space of this subgroup are undoubtedly on the horizon.
Collapse
Affiliation(s)
- Emily C. Ulrich
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Knox HL, Sinner EK, Townsend CA, Boal AK, Booker SJ. Structure of a B 12-dependent radical SAM enzyme in carbapenem biosynthesis. Nature 2022; 602:343-348. [PMID: 35110734 PMCID: PMC8950224 DOI: 10.1038/s41586-021-04392-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of β-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the β-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Erica K Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Amie K Boal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- The Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|